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a b s t r a c t

The significance of treating rainfall as a chaotic system instead of a stochastic system for a better under-
standing of the underlying dynamics has been taken up by various studies recently. However, an impor-
tant limitation of all these approaches is the dependence on a single method for identifying the chaotic
nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature
and not its prediction. In the present study, an attempt is made to identify chaos using various techniques
and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily
rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malap-
rabha, Mahanadi and All-India for the period 1955–2000 are used for the study. Auto-correlation and
mutual information methods are used to determine the delay time for the phase space reconstruction.
Optimum embedding dimension is determined using correlation dimension, false nearest neighbour
algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these
methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimen-
sion method is done on the phase randomized and first derivative of the data series to check whether the
saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional
dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories
and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure
of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of
rainfall for each year separately for the period 1996–2000 using the data till the preceding year. For ana-
lyzing the sensitiveness to initial conditions, predictions are done from two different months in a year
viz., from the beginning of January and June. The reasonably good predictions obtained indicate the effi-
ciency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill
score and the rank histograms show that the ensembles generated are reliable with a good spread and
skill. A comparison of results of the three regions indicates that although they are chaotic in nature,
the spatial averaging over a large area can increase the dimension and improve the predictability, thus
destroying the chaotic nature.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of chaos which deals with unpredictable complex
nonlinear systems had its breakthrough in the late 1800s, when
Poincaré addressed the stability of the solar system and the posi-
tion of planets. Later in 1963 Lorenz’s study on the convectional
rolls in the atmosphere lead to the rediscovery of chaotic motion
of a strange attractor. He found that the solutions to his equations
continued to oscillate in an irregular, aperiodic fashion instead of
settling to an equilibrium condition. He also noted the system’s
sensitivity to initial conditions and hence the unpredictability
[43]. Thereafter, the theory of chaos, in which a deterministic sys-
ll rights reserved.
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tem exhibits aperiodic long term behaviour and depends sensi-
tively on the initial conditions, gained popularity with the
scientific community.

The features or qualities of a chaotic system can be summarized
as: (i) they are deterministic, i.e., there are some determining equa-
tions ruling their behavior; (ii) they are sensitive to initial condi-
tions (a slight change in the starting point can lead to
significantly different outcomes); (iii) they are neither random
nor disorderly. Chaotic systems do have a sense of order and pat-
tern, even though they do not repeat.

Literature shows numerous applications of deterministic chaos
in hydrology, particularly rainfall and runoff dynamics. Most of
these studies investigate the existence of chaos in rainfall
[12,25,27,34,35,37,38], runoff series [12,16,17,21,22,42,47], lake
volume [29] and also rainfall disaggregation [40]. Chaotic dynam-
ics of joint rainfall–runoff process was investigated by Sivakumar
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et al. [36] considering the runoff coefficient as a parameter con-
necting rainfall and runoff. A few studies have also tried the non-
linear prediction of rainfall and runoff series by treating them as
univariate series [10,12,21,22,38] and also as multivariate series
[23] taking into consideration information from other time series.
Much debate has occurred on the effects of the data size
[18,26,41] and noise [3,11,14,31,39] in the estimation of the
dimensions of a chaotic series.

A dynamical system is any system that evolves in time from
some known initial state and can be described by a set of equa-
tions. This is usually described in terms of trajectories in the state
space (which is a mathematically constructed abstract space in
which each dimension represents one variable of the system).
Since the set of equations is not known a priori in time series anal-
ysis, the state space is represented by a phase space which can be
reconstructed from the time series itself. Each trajectory in the
phase space represents the evolution of the system from one initial
condition. An attractor can be defined as a subset of trajectories
into which all trajectories, originating from different initial condi-
tions, will eventually converge. Since this subset of trajectories at-
tracts all other trajectories in the phase space, it is called the
attractor of the system. For a time series of a regular system, the
attractor will be of integer dimension. But for a chaotic system,
which is irregular and is sensitive to the initial conditions, the
attractor may be characterized by a non-integer dimension.

Since the dynamics of a chaotic time series are not known, as
also the original theoretical attractor, the state space of a scalar
time series is approximated to a phase space where the attractor
is reconstructed using the scalar series. Thus, phase space recon-
struction provides a simplified, multi-dimensional representation
of a single-dimensional nonlinear time series. Packard et al. [20]
proposed a method of delays for reconstructing the phase space
which was introduced and mathematically demonstrated by Ta-
kens [44]. According to this approach, for a scalar time series Xi

where i = 1,2, . . . ,N, the dynamics can be fully embedded in m-
dimensional phase space represented by the vector,

Yj ¼ ðXj;Xjþs;Xjþ2s; . . . ;Xjþðm�1ÞsÞ; ð1Þ

where j = 1,2, . . . ,N � (m � 1)s/Dt; m is called the embedding
dimension (m P d, where d is the dimension of the attractor); s is
the delay time and Dt is the sampling time. The dimension m can
be considered as the minimum number of state variables required
to describe the system. The popular methods used for estimating
the embedding dimension are the Grassberger–Procaccia approach
(GPA) [6,7], and the False Nearest Neighbour (FNN) method [15].

The delay time s is the average length of memory of the system.
An appropriate delay time is to be chosen for the best representa-
tion of a phase space. If s is too small, the phase space coordinates
would not be independent, resulting in some loss of information
about the characteristics of the attractor structure. On the other
hand, if s is too large, then there would be no dynamic correlation
between the state vectors since the neighbouring trajectories di-
verge, thus resulting in some loss of information about the original
system. The optimum s is usually determined using either autocor-
relation function or the mutual information method [5]. For study
of hydrological time series, the most popularly used method is the
autocorrelation function. Several recommendations are available
for the selection of s from the autocorrelation function. Tsonis
and Elsner [46] recommended that if the autocorrelation function
is approximately exponential, then the delay time can be chosen
as the lag time at which the autocorrelation falls below the thresh-
old value e�1. Another method is to take s as the first lag time at
which the autocorrelation crosses the zero line [9].

The estimation of these parameters depends on the methods
employed and also on the noise of the time series. Noise in the ser-
ies can be removed by smoothing [22,30], but it may alter the
underlying dynamics of the series itself [3,39]. Considering all
these uncertainties, while prediction, instead of a single forecast,
an ensemble of forecasts has to be generated from a plausible com-
bination of parameters. Such an ensemble approach provides an
estimate of the forecast uncertainty and also the probability den-
sity function of the response variable.

The aim of this paper is to analyse the chaotic behaviour of a
time series employing various techniques. The set of plausible
parameters thus obtained are used to generate an ensemble of
forecasts of the time series. The various methods usually employed
are described first, followed by delineating the methodology used
in this study. The methodology developed is demonstrated by
applying it to the Malaprabha, Mahanadi and All-India daily rain-
fall series and finally the results are discussed.
2. Methods employed

A variety of techniques have emerged for the identification of
chaos which include correlation dimension method [6], false near-
est neighbour algorithm [15], nonlinear prediction method [4],
Lyapunov exponent method [13], Kolmogorov entropy [7], surro-
gate data method [45], etc. In this study, correlation dimension,
false nearest neighbour method and Lyapunov exponent are em-
ployed to analyse the chaotic nature of the time series. Nonlinear
prediction method is used as an inverse method for chaos identifi-
cation in addition to prediction. The nonlinearity of the time series
is analysed by surrogate data method.

2.1. Correlation dimension method

In correlation dimension method also known as correlation
integral analysis, the correlation integral C(r) is estimated using
the Grassberger–Procaccia algorithm [6]. This algorithm uses the
reconstructed phase space of the time series in Eq. (1). According
to the algorithm, for an m-dimensional phase space, the correlation
integral C(r) is given by

CðrÞ ¼ lim
N!1

2
NðN � 1Þ

X
i;j

ð16i<j6NÞ

Hðr � jYi � YjjÞ; ð2Þ

where H is the Heaviside function, with H(u) = 1 for u > 0 and
H(u) = 0 for u 6 0, where u = (r � jYi � Yjj), r is the radius of the
sphere centered on Yi or Yj and N is the number of data. For small
values of r, the correlation integral holds a power law relation on
r, C(r) � rd, where d is the correlation dimension of the attractor.
The correlation exponent or the dimension, d can be calculated from
the slope of the plot of logC(r) versus logr.

If the correlation exponent saturates to a constant value even on
increase in embedding dimension m, then the series is generally
considered to be chaotic. The nearest integer above that saturation
value indicates the number of variables necessary to describe the
evolution in time. On the other hand, if the correlation exponent
increases without reaching a constant value on increase in the
embedding dimension, the system under investigation is generally
considered as stochastic. This is because, contrary to the low
dimensional chaotic systems, stochastic systems acquire large
dimensional subsets of the system phase space, leading to an infi-
nite dimension value.

However, Osborne and Provenzale [19] opposed the traditional
view that stochastic processes lead to a non-convergence of the
correction dimension by demonstrating that ‘‘colored random
noises” characterized by a power law power spectrum exhibit a fi-
nite and predictable value of the correlation dimension. Thus the
sole presence of finite, non-integer dimension value is not suffi-
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cient to indicate the presence of a strange attractor. While for the
low dimensional dynamic systems the saturation of correlation
dimension is due to the phase correlations, for the above men-
tioned stochastic systems it is mainly due to the shape of the
power spectrum (power law). Hence, it would be worthwhile to
carry out some additional tests to distinguish low dimensional
dynamics and randomness [24].
2.1.1. Phase randomization
Stochastic surrogate data of the same Fourier spectra as that of

the original data are generated. The Fourier phases are randomized
and are uniformly distributed. Upon performing the correlation
dimension method on this surrogate data, correlation dimension
estimate will be invariant, if the convergence of the dimension is
forced only by the shape of the power spectrum and not due to
any low dimensional dynamics.
Fig. 1. (a) Location map of the Malaprabha basin. The latitude, longitude and scale o
2.1.2. Signal differentiation
Another method is to take the first (numerical) derivative of the

signal and examine its correlation integral. The correlation dimen-
sion of the differentiated signal will be much larger than that of the
original signal in the case of stochastic systems. This is attributed
to the change in the spectral slope on differentiation. For low
dimensional dynamic systems, correlation dimension will be al-
most invariant.

2.2. False nearest neighbour method

The concept of false nearest neighbour was introduced by Ken-
nel et al. [15]. This method is based on the concept that if the
dynamics in phase space can be represented by a smooth vector
field, then the neighbouring states would be subject to almost
the same time evolution [14]. Hence, after a short time into the fu-
ture, any two close neighbouring trajectories emerging from them
f the map refer to the Karnataka state. (b) Location map of the Mahanadi basin.
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should still be close neighbours. Hegger and Kantz [8] had modi-
fied the original algorithm of Kennel et al. [15] to avoid any spuri-
ous results due to noise. In the present study, this modified
algorithm in which the fraction of false nearest neighbours are
computed in a probabilistic way has been used.

The basic idea is to search for all the data points which are
neighbours in a particular embedding dimension m and which do
not remain so, upon increasing the embedding dimension to
m + 1. Considering a particular data point, determine its nearest
neighbour in the mth dimension. Compute the ratio of the dis-
tances between these two points in the (m + 1)th and mth dimen-
sions. If this ratio is larger than a particular threshold f, then the
neighbour is false. When the percentage of false nearest neigh-
bours falls to zero (or a minimum value), the corresponding
embedding dimension is considered high enough to represent
the dynamics of the series.

According to Hegger and Kantz [8], for the fraction of false near-
est neighbours to touch zero, the threshold value mentioned above
should be sufficiently large. They suggested a minimal reasonable
threshold determined from the local deterministic expansion rate
as ekmaxs, where kmax is the maximal Lyapunov exponent (explained
Fig. 2. Daily rainfall histograms for the period 1955–2000 of (a) Malaprabha basin;
(b) Mahanadi basin and (c) All-India region.

Table 1
Mean and standard deviation of monthly rainfall of three regions for the period 1955–200

Month Malaprabha Mahanadi

Mean (mm) Standard deviation (mm) Mean (mm)

January 1.0 3.9 13.6
February 0.8 2.1 15.1
March 6.0 11.6 15.5
April 29.0 27.1 13.2
May 83.7 78.0 21.0
June 417.4 168.5 193.8
July 770.0 299.8 398.2
August 441.3 195.4 390.0
September 167.1 74.1 215.7
October 138.4 93.4 59.8
November 39.5 49.1 9.5
December 5.2 11.4 7.8
in the next section) and s is the time lag. A distortion in FNN frac-
tion can also be caused by too low or too large time lag. Hence, the
fraction of false nearest neighbours depends upon the threshold
and also the time lag.

2.3. Lyapunov exponent

The most striking feature of a chaos system is the unpredictabil-
ity due to the sensitive dependence on initial conditions. The very
small deviations in initial conditions of all the trajectories are
blown up after a few time steps. In the case of chaotic systems, this
divergence will be exponentially fast. Lyapunov exponent gives the
averaged information of this divergence and thus the unpredict-
ability of the system. It characterizes the rate of separation of infin-
itesimally close trajectories. Let st1 and st2 be two points in two
trajectories in state space such that the distance between them is
kst1 � st2k ¼ @0 � 1. After Dt time steps ahead, the distance be-
tween these two trajectories will be @Dt ffi kst1þDt � st2þDtk;
@Dt � 1; Dt � 1. Hence, trajectories with initial separation @0 di-
verge in the form of an exponential function, @Dt ffi ekDt@0, where
k is the Lyapunov exponent [13]. Since the rate of separation is dif-
ferent for various orientations of initial separation vector, the total
number of Lyapunov exponents is equal to the number of dimen-
sions of the phase space defined, i.e., a spectrum of exponents will
be available. Among them, the highest (global) Lyapunov exponent
need only be considered, as it determines the total predictability of
the system.

A positive k indicates an exponential divergence of the nearby
trajectories, and thus chaos. The orbit is unstable and chaotic. Neg-
ative Lyapunov exponents are characteristic of dissipative or non-
conservative systems. Their orbits attract to a stable fixed point or
periodic orbit. The stability is directly proportional to the negative-
ness of the exponent. Conservative systems exhibit a zero Lyapu-
nov exponent. The orbit is a neutral fixed point.

Since a positive Lyapunov exponent is a strong signature of
chaos, many algorithms have been developed to calculate the max-
imal Lyapunov exponent. Wolf’s algorithm [49] is one of the first
kinds developed for this, although it requires much care as the
algorithm does not allow testing the presence of exponential diver-
gence and can lead to wrong results. However, exponential diver-
gence can be examined using algorithms introduced by
Rosenstein et al. [28] and Kantz [13].

For calculating the maximum Lyapunov exponent, one has to
compute

SðDtÞ ¼ 1
N

XN

to¼1

ln
1

jUðst0 Þj
X

st2Uðst0 Þ
jst0þDt � stþDtj

0
@

1
A; ð3Þ

where st0 are reference points or embedding vectors, Uðst0 Þ is the
neighbourhood of st0 with diameter n. For a reasonable range of n
0.

All-India

Standard deviation (mm) Mean (mm) Standard deviation (mm)

13.7 22.9 9.3
14.2 26.1 10.8
19.3 33.8 13.8

8.6 43.5 11.8
18.3 74.6 14.5
87.3 183.2 29.4
86.1 311.0 35.0
81.6 271.3 32.1
83.1 180.9 36.0
47.5 84.5 32.1
14.0 33.7 16.0
14.2 19.5 10.7
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and for all embedding dimensions m which is larger than some min-
imum dimension m0, if S(Dt) exhibits a linear increase, then its slope
can be taken as an estimate of the maximal Lyapunov exponent k.

2.4. Nonlinear prediction method

The nonlinear prediction method is used to investigate the pres-
ence of chaos in the time series, in addition to obtain forecasts. It is
also used to counter-check the correlation dimension obtained
from the correlation integral method.

The procedure of nonlinear prediction can be explained as fol-
lows: As a first step, the phase space reconstruction of the scalar
series Xi, where i = 1,2, . . . ,N is done, using the method of delays
as per Eq. (1). Once the reconstruction of the attractor is success-
fully achieved in an embedding dimension m, the dynamics can
be interpreted in the form of an m-dimensional map fT such that

YjþT ¼ fTðYjÞ; ð4Þ

where Yj and Yj + T are vectors of dimension m, Yj being the state at
current time j and Yj + T being the state at future time j + T. Now the
problem is to find a good approximation of fT using the current data.
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Fig. 3. (a) Auto-correlation function of Malaprabha daily rainfall; (b) power spectrum of M
power spectrum of Mahanadi daily rainfall; (e) autocorrelation function of All-India dai
The selection of a nonlinear model for fT can be made either
globally or locally. The global approach approximates the map
by working on the entire phase space of the attractor and seeking
a form, valid for all points. Neural networks and radial basis func-
tions adopt the global approach. In the second approach which
works on local approximation [4] the dynamics are modeled lo-
cally piecewise in the embedding space. The domain is broken
up into many local neighbourhoods and modeling is done for
each neighbourhood separately, i.e., there will be a separate fT va-
lid for each neighbourhood. The complexity in modeling fT is thus
considerably reduced without affecting the accuracy of
prediction.

The prediction of Yj+T is done based on values of Yj and k nearest
neighbours of Yj. These k nearest neighbours are selected based on
the minimum values of kYj � Yj0 k where j0 < j. If only one nearest
neighbour is considered then Yj+T will be Yj0þT . Since normally
k > 1, the prediction of Yj+T is taken as a weighted average of the
k values. In the present study, the prediction of Yj+T is done by aver-
aging for k neighbours in the form bY jþT ¼ 1

k

Pk
i¼1Yi0þT . The optimum

number of nearest neighbours is decided by trial and error. The
prediction accuracy is estimated using the correlation coefficient,
500 600 700 800 900

e (days)

1.E-02 1.E-01 1.E+0 0

ency

Slope = -0.75

alaprabha daily rainfall; (c) autocorrelation function of Mahanadi daily rainfall; (d)
ly rainfall and (f) power spectrum of All-India daily rainfall.
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Nash efficiency coefficient and also normalized mean square error
between the predicted series and the corresponding observed
series.

2.5. Surrogate data method

The method of surrogate data [45] generates substitute data
with the same probabilistic structure as of the original data.
The surrogate data is generated according to a null hypothesis
(for example the data has been created by a stationary Gaussian
linear process); but possess some of the statistical properties of
the original data, such as the mean, the standard deviation, the
cumulative distribution function, the power spectrum, etc. In
Amplitude Adjusted Fourier Transform algorithm (AAFT) intro-
duced by Theiler et al. [45], an ensemble of synthetic sequences
are generated stochastically retaining the probability density
function (pdf) and the linear correlation structure (power spec-
trum) of the original series. However the surrogates generated
from a linear Gaussian function have a Gaussian pdf. Since very
few real time series have a Gaussian structure, the original pdf
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Fig. 3 (cont
is reconstructed by using an invertible nonlinear transform from
the ensemble of surrogates. Finally, the original series is com-
pared with the ensemble of the surrogate under the null hypoth-
esis that the data has been generated by a stationary Gaussian
linear stochastic process (equivalently, an autoregressive moving
average or ARMA process) that is observed through an invertible,
static, but possible nonlinear observation function represented as:
sn = s(xn), {xn}: ARMA(M,N).

Here without modeling the parameters (the orders M and N, the
ARMA coefficients and the function s(.)) a prior, it is known that the
above process would show characteristic linear correlations
(reflecting the ARMA structure) and a characteristic single time
probability distribution (reflecting the action of s(.) on the original
Gaussian distribution) [33].

In the present study, the iterative amplitude adjusted Fourier
transform (IAAFT) method proposed by Schreiber and Schmitz
[32] is used, in which the probability density function and correla-
tion structure (and hence power spectrum) of the original data are
maintained by iteratively minimizing the deviation. The algorithm
proceeds as follows:
250 300 350 400 450 500

me (days)

1.E -02 1.E-01 1.E+00

ency

Slope = -0.92

inued)
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1. A sorted list of the original series {sn} and the squared ampli-

tudes of its Fourier transform, S2
k ¼

PN�1
n¼0 snei2pkn=N

��� ���2 are stored.

2. Random shuffle the data (without replacement) sð0Þn

n o
to

destroy any nonlinear relationships and correlations.

3. Now take the Fourier transform of sðiÞn

n o
, replace its squared

amplitude by S2
k

n o
and transform back.

4. To correct the pdf, rank order the resulting series and replace
each value with the original series value with the same rank.
This will modify the power spectrum again.

5. Repeat steps 3 and 4 until a given accuracy is reached.

A hypothesis testing is done by comparing a test statistic of the
original data with those of the ensemble of surrogates. Any nonlin-
earity measure such as correlation dimension, the Lyapunov expo-
nent, the Kolmogorov entropy, the prediction accuracy, etc. can be
used as a test statistic. If the test statistic values, obtained from the
ensemble of surrogate data, are significantly different from that of
the original time series, then the null hypothesis that the original
time series emanated from a linear process is rejected. On the other
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Fig. 3 (cont
hand, if the test statistics from the surrogates and the original ser-
ies are not significantly different, then the original time series is
considered to be a linear stochastic process. In the present study,
the nonlinear prediction error is used as the test statistic.
3. Methodology

The approach used for generating the ensemble prediction is
described below:

i. Choose a suitable range of values of delay time s using the
autocorrelation method and mutual information method.

ii. Analyse the chaotic nature of the time series using correla-
tion dimension, false nearest neighbour, Lyapunov exponent
and nonlinear prediction methods.

iii. Repeat the correlation dimension method on phase random-
ized and also on first derivative of the original signal, for
examining the presence of any pseudo-low dimensional
chaos.

iv. Compute a suitable range of values of embedding dimension
m using the above methods.
50 300 350 400 450 500

e (days)

1.E-02 1.E-01 1.E+0 0

ency

Slope = -1.22

inued)
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v. Select a range of neighbourhood size (radius) from which the
nearest neighbours searching can be done, using nonlinear
prediction method. The neighbourhood radius is expressed
as a fraction a of the standard deviation.

vi. Examine the nonlinearity of the time series using the surro-
gate data method.

vii. Reconstruct the phase space for all the available combina-
tions of the parameters m, s and a.

viii. Compute the generalized cross validation (GCV) value for all
the possible combinations.
1.6a
GCVðm; s;aÞ ¼
Pn

i¼1
e2

i
n

1� p
n

� �2 ; ð5Þ

where ei is the error, n is the number of data points, p is the
number of parameters to be determined.
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Fig. 4. Variation of mutual information with lag time: (a) Malaprabha daily rainfall;
(b) Mahanadi daily rainfall and (c) All-India daily rainfall.
ix. Select a set of best parameter combinations falling under
10% of the lowest GCV value.

x. The best parameter combinations are used to produce an
ensemble of forecasts. The quality of the ensembles is ana-
lysed using two performance measures: rank probability
skill score (RPSS) and rank histogram [48].

xi. Repeat all these above steps on different time series with
different characteristics in order to analyse the change in
the chaotic behaviour due to the change in characteristics.

For determining RPSS, the dataset is divided into n number of
categories. The rank probability score (RPS) is calculated as the
sum of the squares of the difference of the cumulative probabilities
of each of the predicted – observed data pair. RPS is given by

RPS ¼
Xn

i¼1

ðPi � OiÞ2; ð6Þ

where Pi is the cumulative probability of the forecast for category i
and Oi is the cumulative probability of the observation for category
i. Cumulative probability of the forecast for each category is based
on adding all the ensemble values of that category. The cumulative
probability of the observation is determined by assigning a value of
zero for all categories less than the observation’s category and a va-
lue of 1 for all categories equal to and greater than the observation’s
category. Finally, RPSS is given by

RPSS ¼ 1� RPS
RPSc lim

; ð7Þ

where RPS is the mean rank probability score of all observation –
forecast pairs and RPSc lim is the mean rank probability score of cli-
matological forecast. An RPSS value of 1.0 indicates a perfect fore-
cast and a negative value indicates an output worse than
climatology. An RPSS of 0.0 implies no improvement in skill over
the reference climatological forecast, RPSc lim.

Rank histogram is a graphical method to evaluate the reliability
and probable predictability of the targeted parameter by the
ensembles. Suppose there are n observation forecast pairs and nens

ensemble forecasts corresponding to each observation. Then,
assuming that for each of these n data sets, all the ensembles
and also the observations are having the same probability distribu-
tion, the rank of the observation is likely to take any of the values
i = 1,2,3, . . . ,nens + 1. The rank of the observation is determined for
each of the n data points. These ranks are plotted in the form of a
histogram to produce the rank histogram. While an ideal rank his-
togram should be a flat one, ensemble members from a less vari-
able distribution results in a U-shaped rank histogram. A U-
shaped histogram indicates that the spread is too small that many
observations are falling outside the extremes of the ensembles;
whereas a dome shape indicates that ensemble spread is too large
that too many observations are falling in the middle range. An
ensemble bias (positive or negative) excessively populates the
low and high ranks.
4. Data used

The daily rainfall data of three regions in India: Malaprabha ba-
sin, Mahanadi basin and also All-India for the period 1955–2000
are considered for the present study. The location map of the Mal-
aprabha and Mahanadi basins are shown in Fig. 1. The regions cho-
sen vary widely in the spatial area coverage and also in the rainfall
intensity. Malaprabha basin is the smallest with only around
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Fig. 5. Variation of correlation integral with radius on a log–log scale for embedding dimensions from 1 to 40: (a) Malaprabha daily rainfall; (b) Mahanadi daily rainfall and
(c) All-India daily rainfall.
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2500 km2 area; yet receiving the highest rainfall of 1800 mm in the
monsoon months. While Mahanadi and All-India rainfall differ
only 200 mm in monsoon months (with Mahanadi receiving
1200 mm and All-India receiving 945 mm), their areas vary widely,
1.4 � 105 km2 and 32.8 � 105 km2, respectively. While Malaprabha
and Mahanadi daily rainfall series have 58% and 38% zeroes, All-In-
dia has only 2% since it is averaged over a large area.

The frequency histograms of the daily rainfall series for the per-
iod 1955–2000 are shown in Fig. 2. The mean and standard devia-
tion of monthly rainfall of the regions are presented in Table 1.
Major portion of the annual rainfall is received in the monsoon
months of June, July, August and September.
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Fig. 6. Variation of correlation exponent with embedding dimension: (a) Malap-
rabha daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall.
5. Results and discussion

The daily rainfall data from 1955 to 1995 is used for chaotic nat-
ure analysis and for determining the embedding dimension and
delay time. As a preliminary investigation, the autocorrelation
function and Fourier spectrum of the three time series are plotted
and are shown in Fig. 3. The initial exponential decay of autocorre-
lation functions indicates that the rainfall series may be of chaotic
nature. The periodic behaviour of the autocorrelation function for
higher lags is due to the seasonal periodicity of the rainfall. Also,
the broad band form of the power spectrum and its power law
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Fig. 7. Variation of fraction of false nearest neighbours with embedding dimension:
(a) Malaprabha daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily
rainfall.
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shape, i.e, P(f) / f�a, with a � 1.0 is clearly visible for a large fre-
quency range for all the three time series.

5.1. Determination of delay time

The choice of the delay time s is made using the autocorrelation
method and the mutual information method. In autocorrelation
method, the delay time is determined as the lag time at which
the autocorrelation function attains a zero value. Hence, the delay
times for the three series from the autocorrelation plot are 71, 72
and 81 days respectively. The mutual information obtained for var-
ious lag times are shown in Fig. 4. The delay time for the phase
space reconstruction is the first minimum value, which is at 93,
74 and 84 days. Hence, the ranges of delay time for the ensemble
prediction are chosen as 60–100 days, allowing a little extra
spread, for all the three time series.

5.2. Determination of embedding dimension

5.2.1. Correlation dimension method
The correlation integral C(r) according to Grassberger–Procaccia

algorithm is calculated for embedding dimensions 1–40. Fig. 5
shows a plot of correlation integral C(r) versus radius r on a log–
log scale for embedding dimension m = 1–40. In this figure, clear
scaling regions are visible between C(r) values of 10�2 and 10�5,
for the calculation of correlation exponents. The correlation expo-
nent is determined by the slope of the plot of C(r) versus r on a log–
log scale. Fig. 6 shows the variation of the correlation exponent
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Fig. 8. (a) Sensitivity analysis of fraction of false nearest neighbours for different
threshold values and (b) sensitivity analysis of fraction of false nearest neighbours
for different delay times.
with the embedding dimension for the three regions. It can be no-
ticed that for all the three regions, the correlation exponent is
increasing with embedding dimension and reaching a constant va-
lue at embedding dimension m P 19.

The saturation of the correlation exponent beyond a certain
embedding dimension is an indication of the existence of chaos
in rainfall series. However, the saturation value is slightly different
for different regions. The saturation values of the correlation expo-
nent for Malaprabha and Mahanadi basins are found to be 5.12 and
5.79, respectively, which means that the number of variables dom-
inantly influencing the rainfall dynamics of these basins is �6. The
correlation exponent of All-India region is slightly higher, with a
value of 8.14, necessitating the total number of influencing vari-
ables �9. The high correlation dimension for All-India daily rainfall
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Fig. 9. Variation of S(Dt) with time for various embedding dimensions: (a)
Malaprabha daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall.
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can be attributed to the large spatial area contributing to its rainfall
and hence the requirement of more variables to explain its dynam-
ics. Nevertheless, the low correlation dimensions obtained in three
cases suggest the possible presence of low dimensional chaotic
behavior.
5.2.2. False nearest neighbour method
The FNN algorithm is applied on the rainfall series of three re-

gions. The threshold value f is fixed at 5. The variation of the frac-
tion of false nearest neighbours for different embedding
dimensions is shown in Fig. 7. It can be seen that for Malaprabha
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Fig. 10. Variation of prediction error with the neighbourhood size: (a) Malaprabha
daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall.
basin, the fraction of nearest neighbours is falling to a minimum
value at an embedding dimension of 7. This indicates that an
embedding dimension of 7 is sufficient to explain the dynamics
Fig. 11. Variation of statistical measures with embedding dimension: (a) Malap-
rabha daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall.
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of the rainfall series. However, as can be seen from the figure, the
percentage of nearest neighbours is not attaining a zero or mini-
mum value as desired. It is steeply increasing after 7th dimension
and thereafter remains almost constant up to m = 18. At m = 19, it
again falls to a minimum value and thereafter it remains almost
constant. Despite this unexpected behaviour, it can be concluded
that the embedding dimension is �7 and it is in close agreement
with the value obtained by the correlation dimension method.

For Mahanadi basin and All-India region, the FNN fractions
are falling steeply till embedding dimensions of 6 and 8, respec-
tively. The decrease of FNN fraction afterwards is comparatively
insignificant. The values obtained in both cases are in close
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Fig. 12. Variation of correlation exponent with embedding dimension for original
data, phase randomized data and first derivative of data: (a) Malaprabha daily
rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall.
agreement with that obtained from correlation dimension
method.
Fig. 13. Nonlinear prediction error for original data and 99 surrogates. The thick
long line indicates the nonlinear prediction error of original data and thin short
lines indicate the error from the surrogates. The mean and ±1 standard deviation of
the prediction errors of surrogates are also shown. (a) Malaprabha daily rainfall; (b)
Mahanadi daily rainfall and (c) All-India daily rainfall.
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The unusual rise of FNN fraction at embedding dimension 7 and
a plateau till embedding dimension 18 for Malaprabha basin may
be due to the presence of additive noise in the data series. The
presence of additive noise leads to high space dimensionality at
smaller scales. Since the selection of a suitable noise reduction
method needs further investigation, it is not dealt in the present
study.

Also, a comparison of FNN diagrams of latter regions with the
former one suggests that another possible reason for the unex-
pected behaviour in the former case may be due to the presence
of a large amount of zeros (about 57%) in the time series. The per-
centage of zeros (single values) are comparatively less for the
Mahanadi and All-India rainfall series.

The sensitivity of FNN fraction on threshold, f for Malaprabha
basin is shown in Fig. 8(a). The unusual behaviour is seen for all
the thresholds taken. Even though the fraction of FNN is lesser
for larger thresholds, the dimension at which the FNN fraction
drops considerably remains the same for all the thresholds. Hence,
it can be concluded that for the mere estimation of embedding
dimension, the value of threshold taken does not matter. Also,
the sensitivity of FNN on delay time ranging from 5 to 95 days is
shown in Fig. 8(b). It is clear from the figure that contrary to Heg-
ger and Kantz [8] the FNN fraction does not depend on delay time.
5.2.3. Lyapunov exponent
The maximal Lyapunov exponent is calculated employing the

algorithm by Rosenstein et al. [28]. The variation of S(Dt) with
time, t for Malaprabha basin at dimensions m = 6–10 is shown in
Fig. 9(a). The maximum Lyapunov exponent which is given by
the slope of the linear part of the curve is around 0.0317. Similarly,
from Fig. 9(b) and (c), the maximum Lyapunov exponent for Maha-
Table 2
Optimum parameter combinations with minimum GCV.

Parameter Region

Malaprabha Mahanadi All-
India

Dimension 4–7 4–7 7–11
Delay time (days) 65–85 65–85 75–90
Neighbourhood size (% standard

deviation)
0.4–0.6 0.4–0.7 0.4–0.7

Table 3
Correlations between the observed and mean ensemble daily rainfall values for prediction

Year Malaprabha prediction beginning from Mahanadi pred

January June January

1996 0.56 0.57 0.73
1997 0.73 0.74 0.655
1998 0.65 0.63 0.625
1999 0.71 0.69 0.68
2000 0.70 0.68 0.665

Table 4
Correlations between the observed and the mean ensemble average daily rainfall values f

Year Malaprabha prediction beginning from Mahanadi pred

January June January

1996 0.89 0.90 0.98
1997 0.94 0.95 0.97
1998 0.96 0.97 0.96
1999 0.94 0.94 0.97
2000 0.98 0.98 0.95
nadi and All-India regions are calculated as 0.025 and 0.020,
respectively. Positive values of Lyapunov exponent for the three re-
gions confirm the exponential divergence of trajectories and hence
the chaotic nature of the daily rainfall. The inverse of the Lyapunov
exponent defines the predictability of the system, which is around
31 days for Malaprabha, 40 days for Mahanadi and 50 days for All-
India. It is significant to note here that an increase in spatial area
leads to an increase in predictability of the system.
5.2.4. Nonlinear prediction method
Nonlinear prediction method is used here as an inverse method

for identifying the chaotic nature and also for determining the
embedding dimension necessary for revealing the underlying
dynamics of the rainfall series. The rainfall series from 1955 to
1999 is used to predict the rainfall for the year 2000, using the local
constant method. As a first step, the optimum neighbourhood sizes
are determined for the three regions by plotting the variation of
the prediction error (root mean square error, RMSE) with the
neighbourhood size (which is a fraction of standard deviation)
for an optimum embedding dimension (m obtained from correla-
tion dimension method) and are shown in Fig. 10.

It can be seen that the prediction error decreases for a neigh-
bourhood size of around 0.5 � standard deviation and thereafter
it starts increasing with further increase in neighbourhood size.
This is in agreement with the Casdagli’s test for nonlinearity [2]
which states that if the prediction accuracy increases up to a cer-
tain number of nearest neighbours and decreases for higher num-
ber of nearest neighbours, it shows the evidence of chaos in the
data series. If the prediction accuracy is the maximum for a large
number of nearest neighbours, then the process can be better ex-
plained through a stochastic process. The ranges of neighbourhood
size for the ensemble prediction for the three regions are fixed as
0.3–1.3 of the standard deviation, since the RMSE at 0.3 and 1.3
standard deviations are almost equal, as can be noticed from
Fig. 10.

Further, the prediction accuracy is measured in terms of nor-
malized mean square error (NMSE), Nash efficiency coefficient
and also correlation coefficient. The variation of these performance
measures for various embedding dimensions using the optimum
nearest neighbours for the three regions are shown in Fig. 11.

For a chaotic time series, the prediction efficiency is expected to
increase to a value close to 1 with an increase in embedding
dimension m up to an optimal m and remain constant afterwards.
s beginning from January and June.

iction beginning from All-India prediction beginning from

June January June

0.73 0.87 0.87
0.66 0.84 0.84
0.63 0.87 0.87
0.68 0.86 0.865
0.66 0.82 0.82

or predictions beginning from January and June.

iction beginning from All-India prediction beginning from

June January June

0.98 0.99 0.99
0.98 0.98 0.98
0.965 0.99 0.99
0.97 0.97 0.97
0.965 0.97 0.975



Fig. 14. Box plots of the mean daily rainfall values of the ensembles for the year 1996. The observed mean daily rainfall is shown as a continuous solid line. The median
ensemble values are shown as a dashed line within each box. Predictions beginning from (a) January (b) June for Malaprabha region (c) January (d) June for Mahanadi region
(e) January (f) June for All-India region the year 1996 are shown.
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Table 5
Rank probability skill score values for each month over the period 1996–2000.

Month Malaprabha prediction beginning from Mahanadi prediction beginning from All-India prediction beginning from

January June January June January June

January �0.96 �0.87 0.65 0.80 0.95 0.94
February �5.59 �5.06 0.38 0.38 �0.53 �0.54
March �0.94 �0.70 �0.59 �0.59 0.25 0.26
April 0.05 �0.21 0.03 0.02 0.43 0.48
May 0.32 0.44 0.02 0.19 0.44 0.49
June 0.58 0.64 0.86 0.87 0.36 0.36
July 0.51 0.64 0.83 0.88 0.96 0.97
August 0.44 0.50 0.63 0.66 0.97 0.96
September 0.45 0.44 0.68 0.67 0.34 0.32
October 0.16 0.27 0.35 0.36 0.04 0.03
November �3.72 �4.03 �0.14 �0.12 �0.27 �0.30
December �0.07 �0.12 �1.34 �1.34 �0.24 �0.24
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Fig. 15. Variation of coefficient of variance over the year for the period 1955–1995
for the three regions.
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On the other hand, for a stochastic time series, there would not be
any increase in the prediction accuracy with an increase in the
embedding dimension [1]. As can be seen from Fig. 11(a), the max-
imum prediction accuracy for Malaprabha region is for an embed-
ding dimension of 5. Similarly, as inferred from Fig. 11(b) and (c),
for Mahanadi and All-India regions, maximum prediction accuracy
is for 6th and 8th dimensions, respectively. Also, the prediction
accuracy remains a constant after attaining a maximum for all
the three cases, which again supports the presence of chaos in
the rainfall series. Hence, the optimum embedding dimensions
from the nonlinear prediction method are 5, 6 and 8 for the three
regions.

Considering the dimension values obtained by the various
methods, the ranges of embedding dimension for ensemble predic-
tion are fixed as 3–10 for Malaprabha and Mahanadi regions and
5–12 for All-India region.

5.3. Check for pseudo-low dimensional chaos

Since the power spectrums are showing a power law behaviour
as shown in Fig. 3(b), (d) and (f), which could be the reason for the
convergence of the correlation dimension as pointed by Osborne
and Provenzale [19], it is recommended to carry out the correlation
dimension on phase randomized data and also on first derivative of
the original signals.

A comparison of the variations of correlation exponent with
embedding dimension for the original data, phase randomized data
and the first derivative of data of the three regions are shown in
Fig. 12. For the Malaprabha and Mahanadi daily rainfall for which
the spectral slopes are less than�1.0, the correlation dimensions of
the phase randomized data sets are not converging, thus confirm-
ing the presence of a low dimensional strange attractor. But, in the
case of All-India daily rainfall (Fig. 12(c)), even though correlation
exponent is not converging for phase randomized data, the devia-
tion from the original data is much smaller when compared with
that of the former regions. Nevertheless, the non-convergence
points out the chance for the further increase of correlation expo-
nent and hence is a strong indication of low dimensional dynamics.

Likewise, in all the three cases, the variation of correlation
exponent of first derivative adheres very well to that of the original
data. The saturation values are the same as that obtained for the
original rainfall. This eliminates the possibility of linear correla-
tions forcing the saturation of correlation exponent and thereby
confirms the presence of a low dimensional strange attractor in
all the three rainfall series.

5.4. Nonlinearity test using surrogate data method

An ensemble of surrogates, assumed to be generated from a
process of the form
sn ¼ SðxnÞ; xn ¼
XM

i¼1

aixn�i þ
XN

i¼0

bign�i ð8Þ

are generated, where S could be any invertible nonlinear function,
{xn} is the underlying linear process, {ai} and {bi} are coefficient con-
stants and {gn} is white Gaussian noise. M and N are the orders of an
autoregressive (first term) and moving average (second term) mod-
el, respectively.

For testing the null hypothesis that the original data is also
from a linear process of the form given by the above equation,
at 1% significance level, a collection of surrogates are generated.
The number of surrogates required for a one sided hypothesis test
at 1% significance level is equal to 1

a� 1 ¼ 99, where a, the signif-
icance level = 0.01. The nonlinear prediction error is used as the
test statistic. Comparison of nonlinear prediction errors of 99 sur-
rogates and of the original data is shown in Fig. 13. It can be seen
that for all the three regions, the prediction error of observed data
is much less than that of surrogates, thus rejecting the null
hypothesis that the data comes from a linear stochastic process.
This further confirms that the convergence of the correlation
dimension is not due the linear stochastic nature; but is due to
the low dimensional dynamics which is dominant in these
systems.

5.5. Ensemble prediction

The aforementioned methods have confirmed that the daily
rainfall series of three regions are nonlinear and low dimensional
chaotic. The embedding dimensions and delay times obtained
slightly vary for different methods. Hence, an ensemble of predic-
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tions is produced from appropriate range of embedding dimen-
sion, delay time and neighbourhood size. The ranges of values
used for the ensemble prediction are: (i) embedding dimension:
3 to 10 for Malaprabha and Mahanadi basins; 5–12 for All-India
region; (ii) delay time: 60–100 for all the three regions; (iii)
neighbourhood size: 0.3–1.3 of standard deviation for all the
three regions.
Fig. 16. Probability density functions of daily rainfall for the year 1996. The ensemble PD
January for the year 1996 and June for all the three regions for the year 1996 are shown. (a
for the year 1996; (b) probability density function of predictions beginning from June
beginning from January for Mahanadi for the year 1996; (d) probability density function
density function of predictions beginning from January for All-India for the year 1996; an
the year 1996.
As described in the methodology, the optimum parameter val-
ues are selected based on the minimum GCV value. It is found that
for all the three cases, sufficient numbers of ensembles (about
150–250) are obtained even when the GCV threshold is set to
10%. Hence, the parameter combinations falling under 10% of the
lowest GCV value are selected as the optimum ones. In order to
generate a constant number of ensembles for prediction, the num-
Fs and also the observed rainfall PDF are shown. PDFs of predictions beginning from
) Probability density function of predictions beginning from January for Malaprabha
for Malaprabha for the year 1996; (c) probability density function of predictions
of predictions beginning from June for Mahanadi for the year 1996; (e) probability

d (f) probability density function of predictions beginning from June for All-India for



Fig. 17. Rank plots for ensembles generated considering all months of a calendar
year. Rank plot for predictions beginning from January and June for (a) Malaprabha
daily rainfall; (b) Mahanadi daily rainfall and (c) All-India daily rainfall are shown.
The original rank histograms are shown in insets (the axes labels are same as those
of the main figure).
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ber of optimum parameter combinations are fixed as 150 for Mal-
aprabha and 200 for Mahanadi and All-India.

Prediction is done using local approximation method with these
selected parameter combinations for a particular year using the
data till the preceding year. This is done for five years from 1996
to 2000. Also, predictions are done from two different starting
points, first one from the beginning of January till end of December
of the corresponding year and the second prediction is done from
the beginning of June till the end of May next year. Predictions
beginning from June are started from June month of the year
1995 and prediction is done for an entire year till May month of
next year 1996. However, for comparing both predictions (begin-
ning from January and June), predicted values of one calendar year
from January to December are taken into account instead from
June to May. The optimum parameter combinations which give
minimum GCV values for the three regions are given in Table 2.

The correlations of the observed daily rainfall for each year with
the mean ensemble daily rainfall values for the predictions begin-
ning from January and June are shown in Table 3. For all the three
regions, there is no appreciable difference between the correlation
values of January and June predictions. However, when comparing
the correlations for observed average daily rainfall values for a
month and mean ensemble average daily rainfall values, it can be
noticed that for Malaprabha region, predictions beginning from
June are comparatively better than those beginning from January.
However, for the other two regions, the correlation values are al-
most equal. The corresponding correlation values are shown in
Table 4.

A detailed analysis is done by constructing the box plots of
mean daily rainfall values of the ensembles and comparing them
with the observed series. As an illustration the box plots of the
mean daily rainfall ensemble values of predictions beginning from
January and June for the year 1996 for the three regions are shown
in Fig. 14(a) to (f). The box plots give the range of values of the
ensembles generated for each month. A box in the box plots indi-
cates the interquartile range of the mean daily rainfall ensemble
values and the horizontal dashed line within the box indicates
the median ensemble mean daily rainfall value. The upper and
lower whiskers of the box plots indicate the 95th and 5th percen-
tile value and thus show the extent of the rest of the data. The ob-
served mean daily rainfall values are also shown as a solid
continuous line in the figure.

Considering Malaprabha basin, even though both the predic-
tions (January and June) are able to capture the original rainfall val-
ues (with monsoon months values well within the range and non-
monsoon months values marginally), it can be noticed that predic-
tions beginning from June are relatively better for capturing the
unusual variations of the annual cycle of rainfall. This may be
due to the nearness of the prediction starting point (i.e., June
month) to the summer monsoon rainfall season (June to Septem-
ber), during which the basin gets maximum rainfall as shown in
Table 1. This is also indicated by the positive Lyapunov exponent
value, which also indicates the inefficiency of long term prediction.
But, such a distinction is not evident for the January and June pre-
dictions of Mahanadi and All-India regions.

Hence, it can be concluded that June prediction is effective only
for Malaprabha region. For the rest two regions, both predictions
are almost giving equal performances. The evident reasons for this
behaviour are (i) the difference in spatial areas and (ii) the differ-
ence in Lyapunov exponents (Mahanadi and All-India have low
Lyapunov expoenents indicating a high predictability when com-
pared to Malaprabha basin). This behaviour can also be due to
the difference in the coefficients of variance (Cv) of the three re-
gions as shown in Fig. 15. The deviation of the Cv values for Malap-
rabha basin over the year is much higher when compared to the
other two regions. The better performance of June prediction for
Malaprabha may be due to starting of the prediction at a compar-
atively low Cv time period. Such a behaviour is not seen for Maha-



Fig. 18. Rank histograms for the ensembles generated considering only the months
from April to October. Rank plot for predictions beginning from January and June for
(a) Malaprabha and (b) Mahanadi are shown. The original rank histograms for both
the predictions are shown in insets (the axes labels are same as those of the main
figure).
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nadi and All-India regions since their Cv values are more or less the
same throughout the year.

A comparison of the probability density functions (PDFs) of all
the ensembles and the corresponding observed series for the daily
rainfall of the year 1996 are shown in Fig. 16(a)–(f). As can be seen
from the figures, the ensembles and the observed series are follow-
ing same distribution function. For Malaprabha region the original
pdf is towards the lower end of the ensemble spread for the partic-
ular year shown. But for Mahanadi and All-India regions the
ensemble pdfs for predictions beginning from January and June
are able to reasonably catch the observed series PDF within its
spread.

The quality of the ensembles generated is ascertained using two
measures: rank probability skill score (RPSS) and rank histogram.
The dataset is divided into three categories based on the 33rd
and 66th percentile values derived from the observed dataset from
1955 to 1995. These categories are determined for each month sep-
arately. The RPSS values for the January and June predictions for
each month for the five years are presented in Table 5. Excluding
the months of January, February, March and December, the RPSS
values for the other months are positive, which indicate a better
forecast than the climatological forecast. The negative RPSS values
for the first three months and for the December month may be due
to the low rainfall received during these months. The ensembles
are not able to reproduce a value closer to zero as can be seen from
the box plots of monthly rainfall values of these months, even
though the spreads of the concerned box plots are less (Fig. 14).

The rank histograms for evaluating the mean and spread of the
ensembles (150 for Malaprabha and 200 for the other two regions)
generated for each month and each year (a total of 12 � 5 = 60 data
points) are prepared. The rank plots of predictions beginning from
January and June are compared in Fig. 17. The rank histograms for
both cases are given as insets in Fig. 16. It can be seen that for Mal-
aprabha and Mahanadi (Fig. 17(a) and (b)) there is an ensemble
bias which causes more population towards the lower ranks, in
both predictions. The rest of the histogram is almost flat. Such a
bias again may be due to too low rainfall values in the first three
months and the last month (around 58% of Malaprabha data and
38% of Mahanadi data are zeros). The rank histograms of All-India
rainfall (Fig. 17(c)) which contains only 2% zeros are almost flat in
both prediction cases. To analyse the effect of the bias in Malap-
rabha and Mahanadi basins, the data points from the months of
January, February, March, November and December are excluded.
Rank histograms are now constructed for a total of 7 � 5 = 35 data
points for both predictions. The corresponding rank plots are
shown in Fig. 18, in which rank histograms are shown as insets.
It can be seen that these rank histograms are almost flat in both
cases implying ensembles of reliable spread.

6. Conclusions

The task of modeling rainfall is quite difficult because of its
complexity and also due to large variability in both space and time.
Over decades, the processes connecting rainfall have been treated
as stochastic. The recent interest in nonlinear dynamics and also
chaos theory has drawn attention towards considering rainfall as
a chaotic system which is much sensitive to initial conditions
and is short term predictable. The present study was aimed at ana-
lyzing the chaotic nature of rainfall series using different tech-
niques and finally employing the nonlinear prediction technique
for generating an ensemble of predictions. Daily rainfall data for
the period 1955–2000 of Malaprabha, Mahanadi and All-India re-
gions exhibiting distinct areal behaviours were considered for the
study. These regions having different characteristics were selected
to analyse the association of chaotic behaviour on the coverage
area of basin.
The behaviour of rainfall dynamics was investigated using cor-
relation dimension method with Grassberger–Procaccia algorithm
(GPA). The clear scaling region in the C(r) versus r plots on a log–
log scale and also correlation exponent saturation values indicate
low dimensional chaotic behaviour of the three rainfall series.
The correlation dimension (minimum number of variables re-
quired to describe the system) is increasing with an increase in
the coverage area. It is also notable that the embedding dimension
(maximum number of variables required to describe the system)
remains the same i.e., 19 for all the three regions.

Since colored random noises also exhibit a finite correlation
dimension value, the above method is repeated on phase random-
ized data and on first derivative of the three rainfall series. The cor-
relation dimensions of phase randomized data are not converging,
while those of first derivative are almost same as of the original
data. This elucidates that the saturation of correlation dimension
is not due to the inherent linear correlation in the data; but be-
cause of the low dimensional chaotic dynamics present in the data.
However, since one should not confirm the chaotic nature based on
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the correlation dimension method alone, two other methods
namely False nearest neighbour (FNN) algorithm and nonlinear
prediction method are employed.

The fraction of false nearest neighbours is falling to a minimum
value at an embedding dimension of 7 for Malaprabha basin, which
indicates that the optimum embedding dimension of the rainfall
series is 7. However, there is steep increase of fraction of FNN after
embedding dimension 7. Such behaviour is not encountered in the
other two cases. Therefore, the steep increase can be attributed to
the presence of either noise or too much of singular values in the
Malaprabha rainfall series. The inverse approach using nonlinear
prediction method also supported the low dimensional chaotic
nature of the three rainfall series. Hence, the minimum number
of variables essential to model the dynamics of the rainfall was
in the range between 5 and 7 for Malaprabha, 6 for Mahanadi
and 8–9 for All-India.

The positive Lyapunov exponents of the three regions confirm
the unpredictability of the systems. However, it can be seen that
the predictability increases with coverage area with All-India re-
gion having the highest predictability. Even though the methods
employed support the low dimensional chaotic nature of the rain-
fall series, a surrogate data test was done for three cases to confirm
the nonlinearity of the data set. The much lower nonlinear predic-
tion error of the observed data set when compared to the 99 surro-
gates rejects the null hypothesis that the original data is from a
linear stochastic process at 1% significance level. These results sug-
gest that the seemingly irregular behavior of rainfall process can be
better explained though a chaotic framework for three of the rain-
fall series taken for the study.

Since different methods are giving slightly different values for
the optimum embedding dimension and delay time, an ensemble
of predictions was generated using a range of parameters (embed-
ding dimension, delay time and neighbourhood size). Such an
ensemble of predictions will be able to capture the uncertainty in
the complex rainfall process. Predictions were done from the start-
ing of January and also from the starting of June for an entire year in
each case. Results had shown that for Malarabha basin, predictions
beginning from June are comparatively better due to their closeness
to the summer monsoon months (June–September) and also due to
the low coefficient of variance in those months. The other two re-
gions are showing almost same outcomes for January and June pre-
dictions due to their constant coefficients of variance throughout
the year and also due to the high predictability (low Lyapunov
exponent) when compared to that of Malaprabha basin. The rank
histograms and RPSS values for the three regions indicate reason-
ably good spread ensembles from the nonlinear prediction method.

The methods employed support the short term predictability
nature of a chaotic series. Also, the nonlinear prediction method,
i.e., local approximation method was able to create quality ensem-
ble predictions with good spread and skill. The reasonably good
predictions obtained using a chaos theory based nonlinear predic-
tion method affirm the suitability of a chaotic approach for model-
ing and understanding the underlying dynamics of the complex
rainfall process. It is worthwhile to note that an increase in cover-
age area causes an improvement in predictability and an increase
in dimension which further point towards a shift from chaotic nat-
ure to stochastic nature. It is well known that climate which is the
spatial and temporal average of weather is more predictable than
weather itself. However, it is evident from the above results that
spatial averaging over a large area alone can also increase the pre-
dictability, hence shifting the system to a non-chaotic one.
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