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Cluster Entanglement Mean Field inspired approach to Criticality in Classical Systems
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We propose an entanglement mean field theory inspired approach for dealing with interacting
classical many-body systems. It involves a coarse-graining technique that terminates a step before
the mean field theory: While mean field theory deals with only single-body physical parameters, the
entanglement mean field theory deals with single- as well as two-body ones. We improve the theory
to a cluster entanglement mean field, that deals with a fundamental unit of the lattice of the many-
body system. We apply these methods to interacting Ising spin systems in several lattice geometries
and dimensions, and show that the predictions of the onset of criticality of these models are much
better in the proposed theories as compared to the corresponding ones in mean field theories.

I. INTRODUCTION AND MAIN RESULTS

The search for bridges between many-body physics and
quantum information has been very fruitful, and has led
to many important discoveries and insights [1, 2]. On
the one hand, quantum information concepts have been
used to provide further tools to a many-body physicist,
while on the other, realizable many-body physics systems
ranging from quantum optics systems to ion traps are be-
ing tried as potential substrates for quantum information
processing tasks.

It is rarely possible to treat an interacting many-body
system exactly, and hence it is important to obtain ap-
proximate methods to deal with them. The mean field
theory (MFT) [3–5], introduced by P. Weiss in 1907, is
a very useful tool available to many-body physics to ex-
amine such systems, for both classical and quantum in-
teracting many-body systems, with a low computational
cost.

Main thesis. We propose that parallel to, but clearly
different from, the MF class of theories [3], there exists
an entanglement mean field class of theories to treat in-
teracting classical many-body systems, that deals with
one-body and two-body physical parameters in its self-
consistency equations.

The mean field class of theories are an ultimate form
of coarse-graining of the many-body system, in that it re-
duces the interacting many-body Hamiltonian to single
body terms, and deals with single-body physical param-
eters in its self-consistency equstions [3]. In contrast, the
entanglement mean field class of theories proposes to stop
a step before in the coarse-graining process, and reduces
the parent Hamiltonian to a finite number of two-body
terms, and deals with single- as well as two-body terms
in its self-consistency equations.

The entanglement mean field class of theories provides
us with a tool to go beyond the mean field class, and
yet remain in the low-cost bracket. We believe that the
formalism will be useful in investigation and control of
many-body systems in several areas including condensed
matter, ultra-cold gases, and quantum information.

An interesting improvement of the mean field approach
is the cluster mean field theory (CMFT) [6], where one
reduces the many-body system to a fundamental unit

(“cluster”) of the many-body lattice, while still retaining
footprints of the many-body parent as an undetermined
parameter, although this undetermined parameter is still
(like in MFT) a one-site physical quantity (like, magne-
tization) of the many-body parent, and it is determined
by the self-consistency relation (CMF equation) equat-
ing the parameter to the same one-site quantity obtained
from the cluster. We stress here that the self-consistency
relations in both MFT and CMFT are are based on one-
site physical quantities, in particular, on magnetization.

To treat critical phenomena in interacting classical
spin models inspired by entanglement mean field theory
(EMFT), proposed for quantum systems in Ref. [7], one
reduces the many-body classical system to a two-body
one while retaining imprints of the many-body parent
as an undetermined parameter. In contrast to MFT, in
EMFT, the undetermined parameter depends on a two-
site physical quantity (like, two-point correlation) of the
many-body parent. This parameter is then determined
by the self-consistency relation (EMFT equation) equat-
ing, e.g. the two-point correlation of the many-body par-
ent with that of the EMFT-reduced two-body system.
Note that there is certainly no quantum entanglement
[8] generated by applying the EMFT to classical spin
systems.

We stress here that that the entanglement mean field
theory is different from the cluster mean field approach.
While the latter uses single-site physical parameters in its
self-consistency equation, the former uses two-site ones.
EMFT is also different from other useful techniques to
deal with many-body systems, like the renormalization
group approaches [9], with the latter using block decima-
tion techniques on the whole lattice. These differences,
both operational and result-wise, will be further under-
lined in Sec. II.

In this paper, we also present a further improvement of
EMFT to a “cluster EMFT” (CEMFT) that reduces the
many-body system to a fundamental unit of the many-
body lattice, while retaining impressions of the original
many-body system as undetermined parameters. In con-
trast to CMFT, in CEMFT, the undetermined parame-
ters depend both on one-site and two-site physical quan-
tities (e.g., on magnetization and two-site correlation) of
the many-body parent. These parameters are then de-
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termined via coupled self-consistency equations (CEMFT
equations) equating e.g. the magnetization of the original
many-body system with that of the (CEMFT-reduced)
cluster, and the two-point correlation of the many-body
parent with that of the cluster.
Apart from CMFT, there are several other interest-

ing generalizations of the mean field theory in the liter-
ature, including the Bethe-Peierls-Weiss approximation
[10], the Onsager reaction field theory [11], the diagram-
matic expansion method [12] the self-consistent corre-
lated field theory [13], the screened magnetic field theory
[14], and the correlated cluster mean field theory [15],
to mention a few (see also [16]). Improvements of the
entanglement mean field theory in these directions are
also possible, and will be pursued later. Meanwhile, let
us note here that all the above exciting examples, in the
MF class of theories, deal with single-body physical pa-
rameters in the respective self-consistency equations. In
contrast, the EMF class of theories deal with single- as
well as two-body physical parameters in the EMFT class
self-consistency equations.
MFT vs. EMFT. Solving for magnetization and cor-

relation functions from the EMFT and CEMFT equa-
tions leads to the prediction of critical phenomena in the
spin models. We apply the EMF and CEMF theories to
the nearest-neighbor Ising model in one, two (hexagonal,
square, and triangular), and three (cubic), dimensional
lattices. The results are given in Table 1. In all the cases
considered, in the different dimensions and geometries,
EMFT gives better predictions over MFT, and CEMFT
is better than CMFT. (Actually, EMFT is already bet-
ter than CMFT in all the cases considered.) In the best
case, EMFT is better than MFT by 68% and CEMFT is
better than CMFT by 85%, happening respectively for
the hexagonal and square lattice systems. In the worst
case, EMFT is better than MFT by 42%, and CEMFT
is better than CMFT by 8%, happening respectively for
the triangular and cubic lattice systems.

II. EMFT FOR CLASSICAL MODELS

Before presenting the entanglement mean field theory
inspired approach to classical spin models, let us briefly
describe the mean field theory for such systems. Consider
the nearest neighbor (classical) Ising model

H = −J
∑

〈~i~j〉

σ~iσ~j (1)

which represents a system of interacting (classical) spin-
1/2 particles (Ising spins) on a d-dimensional lattice of
an arbitrary fixed geometry. The coupling strength J is
positive, and σ~i = ±1 represents the value of the Ising

spin at the site ~i. 〈~i~j〉 indicates that the corresponding
sum runs over nearest neighbor lattice sites only.
The mean field theory consists in assuming that a par-

ticular spin, say at ~i0, is special, and replacing all other

spin operators by their mean values. Denoting the mean
values of the spin operator σ~i at the site ~i by m (average
magnetization), leads to an MFT Hamiltonian [3], which
we denote asHMFT . One then solves the self-consistency
equations (mean field equations)

m =
∑

CF(I)

σρβMFT , (2)

for m. Here ρβMFT is the mean field canoni-
cal equilibrium state exp(−βHMFT )/ZMFT , ZMFT =∑

CF(I) exp(−βHMFT )) is the MF partition function,

β = 1
kBT

, with T denoting temperature on the abso-
lute scale, and kB the Boltzmann constant. Here, and in
the rest of the paper, CF(I) will denote all Ising config-
urations of all the spins involved in that particular case.
In the MF equation as well as in the MF partition func-
tion, there is just a single spin left, and CF(I) denotes
the set of the two possibilities thereof. Substituting m in

HMFT and ρβMFT , one can find the single-body physical
properties of the system in the mean field limit.

MFT

1 2

34

CMFT

EMFT

1 2

34

CEMFT

FIG. 1: (Color online) MF vs. EMF class of theories.
In MFT, a “magnifying glass” is put on a single parti-
cle of the many-body interacting system, and it leads to
a self-consistency relation involving single-particle parame-
ters. A different magnifying glass is employed in EMFT,
which focusses attention on two particles, and leads to a self-
consistency relation involving two-particle physical parame-

ters. Parallely, in CMFT, a fundamental unit (cluster) is
chosen from the lattice which then is used to write self-
consistency equations, again involving only single-site param-
eters. In CEMFT, the same cluster is used, but the self-
consistency equations involve both one-site and two-site phys-
ical parameters.

The entanglement mean field theory begins by noting
that the square of an Ising spin random variable is unity.
The two-body interaction Hamiltonian that we are deal-
ing with, can be thought of anN -body interaction Hamil-
tonian (N being the total number of Ising spins in the
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system), in each term of which, all but two random vari-
ables are constant (= unity). Let us call it a unit random
variable. Since the square of any Ising random variable
is unity, we can replace a unit random variable on a site
that is neighboring the nontrivial interacting spins of an
interaction term, by the square the Ising random variable
at that site, for all the interaction terms in the Hamil-
tonian. Therefore, the term σk−1,lσk,l in a Hamiltonian
on a two-dimensional square lattice can be replaced by
σk−1,lσk,lσk+1,lσk+1,l. The latter can be re-written as
AB, with A = σk,lσk+1,l, and B = σk−1,lσk+1,l. Let us
call this Hamiltonian as Hinter

EMFT . For a given interac-
tion term, let us call the site at which the replacement
of the unit random variable by the square of the Ising
random variable is done as the dummy site for that in-
teraction term. Given an interaction term, there can be
several nearby sites that can act as the dummy site for
that term. So in the case of the term σk−1,lσk,l, (k+1, l)
is used as the dummy site. We then assume that a certain
pair of two neighboring spins are “special”. (See Fig. 1.)
Consider a d-dimensional lattice with coordination num-
ber νco. There will be 2(νco−1) terms in the Hamiltonian
Hinter

EMFT , that will have the special pair, along with two
more Ising spins in two lattice sites (one of which, viz.
the dummy site, is different from the special pair sites).
In such a lattice, any one spin in the special pair is con-
nected (via interactions in H) to νco − 1 spins. Let this
number (νco − 1) be denoted by νE , and be called the
EMFT coordination number. We now replace the non-
special two-spin interactions (with nearby spins) in all
the interaction terms in Hinter

EMFT by a constant multiple
of their mean values C. Physically, the mean value C
represents the nearest neighbor correlation in the corre-
sponding lattice. Since every interaction in H connect-
ing to the special pair actually connects to one spin in

the pair, the non-special two-spin interactions in each
term in Hinter

EMFT is replaced by 1
2C. The EMFT-reduced

Hamiltonian, for the nearest neighbor Ising model on a
d-dimensional lattice with EMFT coordination number
νE , will therefore be

HEMFT = −
1

2
JνECσ~iσ~j (3)

where we have ignored the terms in the Hamiltonian
which will not contribute to the EMFT equations below,
and where we have assumed that the neighboring lattice
sites ~i and ~j are special. The self-consistency equation
(EMFT equation) is

C =
∑

CF(I)

σ~iσ~j̺
β
EMFT , (4)

for a system at temperature T . Here ρβEMFT

is the entanglement mean field canonical equi-
librium state exp(−βHEMFT )/ZEMFT , ZEMFT =∑

CF(I) exp(−βHEMFT )) is the EMF partition function.

The EMFT equation is to be solved for C for obtaining
the two-particle physical properties of H in the EMFT

limit. In a typical situation, there is a finite tempera-
ture Tc, the critical temperature, that depends on the
lattice geometry and dimension, above which the EMFT
equation provides a nontrivial (i.e. nonzero) solution.

The values of the critical temperatures have been ob-
tained for the interacting Ising systems in different di-
mensions and geometries, and are given in Table 1. The
predictions of the EMF theory are always better than
the corresponding ones from MFT in the cases consid-
ered, and almost always more than 50 percent better,
and for the hexagonal (honeycomb) lattice in two dimes-
nions, EMFT is 68% better than MFT. See Table 1 for
further details.

In the entanglement mean field theory, the nature of
the interactions propagating in the lattice geometry, en-
ters the predictions through the the existence of an in-
teraction term (σ~iσ~j) and a two-site physical parame-

ter (the mean correlation C) in the EMFT Hamilto-
nian HEMFT , and their interplay in the self-consistency
equation (EMFT equation). These features are absent
in MFT, where the MFT Hamiltonian contains a single
Ising random variable and a single-site physical param-
eter. Moreover, an EMFT coordination number enters
the stage in EMFT, while it is the coordination number
in MFT. These differences lead to the better memory of
the EMFT of its many-body parent, and a consequent
better performance of the EMFT over MFT.

Note that the EMFT approach is different from the
cluster MFT [6] as there the fundamental unit changes
with the lattice geometry and dimension, while here we
always work with two special spins regardless of the lat-
tice geometry. More importantly, the cluster MFT still
(i.e., as in MFT) uses single-site properties to construct
the self-consistency equations, while in EMFT, we use
two-site properties to do the same. Additionally, both
MFT and CMFT leads to effective Hamiltonians consist-
ing of either a single random varible or a sum over single
random variables, while in EMFT, we deal with effective
Hamiltonians that retain interaction terms involving two
random variables. These are some of the operational dif-
ferences. Result-wise, a glance at Table 1 reveals that the
predictions, for the critical temperatures of the different
models, of EMFT and CMFT, are very different. In-
deed, in all the cases considered, EMFT performs better
than CMFT, with the prediction in the case of the three-
dimensional cubic lattice being 49% better. It is possible
to obtain a generalization of the EMFT approach, to-
wards a “cluster EMFT”, for a better consideration of
the lattice geometry, and we do so in the succeeding sec-
tion.

The EMF approach is also different from the other
techniques to handle many-body models. In particular,
it is unlike the renormalization group approach [9], where
block decimation techniques are used on the whole lat-
tice, and free energy of the decimated lattice is equated
to that of the original. Result-wise, application of the
renormalization group to, e.g. the nearest neighbor Ising
model on the square lattice predicts a critical tempera-
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ture (in units of kBT/J) at 2.55 [4]. The EMFT predic-
tion is 3. The CEMFT prediction (considered below) is
2.08, with the exact value being 2.27 [17]
A similar formalism as above works (for both EMFT

and cluster EMFT), with suitable modifications, for
quantum spins, higher discrete spins, continuous spins,
more complex lattices and interactions, etc. Also, both
the mean field theory as well as the EMFT has been
described for the ferromagnetic cases. The antiferromag-
netic case requires some modifications in the mean field
theory, and correspondingly some changes in the EMFT
(and CEMFT). These will not be discussed in this paper.

III. CLUSTER EMFT FOR CLASSICAL

MODELS

As has been noted before, the interactions of the many-
body parent propagating in the lattice, are taken care of
in the entanglement mean field theory, by the EMFT co-
ordination number, and the interplay of the mean corre-
lation C and the interaction term in HEMFT in the self-
consistency equation. We have seen that this gives a bet-
ter consideration to the interactions in the parent Hamil-
tonian than that in MFT. Towards improving our ap-
proximations, we now include the lattice structure along
with interactions between spin variables. We call it the
cluster entanglement mean field theory, and is described
as follows.
For definiteness, consider a two-dimensional square lat-

tice. See Fig. 1. A cluster in this case is a fundamen-
tal square of four spins. Let us focus on a particular
cluster of four spins. These four spins interact among
themselves by four interaction terms in H . They are the
intra-cluster interactions. This basic unit, consisting of
four spins, also interact with other spins in neighboring
clusters via inter-cluster interaction terms in H . We first
consider the intra-cluster terms. Just like in the case of
the entanglement mean field theory, in every intra-cluster
interaction term, we replace a unit random variable at a
nearby dummy site by the square of an Ising random vari-
able at that site. The difference is that the dummy site is
now always chosen from the among the sites in the cho-
sen cluster. This is just like in CMFT, where only the
intra-cluster spins are involved in producing the terms
of the form mσ~i. So for the closen square cluster con-
sisting of the sites formed by rows k, k − 1 and columns
l, l− 1, for the intra-cluster term σk−1,lσk,l in the Hamil-
tonian H , the site (k, l − 1) can act as a dummy site,
whereby we obtain the term σk−1,lσk,lσk,l−1σk,l−1. Sim-
ilarly as in EMFT, the so-obtained term can be re-written
as AχBχ, with Aχ = σk,lσk,l−1, and Bχ = σk−1,lσk,l−1.
We now replace Bχ by the unit multiple of the mean
value C, and consequently, the contribution of this intra-
cluster term to the cluster EMFT Hamiltonian HCEMFT

is −JCσk,lσk,l−1. The entanglement coordination num-

ber of EMFT is absent in CEMFT, as the latter itself
depends on the lattice geometry, and hence strenthens
the approximation. The inter-cluster terms are taken
care of by replacing them with effective fields at the cor-
responding spins of the chosen cluster, and these terms
are exactly the same as in CMFT. The terms in H that
are neither intra- not inter-cluster, do not appear in the
considerations below, and are therefore ignored. There-
fore, for a two-dimensional square lattice, with the chosen
cluster, the cluster EMFT Hamiltonian is

Hsq
CEMFT = −JC

∑

〈~i~j〉χ

σ~iσ~j − 2Jm
∑

~iχ

σ~i (5)

where the first sum runs over nearest neighbor sites of
the chosen cluster, and the second runs over sites of the
same. The factor 2 in the second term comes from the
fact that we are considering a square lattice, so that every
spin in the chosen cluster is connected (via an interaction
term inH) to two spins in the neighboring clusters. Here,
C denotes the nearest neighbor correlation of the lattice
under consideration, and m the corresponding magneti-
zation. One may similarly find the cluster EMFT Hamil-
tonian HCEMFT for other models.
At this point, both C and m are undetermined.

They are to be solved from the self-consistency relations
(CEMFT equations) equating the correlation and the
magnetization of the chosen cluster with the correspond-
ing ones of the whole lattice:

C =
∑

CF(I)

σ~iσ~j̺
β
CEMFT ,

m =
∑

CF(I)

σ~k̺
β
CEMFT , (6)

where ~i and ~j are any two nearest neighbor sites, and ~k

a particular site, in the chosen cluster. Here ρβCEMFT

is the cluster entanglement mean field canonical equi-
librium state exp(−βHCEMFT )/ZCEMFT , ZCEMFT =∑

CF(I) exp(−βHCEMFT )) is the CEMF partition func-

tion. The CEMFT equations form a set of coupled self-
consistency relations for C and m, and their nontrivial
solution set exists only after a certain temperature, which
is the critical temperature obtained from the cluster en-
tanglement mean field theory.
The table below gives the predictions for the criti-

cal temperatures for the nearest neighbor Ising model
in different lattice geometries and dimensions. In this
paper, we have obtained the predictions from entangle-
ment mean field theory and cluster entanglement mean
field theory. The predictions from mean field theory can
be obtained, e.g. from Refs. [3]. The predictions from
cluster mean field theory are obtained in Refs. [6] and
references therein. The exact and series results are ob-
tained in Refs. [17] and references therein.
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Lattice MFT EMFT Improvement (%) CMFT CEMFT Improvement (%) Exact/Series

Linear 2 1 50 1.28 1.05 17.97 0

Hexagonal 3 2 67.57 2.335 1.21 63.53 1.52

Square 4 3 57.8 3.5 2.08 84.55 2.27

Triangular 6 5 42.37 5.64 3.99 82.5 3.64

Cubic 6 5 66.67 5.49 3.61 8.16 4.51

Table 1: A comparison of the critical temperatures obtained for the nearest neighbor Ising model in different lattices
and geometries. Except for those in the two columns that mention the improvements, the numbers in the other
columns are in units of kBT/J . There are two columns with the heading “Improvement”, of which the left one

shows the improvement in the EMFT prediction over that from MFT, while the right one shows that for CEMFT
over CMFT.

IV. CONCLUSION

We have proposed an entanglement mean field theory
for dealing with classical interacting many-body models.
Distinct from the mean field approach to interacting sys-
tems, the entanglement mean field one reduces the many-
body parent Hamiltonian into a two-body one involving
undetermined mean values of two-site physical parame-
ters of the many-body parent. These undetermined pa-
rameters are determined via self-consistency equations
between mean values of the two-body physical quantity
of the reduced Hamiltonian and the many-body parent.
We then generalize the concept to a cluster entanglement

mean field theory where we work with a fundamental unit
of the lattice. The self-consistency relations in this case
are a set of coupled equations of single-site and two-site
physical quantities. Solving these self-consistency equa-
tions lead to the predictions of critical temperatures of
the models considered, which we then compare with the
previous results. In all the cases considered, in the dif-
ferent geometries and dimensions, the predictions of the
entanglement mean field theory are better than mean
field theory (68% at most, and 42% at least), and the
same of the cluster entanglement mean field theory are
better than cluster mean field theory (85% at most, and
8% at least).
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