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We study the counting statistics of ultracold bosonic atoms that are released from an optical
lattice. We show that the counting probability distribution of the atoms collected at a detector
located far away from the optical lattice can be used as a method to infer the properties of the
initially trapped states. We consider initial superfluid and insulating states with different occupation
patterns. We analyze how the correlations between the initially trapped modes that develop during
the expansion in the gravitational field are reflected in the counting distribution. We find that
for detectors that are large compared to the size of the expanded wave function, the long-range
correlations of the initial states can be distinguished by observing the counting statistics. We
consider counting at one detector, as well as the joint probability distribution of counting particles
at two detectors. We show that using detectors that are small compared to the size of the expanded
wave function, insulating states with different occupation patterns, as well as supersolid states with
different density distributions can be distinguished.

I. INTRODUCTION

Experiments with ultracold particles trapped in opti-
cal lattices aim towards the engineering of exotic many-
body quantum states [1]. Recently, the trapping and
cooling of dipolar gases have attracted much attention
[2]. The dipole moments induce long-range interactions
between the particles, and new phases appear [3]. In
the strongly correlated regime, it has been shown that
there are many quasi degenerate metastable insulating
states with defined occupation patterns [4–7]. These
metastable states could be used for the storage and pro-
cessing of quantum information in analogy to classical
neural networks, where the information is robustly en-
coded in the distributed stable states of a complex sys-
tem [8, 9]. Another way to induce long-range interactions
between atoms trapped in an optical lattice is via cou-
pling to an external cavity mode. This has just recently
been achieved experimentally and a checkerboard to a
supersolid transition has been observed [10].

The detection of exotic strongly correlated phases re-
quires novel experimental techniques that give access to
high-order correlation functions. Proposals for detec-
tion techniques typically make use of shot-noise mea-
surements [11] or atom-light interfaces [12]. Also, the
counting statistics of atoms has been suggested as a tech-
nique able to distinguish strongly correlated [13, 14] and
fermionic [15] Hamiltonians, both at zero and finite tem-
perature [16]. The detection of single atoms trapped
in the optical lattice has become experimentally avail-
able [17–20] only recently. Most counting experiments
are performed after switching off the trapping poten-
tial and letting the atoms propagate in the gravitational
field. The counting statistics of Rb atoms falling within
a high-finesse cavity has been reported in Ref. [21]. Also,
fermionic and bosonic counting probability distributions
have been measured for metastable Helium atoms falling

onto a microchannel plate [22, 23].

The theoretical analysis of the counting process has
so far mainly been considered for atoms trapped in the
lattice. Propagation in the gravitational field mixes the
initial modes of the atoms, such that the counting statis-
tics in the lattice and after propagation are not expected
to be the same. In this paper, we study the role of expan-
sion in the counting process. We show that the mixing of
the initial modes during the expansion becomes evident
in the counting distribution when the detector is small
compared to the size of the expanded wave function. We
illustrate the effect by analyzing the counting statistics
for bosons after time-of-flight expansion from the lattice.
We consider initial states with different occupation pat-
terns in the insulating regime and supersolid states with
different density distributions in the superfluid regime.
We calculate both the counting probabilities at a single
detector and the joint probabilities at two detectors as
a function of the horizontal distance between them. We
show that a superfluid (SF) andMott insulator (MI) state
can be readily distinguished by their counting statistics.
We further show that a suitable choice of the detector
geometry allows for the detection of different occupation
patterns in the insulating regime and different supersolid
states.

The paper is organized as follows. In Sec. II we re-
view the propagation of the atomic wave functions and
the atom counting formalism. In Sec. III we analyze the
intensity of particles arriving at the detector, which con-
sists of auto-correlation terms and crossed-correlations
between the different expanded modes. Depending on
the size and geometry of the detector, the ratio between
the auto-correlations and the crossed-correlation terms
changes. In Sec. IV we obtain closed expressions for the
counting distributions for expanded superfluid and insu-
lating bosonic states. We consider the counting statistics
when using one detector and the joint counting distribu-
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tion at two detectors. In Sec. V, we show our results
and compare the SF with MI states and insulating states
with different occupation patterns.

II. DESCRIPTION OF THE SYSTEM

We consider neutral bosonic atoms trapped in an opti-
cal lattice. The system can be described using the Bose-
Hubbard model [24], which includes the hopping of the
particles between neighbouring sites and the on-site two-
body interactions. At zero temperature, the two limiting
cases of the phase diagram are the SF state, where the
hopping term dominates, and the MI state, where lo-
cal interactions are dominant. The field operator Ψ(r, t)
of the many-body system can be expanded into the N
modes ai

Ψ(r, t) =
∑

i

φi(r, t)ai. (1)

For atoms trapped in an optical lattice, ai describes the
destruction of a particle on site i. The corresponding
initial wave functions are Wannier functions which are
Gaussian functions centered at ri

φi(r, t = 0) =
1

(πω2)3/4
e−(r−ri)

2/2ω2

, (2)

where the width ω is chosen such that the initial wave
functions at different sites i do not overlap.
The atoms are released from the optical lattice and

expand in the gravitational field. At finite t, we can
apply the single-particle expansion

φ(r, t) =

∫

dr′K(r, r′, t)φi(r
′, 0) (3)

where the propagator for the free expansion in the grav-
itational field reads [25]

K(r, r′, t) =
( m

2πi~t

)3/2

e
im(r−r

′)2

2~t
− imgt(z+z′)

2~ − im2g2t3

24m~ .

(4)
The full propagated wave function is then written as

φi(r, t) =
e−

im2g2t3

24m~

π3/4(iωt + ω)3/2
e
−

(r−ri)
2

2(ω2
t
+ω2) e

−i
(r−ri)

2ωt

2ω(ω2
t
+ω2) , (5)

where and rt = r + zt, with zt = (0, 0, gt2/2) and we
have used that |rt − ri| ≫ ω. Note that in the limit of
ωt ≫ ω, the expanded wave function is, up to a phase
factor, a Gaussian function centered around zt with a
width ωt = ~t/(mω).

A. Atom counting

We describe a counting process in which the probabil-
ity p(m) of counting m particles within a time interval τ

is measured at a detector located at a distance z0 from
the lattice. The probability of detecting m particles can
be expressed as [26, 27]

p(m) =
(−1)m

m!

dm

dλm
Q
∣

∣

∣

λ=1
, (6)

where the generating function Q(λ) is given by the ex-
pectation value of a normally ordered exponential of the
intensity I,

Q(λ) = Tr(ρ : e−λI :). (7)

For photons, the intensity is proportional to an integral
over the product of the negative-frequency part and the
positive-frequency part of the field. The normal order-
ing : ... : reflects the detection mechanism, in which the
photons are absorbed at the detector, typically a photo
multiplier or an avalanche photodiode. For the detection
of atoms using microchannel plates, the detection process
can be treated in an analogous way.
Since typically not all the particles are counted, the

intensity depends on the efficiency ǫ of the detector and
the detection time τ . When the dynamics of the mea-
surement are fast in comparison to the dynamics of
the system, the intensity is proportional to the factor
κ ≡ 1 − e−ǫτ . For typical experimental situations, the
dynamics of the system are determined by the expan-
sion of the atomic cloud in the gravitational field, given
by ωt and the intensity can be described by the integral
over the detector volume Ω of the positive-frequency and
negative-frequency parts of the quantum fields describing
the particles to be counted, multiplied by the efficiency
factor κ [28],

I = κ

∫

Ω

drΨ†(r, td)Ψ(r, td), (8)

where td denotes the time at which the instantaneous
measurement is performed.
The formalism described above is easily generalized to

the case of detection with multiple detectors [29]. For de-
tection with M detectors, the generating function reads

QM (λ1, λ2, .., λM ) = Tr(ρ : e−
∑

i λiIi :), (9)

where the single detector intensity Ii for each of the de-
tectors is given by eq. (8). For a configuration with two
detectors, the joint probability distribution of counting
m atoms at detector 1 and n atoms at detector 2 is given
by

p(m,n) =
(−1)m+n

m!n!

dm+n

dλm1 dλ
n
2

Q2

∣

∣

∣

λ1=1,λ2=1
. (10)

We study the correlations corr(m,n) between the count-
ing events detected at each detector by observing the
ratio between the covariance and the single detector vari-
ances,

corr(m,n) =
cov(m,n)

σ2(m)σ2(n)
, (11)

where cov(m,n) =
∑

m,nmnp(m,n) − m̄n̄, m̄ denotes

the mean and σ2(m) the variance of p(m).
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III. DETECTION OF EXPANDING ATOMS

Let us now discuss the counting process for the detec-
tion of atoms expanding in the gravitational field. We
consider a cubic detector located at a distance z0 from
the lattice center with edge lengths ∆x,∆y,∆z . For sim-

plicity, all through this paper we consider td =
√

2z0/g
which is the time when the center of the cloud arrives
at the detector. The intensity I of atoms registered at
the detector defined in eq. (8) is thus determined by the
expanded field operator of the atoms at the time td of
detection, Ψ(z0, td). Using eqs. (1) and (8), the intensity
I takes the form

I =
∑

ij

Aija
†
iaj , (12)

where

Aij(z0,Ω, κ) = κ

∫

Ω

drφ∗i (z0, td)φj(z0, td). (13)

The elements of the correlation matrix Aij defined in eq.
(13) describe the interference and autocorrelation terms
between different modes registered at the detector. The
diagonal terms represent the on-site correlations, whereas
the off-diagonal terms represent the crossed-correlations
between single particle modes initially located at different
sites with distance |i− j|.
Before studying the full counting distribution, let us

consider the correlations given by the matrix elements
Aij . Using eq. (5) and assuming ωtd ≫ ω, the autocor-
relation elements are given by

Aii = κ

∫

Ω

dr
1

π3/2ω3
td

e
−

(r−ri)
2

ω2
td . (14)

For expanded wave functions at r ≫ ri, the autocorre-
lations become all equal and independent of the original
lattice site i. The crossed-correlations are given by

Aij = κ

∫

Ω

dr
1

π3/2ω3
t

e
−

(r−ri)
2

ω2
t e−i

r(ri−rj)

ωωt (15)

The ratio between the crossed correlations and the auto-
correlations depend crucially on the geometry of the de-
tector.
In Fig. 1, we show the on-site correlations eq. (14) and

the interference terms eq. (15) in function of the size of
the detector. We consider a one dimensional array in
z-direction and plot the correlations at the location of
the detector at (0, 0, z0). We consider a fixed detector
size in the x-y-plane, ∆ = ∆x = ∆y and vary its width
∆z. Depending on the size of the detector, the whole
cloud or a fraction of it is registered. For z0 = 1 cm,
the size of the expanded single-particle wave function at
the detector is ωtd = 0.8 mm. In Fig. 1 a, we show
that for detectors of size ∆z > 0.2 mm, the interference
terms are negligible. This is easily understood from eq.
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FIG. 1: The ratio between the on-site-correlations and inter-
ference terms depend on the size of the detector. a) Wide de-
tector limit ∆z ≃ ωt. b) Narrow detector limit ∆z ≪ ωt. We
plot Aii (blue squares) Ai,i+1 (green circles), Ai,i+2 (red di-
amonds), and Ai,i+3 (light blue triangles). Parameters used:
z0 = 1cm, ∆x = ∆y = 1cm and κ = 1

(14), as the auto-correlations are given by an integral
over the detector volume around the center of a Gaussian
function. For detectors that are large compared to the
size of the cloud, the on-site correlations approach unity.
In contrast, the interference terms eq. (15) are given
by the integral over a Gaussian function multiplied by
a highly oscillating phase, such that they approach zero
as the size of the detector increases. Thus, for on-site
counting and for detectors which are larger than the size
of the cloud, the crossed correlations disappear Aij ≃ 0
for i 6= j, while the auto-correlations approach Aii ≃ κ.

As we show below, the detection of the auto-
correlations between different modes is sufficient to dis-
tinguish the long-range correlations in the system. In
particular, we show that a MI state can be distinguished
from a SF.

On the contrary, as the auto-correlation terms for dif-
ferent sites are equal, distinguishing states with different
occupation patterns cannot be achieved in this limit. Fig.
1 b shows that for small detector sizes, the interference
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terms are of the order of the on-site correlations. We will
show that in this limit, different occupation patterns are
distinguishable from the counting distribution.

IV. ATOM COUNTING STATISTICS

Let us now consider the counting distributions mea-
sured at the detector after the expansion for different
initial states of the system of atoms trapped in the lat-
tice.

A. Superfluid state

First, let us focus on a SF state, ground state of the
Bose-Hubbard model for very shallow lattices. We derive
the counting distribution using the Gutzwiller ansatz [30]
for the wave function which assumes that it is a product
of on-site coherent states. The initial state of the atoms
in the lattice with N sites then reads:

|ψ〉 =
N
∏

i

|αi〉i, (16)

where |αi〉i is the coherent state on site i,

|αi〉i = e−|αi|
2/2

∞
∑

n=0

αn
i√
n!
|n〉i (17)

and |n〉i = (ai)
n|0〉 is a Fock state with n particles. Note

that |ψ〉 is an eigenstate of the annihilation operator
Ψ(r, t) of the expanded atoms,

Ψ(r, t)|ψ〉 =
∑

i

φi(r, t)αi|ψ〉, (18)

where φi is given by eq. (2). The state |ψ〉 is thus
an eigenstate of the expanded field operator Ψ(r, t)
and we can write the generating function as Q(λ) =

e−λ
∑

ij
α∗

iαjAij . Using eq. (6) the counting distribution
p(m) reads

p(m) =

(

∑

ij α
∗
iαjAij

)m

m!
e−

∑
ij α∗

i αjAij , (19)

where Aij is given by eq. (13).
For a homogeneous superfluid with equal mean number

of particles per sites, αi = α for all i, and in the limit of
big detectors where the diagonal elements of the matrix
Aij are much bigger than the off-diagonal elements, the
counting distribution of the SF simplifies to

p(m) =
(N |α|2Ad)

m

m!
e−N |α|2Ad , (20)

which corresponds to a Poissonian distribution with
mean (and thus also variance) m̄ = σ2(m) = |α|Ad.

B. Mott Insulator state

Let us now consider the Mott insulating regime. We
first study a Mott insulator state with one particle per
site, |ψ〉 = |11..11〉. In this case, the generating function
eq. (7) reads

Q(λ) = 〈11..11| : e−λκ
∫
Ω
drΨ†(r,td)Ψ(r,td) : |11..11〉

= 1− λ
∑

i

Aii + λ2
∑

i<j

(AiiAjj + |Aij |2)− ....(21)

We can rewrite eq. (21) using the minors of the matrix
A,

Q(λ) = 1 +

N
∑

k=1

(−1)kλkM+(A, k), (22)

where M+(A,m) denotes the permanent perm(A) =
∑

σǫSn
Πn

i=1Ai,σ(i) of the corner blocks of size m of the

matrix A. Note that M+(A, k) is closely related to the
principal minors of the matrix, which are defined as
the determinant of the respective block matrices. The
counting distribution p(m) can then be calculated using
Eqs. (6) and (22).
As was outlined above, in typical experimental situa-

tions the detector is far away from the lattice and much
bigger than the cloud, such that the off-diagonal elements
of Aij are negligible and the diagonal elements Aii are
equal for all i. In this case the generating function Q for
the Mott insulator state with unit filling is given by

Q(λ) =

N
∑

k=0

(

N

k

)

(−λAd)
k = (1−Adλ)

N , (23)

where Ad denotes any of the (equal) diagonal elements.
The counting distribution p(m) is then given by

p(m) =

(

N

m

)

Am
d (1−Ad)

N−m (24)

This corresponds to the distribution of a fock state. The
mean m̄ and variance σ2(m) of the distribution are given
by

m̄ = NAd, σ2(m) = NAd(1−Ad) (25)

Let us now consider the different occupation patterns
that arise in the strongly correlated regime. In particu-
lar, we focus on such states where at most one particle
occupies each site. The generating function is then calcu-
lated by eq. (22), with a correlation matrix A′, composed
of the elements of the correlation matrix A in eq. (13)
multiplied by the occupation numbers ni and nj of the
involved sites,

A′ = ninjAij . (26)

Finally, let us consider a symmetric superposition of
all possible states with filling factor Np/Ns, where Np is
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the number of particles, Ns denotes the number of sites
and Np ≤ Ns, the generating function reads

Q = 1+
∑

m

(−1)mλmFMI(A,m,Np, Ns), (27)

where

FMI(A,m,Np, Ns) =

(

Ns−m
Np−m

)

(

Ns

Np

) M+(A,m)

+

(

Ns−2m
Np−m

)

(

Ns

Np

) 2mK(m), (28)

where K(m) is defined as the mfold product over the
sum with non-repeated indices of the real part of Aij ,
∑

i<j Re(Aij) . For m = 2, e.g. M+ =
∑

i<j(AiiAjj +

|Aij |2) and K(m) = Re(Aij)Re(Akl) with k, l 6= i, j.

C. Counting at two detectors

In this section, we consider the detection of the MI and
SF state using two detectors and study the correlations
between the counting events.

For the MI state, the joint counting distribution
p(m,n) of counting m particles at one detector and n
particles at the other is given by eq. (10), where the
generating function for two detectors is given by

Q2 =

N
∑

k=1

(−1)kM+(λ1A
(1) + λ2A

(2), k). (29)

For detectors that are located symmetrically with respect
to the origin in the x-y-plane, in typical experimental
situations the off-diagonal elements of Aij are negligible
(see fig. 1), and the diagonal elements Ad are all equal

for both detectors, A
(1)
d = A

(2)
d = Ad. The generating

function thus simplifies to

Q2(λ1, λ2) =

N
∑

k=0

(

N

k

)

(−Ad)
k(λ1 + λ2)

k

= (1−Ad(λ1 + λ2))
N , (30)

and the counting distribution is given by

p(m,n) = (−1)n+m(1− 2Ad)
Np−m−n ×

(−Ad)
m+n Np!

m!n!(Np−m−n)! (31)

For the SF state, the joint counting distribution
pSF (m,n) is the product of the two single detector distri-
butions p1(m) and p2(n) given by eq. (19). The counting
events at the two detectors are thus not correlated.
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FIG. 2: MI vs. SF as a function of distance from detector.
Probability distribution for MI (black bars) and superfluid
(white bars) states in a 3x3x3 lattice. ∆x = ∆y = 2 mm,
∆z = 2 cm, κ = 1. a) z0 = 1 cm, b) z0 = 3 cm, c) z0 = 5 cm

V. RESULTS

A. Mott Insulator and Superfluid state

We consider the counting distributions of a SF and a
MI state of bosons with the same average number of par-
ticles released from a three dimensional optical lattice.
We assume the limit of a large detector, where the count-
ing distribution is determined by the on-site correlation
terms. In Fig. 2, we plot the counting distributions for a
SF and a MI state at different distances between the de-
tector and the lattice. With increasing distance from the
detector, a smaller fraction of the expanded wave func-
tion is registered. The difference between the MI and the
SF becomes less visible, and the mean of the counting
distribution decreases. In Fig. 3, we plot the mean and
the variance of the counting distributions, both normal-
ized by dividing by N , for the superfluid and the Mott
insulator state for a detector with fixed size at different
distances z0 from the lattice.

B. Mott Insulator and Superfluid state with two

detectors

Let us now consider two detectors of the same size that
are placed symmetrically at a distance x1 = (xd, 0, z0)
and x2 = (−xd, 0, z0) from the lattice center. In the
limit of large detectors, we study the joint counting dis-
tribution of the SF and MI state for different distances
between the detectors. Fig. 4 shows the counting distri-
butions for two overlapping detectors (left column) and
for two detectors separated by 2xd = 1cm (right col-
umn). For the SF state, shown in the lower row in figs.
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FIG. 3: σ2(m)/N of the counting distribution for the MI
(blue squares) and SF (green circles) state with respect to
the distance from the detector z0. ∆x = ∆y = 2 mm, ∆z = 2
cm, κ = 1.

4, the joint counting distribution is a Gaussian function
for both cases. This is expected, as the joint counting
distribution eq. (19) is a product of the single detector
counting distributions. This is analogous to the detec-
tion of coherent states of light. For the MI state shown
in the upper row in fig. 4, we observe a squeezed distri-
bution, indicating the correlations of the atoms counted
at the two detectors. Note that as the distance between
the detectors increases, the squeezing of the distribution
is less pronounced. The correlations between the count-
ing events at the two detectors can be seen more clearly
when looking at the correlation function eq. (11). Note
that for the superfluid state, there is no difference be-
tween the joint counting distribution and the product of
the single particle distributions. For the Mott state, we
study the correlations for varying distance between the
two detectors xd. In Fig. 5, we show how the correlations
decrease when increasing the distance between detectors
xd. Note that the distance xd denotes the distance be-
tween the center of the two detectors. For xd = 0, the
detectors fully overlap, and for xd > ∆ the detectors are
completely separated.

C. Detection of insulating states with different

occupation patterns

Let us now focus on the detection of insulating states
with different occupation patterns by particle counting.
As discussed above, in order to detect the different pat-
terns, the crossed-correlations have to be of the order of
the autocorrelations. This is clear as away from the lat-
tice, all the on-site correlation terms become equal. Let
us discuss the example of a checkerboard state, where
every second site is occupied, and a state with stripes,
where every second line is occupied. For the striped state,
the leading crossed-correlation terms eq. (15) are the
ones that correspond to the nearest neighbors. For the
checkerboard state, where neighboring sites are not oc-
cupied, the leading terms are the ones that correspond to
diagonally adjacent sites. In order to distinguish the dif-
ferent patterns, it is thus essential that these two leading
crossed-terms are sufficiently different and at the same
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FIG. 4: Joint probability distribution of an expanded MI (up-
per row) and a SF (lower row) in a 4x4 lattice with two sym-
metrically placed detectors. In fig. a) and c) xd = 0. In fig.
b) and d) xd = 1 cm. Parameters used: z0 = 1cm, ∆z = 2
mm, ∆x = ∆y = 2 cm, κ = 0.5.
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FIG. 5: Correlations of the joint probability distribution for
an expanded MI state with two symmetrically placed detec-
tors. As the distance between the detectors increases, the
counting events at the two detectors are no longer correlated.
Parameters used: z0 = 1 cm, ∆z = 2 mm, ∆x = ∆y = 2 cm,
κ = 0.5

time comparable to the on-site correlations. From Fig.
1, we see that this implies that the limit of small detec-
tors has to be considered. However, if the detector is
very small, all the terms are equal and the patterns are
not distinguishable. One should thus consider an inter-
mediate detector size.

In Fig. 6, we illustrate the effect for a 1D system of
N = 12 particles. We compare the counting distribu-
tions of a checkerboard-like state, where every second
site is occupied, and a state where a block of six sites
is occupied and a block of six sites is empty. In order
to distinguish the two states, from Fig. 1, we choose a
detector size of ∆ = 0.02 mm, such that the ratio of the
crossed-correlation terms between neighboring sites and
the autocorrelations is 0.6. Fig. 6 shows that the dif-
ferent occupation patterns are reflected in the counting
distribution.
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FIG. 6: The counting distributions of an expanded one-
dimensional checkerboard (black bars) and striped insulating
pattern (white bars) are clearly distinguishable. Parameters
used: z0 = 1 cm, ∆ = 0.1 cm, ∆z = 0.02 mm,κ = 1, Np = 12
.

D. Detection of a Supersolid state

As for the detection of states with different occupa-
tion patterns in the insulating regime, the detection of
supersolid states [31, 32] requires the limit where the
crossed-correlation terms for neighboring sites are com-
parable to the auto-correlation terms. We consider a su-
persolid state with N sites and mean density α2i = β and
α2i−1 = γ. For the limit where the crossed-correlation
terms for neighboring sites are the only non-negligible
interference terms, the counting distribution eq. (19) is
given by a Poissonian distribution with mean

m̄ =
N

2
Ad(β

2 + γ2) + 2NANNβγ, (32)

where Ad denotes the diagonal elements corresponding
to the on-site correlations and ANN denotes the nearest
neighbor crossed-correlation terms. Let us compare this
to a superfluid state with a homogeneous density per site,

|αi|2 = |β|2+|γ2|
2 for all i. The counting distribution eq.

(19) is thus given by a Poissonian distribution with mean

m̄ =
N

2
Ad(β

2 + γ2) +NANN (β2 + γ2). (33)

From eqs. (32) and (33) it is clear that a supersolid state
can be distinguished from a superfluid state by particle
counting. In Fig. 7 we illustrate this by comparing a
supersolid state to a superfluid state.

VI. SUMMARY

We have studied the counting distributions of atoms
falling from an optical lattice and propagating in the
gravitational field. The intensity of atoms recorded
at a detector located far away from an optical lattice

can be decomposed into autocorrelation and crossed-
correlations between the expanding modes. The ratio
between these terms depends crucially on the geometry
of the detector. In the limit when the detector is large
compared to the expanded modes, the crossed-correlation
terms are negligible and only long-range correlations of

10 15 20 25 30 35 40
0

0.05

0.1

m

p(
m

)

FIG. 7: The counting distributions of an expanded supersolid
state with |β|2 = 0.5 and |γ|2 = 1.5 (black bars) and a super-
fluid state |α|2 = 1 (white bars) are clearly distinguishable.
Parameters used: z0 = 1 cm, ∆ = 1 cm, ∆z = 0.02 mm,
κ = 1

different states can be distinguished. In this limit a SF
state has a poissonian number distribution while a MI
has subpoissonian number distribution for a detector of
finite size located at a distance z0 from the lattice. The
two states can also be readily distinguished from the joint
probability distribution of counting the particles at two
detectors. In the SF regime, the joint probability dis-
tribution is a product of the two independent number
distributions while in the MI regime, the distributions
are highly correlated.
When the detector is small compared to the expanded

wave function, the crossed-correlation terms for adjacent
sites are of the order of the auto-correlations. We have
shown that by choosing the size of the detector in an ap-
propriate way, different occupation patterns can be dis-
tinguished by particle counting after expansion both in
the insulating as well as in the superfluid regime.
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