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Abstract.

Exactly solvable many-body systems are few and far between, and the utility of approximate
methods cannot be overestimated. Entanglement mean field theory is an approximate method
to handle such systems. While mean field theories reduce the many-body system to an effective
single-body one, entanglement mean field theory reduces it to a two-body system. And in
contrast to mean field theories where the self-consistency equations are in terms of single-site
physical parameters, those in entanglement mean field theory are in terms of both single- and
two-site parameters. Hitherto, the theory has been applied to predict properties of the static
states, like ground and thermal states, of many-body systems. Here we give a method to employ
it to predict properties of time-evolved states. The predictions are then compared with known
results of paradigmatic spin Hamiltonians.

1. Introduction
Strongly interacting systems, apart from dealing with the properties of magnetic materials,
have been enriched by several important discoveries during the last decades including high
temperature superconductivity, quantum Hall effects, etc. A major breakthrough in many-body
physics came with the experimental realizations of such systems artificially, for example by using
ultracold atoms in optical lattices and ion traps [1]. On the other hand, quantum information
science have demonstrated an enormous utility in applications in different disciplines, ranging
from communication processes to computer science [2]. In the last few years, a strong connection
between quantum information and many-body physics has been developed [1, 3]. This includes
the study of fundamental properties of many-body systems from the perspective of quantum
information, and also the research aimed at an implementation of a quantum computer and
other quantum information processing devices in realizable many-body systems, e.g. in ultracold
atoms and ions.

One of the main obstacles in such investigations is the lack of analytical methods for
handling many-body systems. Indeed only a few interacting many-body systems can be exactly
diagonalized [4, 5]. Approximate and numerical methods therefore play a crucial role in studying
many-body physics [6]. There are several approximate methods that have been successfully
used to evaluate, characterize, and understand the properties of model many-body systems.
Among them, the mean field theory (MFT), first introduced by P. Weiss in 1907, and several
improvements of that theory, have become an important method for understanding many-body
physics, including phase diagrams, critical exponents, etc. Typically, a mean field theory reduces
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the parent many-body Hamiltonian into a single-body one, with the latter containing single-
site physical parameters as undetermined variables. These undetermined single-site parameters
are subsequently obtained by solving certain self-consistency equations, and a distinguishing
property of mean field-like theories is a (or a set of) self-consistency equations written in terms
of single-site physical parameters, like magnetization [7, 8, 9, 10, 11, 6]. Such mean field theories,
although useful in several applications, are not able to properly capture the two-body properties
(of the parent many-body Hamiltonian) – essential ingredients in quantum information science
[2].

Entanglement mean field theory (EMFT) is an approximate method for studying two-site
as well as single-site physical quantities, and critical phenomena of many-body systems [12]. A
characteristic trait of EMFT is that it deals with self-consistency equations in terms of two-body
physical properties, in contrast to the self-consistency equations in terms of single-site quantities
in mean-field theories. The effort required to solve the consistency equation in EMFT is almost
or exactly the same as in MFT. Previous works have demonstrated that EMFT can faithfully
signal the onset of quantum fluctuations-driven phase transitions as well as temperature-driven
phase transitions in a large variety of paradigmatic quantum many-body models. Moreover, the
two-site as well as single site physical parameters as predicted by EMFT are qualitatively as well
as quantitatively better than the MFT predicted ones. In Ref. [13], an EMFT-inspired theory
was applied to classical many-body systems, and it was shown that the critical points predicted
by EMFT are significantly better than the MFT-predicted values. EMFT was generalized to
a cluster EMFT in Ref. [13], and was shown to provide a significant improvement over the
predictions from cluster MFT.

However, both the previous works utilizes EMFT to understand the properties of static

systems, viz., the ground state or the equilibrium states of time-independent Hamiltonians.
Here we apply EMFT to study the the dynamics of a many-body system, as it evolves in time,
where the evolution is described by a time-dependent Hamiltonian. In particular, the EMF
method is applied to explore the properties of entanglement in the dynamics of the nearest
neighbor quantum transverse Ising model. The recipe for the quantum Ising model can also be
applied to other interacting spin systems. Exact results are few and far between for many-body
systems, even in one-dimension (1D). However, in case of the nearest neighbor one-dimensional
quantum transverse Ising model, an exact analytical treatment is possible for the dynamics
(and statics), and several important physical parameters, including two-site ones can be exactly
obtained in closed form (see Refs. [14, 15] and references therein). It is therefore possible to
compare the EMFT predictions in this case with the exact results, and we do so for the nearest
neighbor entanglement in this system. Previous work had shown that the EMFT prediction for
the nearest neighbor entanglement matches well with the general behavior obtained from exact
calculations, in the case of the ground state and thermal states of this model [12]. Here, we
make the comparison for the time-evolved state.

2. The model
Consider the ferromagnetic quantum transverse Ising model (TIM) with nearest neighbor
interactions on a lattice of arbitrary dimension and arbitrary geometry. The model is described
by the Hamiltonian

HTIM = −J
∑

〈~i~j〉

σ
~i
xσ

~j
x − h(t)

∑

~i

σ
~i
z, (1)

where σi, i = x, y, z are the Pauli spin-1/2 matrices, J > 0 is the coupling strength, and h(t)
is a time-dependent transverse magnetic field. We will be interested in the time-evolution of
the system, for which we assume that the initial state is the canonical equilibrium state of the



system at time t = 0. We will only consider cases where the Hamiltonian has nearest neighbor
interactions, as indicated by the notation 〈~i~j〉 in the first summation in Eq. (1), although
the considerations here carry over to more general cases. Since the field considered is time-
dependent, the ensuing dynamics will be non-trivial. In this paper, the time-dependence of the
magnetic field is assumed to be as follows:

h(t) = a, t ≤ 0,

= 0, t > 0, (2)

where a 6= 0. The time-evolution of the system will therefore be a response to the initial “kick”
given to the sytem at zero time.

The one-dimensional version of HTIM can be exactly diagonalized by the Jordan-Wigner
transformation [14, 15]. The exact spectrum can be determined. Furthermore, it is possible to
obtain several physically relevent quantities of the evolved state, where the time evolution starts
off from the canonical equilibrium state, for a wide range of time-dependent transverse fields h,
including the field that has been considered here.

However, such investigations are not possible in higher dimensional systems. The ground
states of even the time-independent versions of the same quantum model in higher dimensions,
including square and triangular lattices in two-dimensions, are not known exactly. Therefore,
approximate methods or numerical simulations play an important role to study such higher
dimensional systems. Numerical simulations [16] include exact finite-size diagonalizations,
density matrix renormalizations [17], quantum monte carlo [18], etc., while approximate methods
include mean field-like theories [6, 7, 8, 9, 10, 11, 19, 20, 21, 22].

3. Entanglement Mean Field Theory
Entanglement mean field theory (EMFT) was introduced in [12] to study the behavior of
bipartite entanglement as well as other two-body physical quantities of many-body systems.
Hitherto, it has been applied to understand the static properties of such systems [12, 13]. Here
we apply it to predict the dynamical properties and in this section, we present the corresponding
consistency equation.

For definiteness, suppose that the spin model is decribed on a two-dimensional square lattice.
EMFT begins by assuming that a certain pair of two neighboring spins are “special”. Suppose
now that the pair {(i, j), (i, j + 1)} of the two-dimensional square lattice is special. We will use
the fact that the square of any Pauli matrix is unity. Therefore, the interaction term

σi−1,j
x σi,jx

in the Hamiltonian in Eq. (1) can be written as

σi−1,j
x σi,jx σk,l+1

x σk,l+1
x ,

which is equivalent to
(σi−1,j

x σi,j+1
x )(σi,jx σi,j+1

x ).

We now make the entanglement mean field theory approximation by replacing the non-special
(operator) pair

(σi−1,j
x σi,j+1

x )

by its mean value 〈σi−1,j
x σi,j+1

x 〉/2. The factor 1/2 is due to the fact that only one of two spins
in the non-special pair touches the special one. Similar approximations can be done for all the
other interaction term in the Hamiltonian.



The total number of terms in the Hamiltonian that will have a non-trivial contribution to the
self-consistency equation, to be written later, is 2νE where the “EMFT coordination number”,
νE, is defined as half of the number of bonds connecting to the special pair, in the Hamiltonian
under consideration. As we will see, νE has a similar significance in EMFT, as the coordination
number in MFT. Therefore, the EMFT-reduced Hamiltonain in the case of the transverse Ising
model in Eq. (1) is

HEMFT
TIM = −JνECσ

~i
xσ

~j
x −

h(t)

2
(σ

~i
z + σ

~j
z), (3)

where we have assumed that (~i,~j) is the special pair. There are only two field terms that make
non-trivial contributions to the self-consistency equation. The factor 1/2 in the field terms is
again due to the fact that each of them only touches one of the special pair. The EMFT-reduced
Hamiltonian includes the as-yet-undetermined average correlation

C = 〈σ
~k
xσ

~l
x〉,

where ~k and ~l are nearby lattice sites. Note that we have not as yet identified the quantum state
in which the average is performed.

We will use EMFT to study the properties of the time-evolved state. For definiteness,
we assume that the dynamics starts from the EMFT ground state, |ψ(0)〉, of the system at
t = 0. Note that the Hamiltonian is time-dependent, without which there will be no non-trivial
evolution if the system starts off from its ground state. The EMFT time-evolved state at time
t is given by

|ψ(t)〉 = exp(−iHEMFT
TIM (t > 0)t/~)|ψ(0)〉. (4)

We now assume that the average correlation C was performed for the state |ψ(t)〉. Therefore,
for consistency, we must have

C = 〈ψ(t)|σ
~i
xσ

~j
x|ψ(t)〉, (5)

and this is the dynamical EMFT self-consistency equation. Note that it is written in terms of
a two-body physical quantity, in contrast to the consistency equations in any mean-field-like
theory. We would like to emphasize here that this consistency equation is one of the main
differences of EMF theory with the MF-like theories, where the self-consistency equation is in
terms of single-site physical parameters, like magnetization.

4. Entanglement Measure: Logarithmic Negativity
As mentioned above, EMFT allows us to predict two-body physical parameters, and of them,
we will be primarily interested in nearest-neighbor entanglement of many-body systems. There
are several measures of entanglement that are known, and for definiteness, we consider an
entanglement measure, called logarithmic negativity [23]. A quantum state, ρAB, of two
distinguishable systems A and B is entangled [24] if it cannot be written as

ρAB =
∑

i

piρ
i
A ⊗ ρiB ,

where ρiA and ρiB are quantum states of A and B respectively.
The Peres-Horodecki criterion: For two spin-1/2 systems, it is known that a quantum state

is entangled if and only if there exists a negative eigenvalue of the partially transposed state
ρTA

AB [25, 26], where the partial transposition is defined as follows.



Let us express ρAB as

ρAB =
∑

i,j

∑

µ,ν

aµνij (|i〉〈j|)A ⊗ (|µ〉〈ν|)B ,

where {|i〉} and {|µ〉} are respectively orthonormal bases of the systems at A and B respectively.
Then the partial transposition of ρAB is defined as

ρTA

AB =
∑

i,j

∑

µ,ν

aµνij (|j〉〈i|)A ⊗ (|µ〉〈ν|)B .

One can now define a measure of entanglement, called logarithmic negativity, for quantum
states of two spin-1/2 systems, as

L(ρAB) = log2(2N(ρAB) + 1),

where N(ρAB) is the sum of the moduli of the negative eigenvalues of ρTA

AB . Note here that the
Peres-Horodecki criterion is still a necessary and sufficient criterion for a state to be entangled in
a system composed of one spin-1/2 and one spin-1, although not any longer in higher dimensions
[27]. Irrespective of that, one can still define the logarithmic negativity for all such situations.
However, we will not have occasion to consider cases other than two spin-1/2 particles.

5. EMFT prediction for entanglement of time-evolved state
It is possible to study single-site as well as two-site properties of the many-body system by
solving the dynamical EMFT self-consistency equation in (5). One begins by solving Eq. (5)
for C for a certain chosen quantum state of the system, and inserting it into the EMFT-
reduced Hamiltonian. Thereafter, the properties of that state can be obtained by using the
EMFT-reduced Hamiltonian, which, after the insertion of the value of C, does not contain any
undetermined parameter.

In particular, we can study the behavior of entanglement in the dynamical EMFT state. For
the quantum TIM described on a lattice of arbitrary dimension and geometry, characterized
by the EMFT coordination number νE, we find the bipartite entanglement of the EMFT time-
evolved state for which the initial state is the EMFT ground state. This is therefore to be
compared with the nearest neighbor entanglement in the time-evolved state for which the initial
state is the ground state of the parent Hamiltonian. In Fig. 1, we plot the bipartite entanglement
(as quantified by logarithmic negativity) of the EMFT-reduced quantum transverse Ising model
against the scaled time τ = tνEJ/~ and the scaled initial transverse field α = a/(νEJ), when
the initial state is the ground state of the EMFT-reduced Hamiltonian.

6. Predictions for a chain: EMFT versus exact
The one-dimensional lattice corresponds to νE = 1, and the EMFT prediction for bipartite
entanglement in that lattice can be read off from the above considerations by substituting νE = 1.
As mentioned earlier, this 1D model is exactly solvable by the Jordan-Wigner transformation,
and it is possible to obtain several single-site as well as two-site physical quantities of the time-
dependent Hamiltonian considered here [14]. The single-site properties include magnetization,
while two-site quantities include two-body correlations and entanglement. The nearest neighbor
(bipartite) entanglement of the time-evolved state in this model, as obtained via Jordan-Wigner
transformation, and where the initial state of the evolution is the zero-temperature state (of
the parent Hamiltonian), is shown in Fig. 2. Note here that Fig. 2 shows that the bipartite
entanglement either vanishes or changes its charateristic (from being convex to concave) at
a/J ≈ 1, irrespective of the time. This is expected as we know that this model undergoes a
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Figure 1. (Color online) Behavior of bipartite entanglement of the EMFT time-evolved state,
with the initial state of evolution being the ground state of the EMFT-reduced quantum
transverse Ising model. The vertical axis represents entanglement, measured in ebits, while
the base axes represent the scaled time τ = tνEJ/~ and the scaled initial transverse magnetic
field α = a/(νEJ). The parameters of both the base axes are dimensionless.

quantum phase transition at zero temperature when the (scaled) transverse magnetic field a/J is
unity [28]. Compare this with Fig. 1 for νE = 1, where we find that the bipartite entanglement
as predicted by the EMFT-reduced Hamiltonian also indicates a change of behavior at a/J = 1.
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Figure 2. (Color online) Nearest-neighbor entanglement of the time-evolved state as obtained
in exact calculations (via Jordan-Wigner), with the initial state of the evolution being the zero-
temperature state of the transverse Ising model. Entanglement (measured in ebits) is represented
along the vertical axis, while the base axes represent the dimensionless variables τ = tJ/~ and
α = a/J . Compare the entanglement plotted here and that predicted in EMFT in Fig. 1 (for
νE = 1).



To make the comparison more objective, let us now concentrate on the temporal behavior
of entanglement in this model as predicted by EMFT and in the exact case. Specifically, we
study the logarithmic negativity of the time-evolved state considered above, for a fixed initial
disturbance, with respect to time. In Fig. 2, we see that the nearest neighbor entanglement,
obtained via Jordan-Wigner transformation, shows collapses and revivals with respect to time,
if we consider a fixed value of the initial transverse field. Interestingly, for α ≤ 1, the bipartite
entanglement of the corresponding EMFT time-evolved state also shows crests and troughs with
respect to time for a fixed initial transverse field. In Fig. 3, we plot sections of Fig. 1 and Fig.
2 at an exemplary field parameter α = 0.594, and see that the numbers of crests and troughs
are equal in the two cases.
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Figure 3. One dimensional transverse Ising model: Comparison of temporal behavior of bipartite entanglement
of the time-evolved state in EMFT with exact results. The vertical and horizontal axes in both the plots are
respectively entanglement (measured in ebits) and the scaled time τ = tJ/~ (dimensionless). Both the plots
are for the fixed initial field α = a/J = 0.594. The left plot is the EMFT prediction, while the right one is
the exact result as obtained via Jordan-Wigner transformation. Both the plots show crests and troughs. More
quantitatively, the numbers of crests and troughs are the same in the two cases.

7. Conclusion
Entanglement mean field theory is an approximate method to deal with many-body systems.
Its main difference with the mean field-like theories is in the self-consistency equations. While
the self-consistency equations in mean field-like theories deal with single-site parameters like
magnetization, those in entanglement mean field theory deals with single- as well as two-site
physical parameters. Using the latter, it is possible to predict two-body correlations as well
as entanglement of many-body systems. While previous studies used entanglement mean field
theory to predict properties of static states of many-body systems, here we have shown the
method to employ it for dynamical states. For definiteness, we have considered the paradigmatic
quantum transverse Ising model on a lattice as our many-body system. We have shown that the
method can predict the behavior of single- as well as two-site properties of the evolved state.
In particular, the behavior of entanglement in the dynamics could be predicted by using the
entanglement mean feld theory. In the one-dimensional case, we have compared the behavior
of two-site entanglement as predicted by EMFT with exact results obtained via Jordan-Wigner
transformation.
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