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Locally Accessible Information of Multisite Quantum Ensembles Violates Monogamy
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Locally accessible information is a useful information-theoretic physical quantity of an ensemble of
multiparty quantum states. We find it has properties akin to quantum as well as classical correlations
of single multiparty quantum states. It satisfies monotonicity under local quantum operations and
classical communication. However we show that it does not follow monogamy, an important property
usually satisfied by quantum correlations, and actually violates any such relation to the maximal
extent. Violation is obtained even for locally indistinguishable, but globally orthogonal, multisite
ensembles. The results assert that while single multiparty quantum states are monogamous with
respect to their shared quantum correlations, ensembles of multiparty quantum states may not be
so. The results have potential implications for quantum communication systems.

The science of quantum information [1] had its ori-
gins in thermodynamics [2] and foundations of quantum
mechanics [3], and it has since been successfully applied
to computation [4] and communication sciences [5], and
has also found interesting links to many-body physics
[6]. The field typically deals with a system of many dif-
ferent subsystems, and quantum correlations [7], in its
multifarious versions, between the different subsystems
form the backbone of these applications. The excitement
in quantum information is even more because numerous
laboratories around the globe can realize entanglement
in a variety of different physical systems. While these
different measures of quantum correlation have quite di-
verse motivations for their introduction and have other-
wise dissimilar regions of utility, they do share certain
intuitively satisfying criteria [8].

An important property that is expected to be satis-
fied by quantum correlation measures is monotonicity
(more precisely, non-increasing), in some form, under
local quantum operations and classical communication
(LOCC).

Another prominent criterion that is usually expected
from a measure of quantum correlation is the so-called
“monogamy”. Such a property is expected to be active
in any measure of quantum correlation for any quantum
state of a multiparty system, where each of the parties
possess one of the subsystems. Monogamy requires that
for any quantum state of a multiparty system, if two par-
ties (i.e. the subsystems in possession of the respective
parties) are highly correlated according to a certain mea-
sure of quantum correlation, then these parties would not
have a substantial amount of that quantum correlation
measure with any other third party (subsystem). See
[9, 10].

None of these dual fundamental properties –
monogamy and monotonicity – are expected to be sat-
isfied by a classical correlation measure of a multiparty
quantum state.

The concept of accessible information of a quantum
ensemble is one that predates the usually accepted be-
ginnings of the field of quantum information, and is de-
fined as the maximal amount of classical information that
one can obtain from a quantum ensemble by using arbi-

trary quantum measurements. The “Holevo bound” for
accessible information obtained about 40 years earlier,
provides us with an important piece of information: bit
per qubit, i.e. the amount of classical information that
can be incorporated in a two-dimensional quantum sys-
tem (qubit) is one bit (binary digit) [11].

A related concept is that of locally accessible infor-
mation and is the maximal amount of classical informa-
tion that one can obtain from a multiparty quantum en-
semble, when only local quantum measurement strate-
gies (LOCC-based measurement strategies) are allowed
– quantum measurements at all the subsystems and clas-
sical communication between them. The first result in
this direction was very surprising: It was shown that
there exists sets of orthogonal product states that are
not locally distinguishable – “quantum nonlocality with-
out entanglement” [12–14]. On the other hand, it turned
out that any two orthogonal pure states of arbitrary di-
mensions and number of parties are locally distinguish-
able irrespective of its quantum correlation content [15].
Furthermore, an example was given of an ensemble of bi-
partite quantum states which is locally distinguishable,
but on reducing its average quantum correlation content,
the ensemble becomes locally indistinguishable – “more
nonlocality with less entanglement” [16]. See also [17] in
this regard.

Notwithstanding these counterintuitive properties of
locally accessible information, the latter does have a cer-
tain amount of direct proportionality with quantum cor-
relation, as was found in [18]. The Holevo bound states
that using a quantum ensemble of a system of n qubits,
it is not possible to send more than n bits of classical in-
formation. Ref. [18] demonstrates a local version of this
result: Using a quantum ensemble of a bipartite system
of n qubits, it is not possible to send more than n − E
bits of classical information. Here E denotes the aver-
age, over the ensemble, of an entanglement measure that
satisfies certain basic postulates.

For an ensemble of multipartite quantum states, its lo-
cally accessible information is an important and useful
information-theoretic physical quantity of the ensemble.
In this paper, we find that locally accessible information
possesses properties that are similar to those of quan-
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tum as well as of classical correlations of single multisite
quantum states. In particular, it certainly satisfies the
monotonicity postulate: locally accessible information of
an ensemble of quantum states is nonincreasing under
LOCC on the ensemble. However, we show here that the
same physical quantity is polygamous, even for multi-
party quantum ensembles that are LOCC indistinguish-
able. We also find locally distinguishable ensembles that
violate any monogamy relation to the maximal extent.
For an ensemble of multiparty quantum states, shared

between the N + 1 parties, A, B1, B2, ... BN , the acces-
sible information ILOCC,A:Bi

acc of the ensemble, when we
have access to only the parties A and Bi (i = any one of
1, 2, . . . , N), and when only LOCC is allowed between A
and Bi, monogamy would dictate that [9]

N
∑

i=1

ILOCC,A:Bi

acc ≤ ILOCC,A:B1B2...BN

acc . (1)

We show that there exist locally indistinguishable (but
globally orthogonal) ensembles that violate this relation.
Moreover, note that for an arbitrary ensemble

shared between the N + 1 parties, we certainly have
ILOCC,A:Bi

acc ≤ log2 Γ, where Γ denotes the cardinality of
the ensemble [19]. Monogamy of locally accessible infor-

mation would provide a bound on
∑N

i=1
ILOCC,A:Bi

acc that
is strictly lower than N log2 Γ. Quite contrarily, we show
that there exists ensembles of multiparty quantum states,

for which the sum
∑N
i=1

ILOCC,A:Bi

acc violates monogamy
to the maximal extent – it attains the value N log2 Γ.
The results have potential applications in quantum

communication networks and in dealing with the infor-
mation dynamics in quantum computation devices, es-
pecially in distributed quantum computing. Moreover,
since we demonstrate the results for arbitrary N , the vi-
olation of monogamy obtained, persists for macroscopic
systems. This, in particular, has potential implications
for the way in which the quantum-to-classical transition
is currently being viewed. Despite its importance in the
field of secret quantum communication, quantum correla-
tions of an ensemble of multiparty quantum states is not
as yet a well-developed field, and the results obtained has
potential of producing an axiomatic formalism for such a
quantity (see [20] in this regard), just like the one existing
for quantum correlations of a single quantum state.
Let us begin by briefly presenting a formal definition

of accessible information and locally accessible informa-
tion. Suppose that an observer, Alice, obtains the classi-
cal message i, and it is known that the message appears
with probability pi. She wants to send it to another ob-
server, Bob. To this end, Alice encodes the informa-
tion i in a quantum state ρi, and sends the quantum
state to Bob. Bob receives the ensemble {pi, ρi}, and
wants to obtain as much information as possible about
i. He performs a quantum measurement, that produces
the result m, with probability qm. Let the corresponding
post-measurement ensemble be {pi|m, ρi|m}. The classi-
cal information that is gathered about the index i by the

quantum measurement, can be quantified by the mutual
information between the message index i and the mea-
surement outcome m [21]:

I(i : m) = H({pi})−
∑

m

qmH({pi|m}). (2)

Here H({rα}) = −∑

α rα log2 rα is the Shannon entropy
of the probability distribution {rα}. Note that the mu-
tual information can be seen as the difference between the
initial disorder and the (average) final disorder. Bob will
be interested to obtain the maximal information, which
is the maximum of I(i : m) over all measurement strate-
gies. This quantity is called the accessible information,

Iacc = max I(i : m), (3)

where the maximization is over all measurement strate-
gies. The Holevo bound provides a universal upper bound
[11] (see also [18, 22]) on this quantity:

Iacc ({pi, ρi}) ≤ χ ({pi, ρi}) ≡ S (ρ)−
∑

i

piS (ρi) . (4)

Here ρ =
∑

i piρi is the average ensemble state, and

S(ς) = −tr(ς log2 ς) (5)

is the von Neumann entropy of the quantum state ς . The
bound is universal in the sense that it is valid for arbitrary
ensembles. A weaker version of this result states that the
accessible information for an ensemble of n qubit states
is bounded above by n bits.
There also exists a universal lower bound on accessible

information, and is given by [23, 24]

Iacc ({pi, ρi}) ≥ Q(ρ)−
∑

i

piQ(ρi), (6)

where the “subentropy” Q is given by

Q(ς) = −
∑

k

∏

l 6=k

λk

λk − λl
λk log2 λk, (7)

with λk’s being the eigenvalues of the state ς , and where
one must consider the limit as the eigenvalues become
equal, in the degenerate case.
To arrive at the concept of locally accessible informa-

tion, let us again suppose that Alice has a message i,
and that again it is known that the message happens
with probability pi. But now, Alice encodes the message
i in a bipartite quantum state ̺i. She sends one part of
the bipartite state to an observer called Bob1 (B1), and
the other part to an observer called Bob2 (B2). The Bobs

therefore receive the ensemble {pi, ̺B1B2

i }, and their task
is to gather as much information as possible about the
index i, by using only LOCC. The maximal mutual infor-
mation in this case is the locally accessible information,

ILOCCacc = max I(i : m), (8)
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where the maximization is now over all LOCC-based
measurement strategies. A universal upper bound on the
locally accessible information is given by [18]

ILOCCacc

(

{pi, ̺B1B2

i }
)

≤ χLOCC
(

{pi, ̺B1B2

i }
)

≡ S
(

̺B1

)

+ S
(

̺B2

)

− max
k=1,2

∑

i

piS
(

̺Bk

i

)

. (9)

Here ̺B1 = trB2

∑

i pi̺
B1B2

i , and similarly for ̺B2 . Also,

̺B1

i = trB2
̺B1B2

i , and similarly for ̺B2

i . Again, a
weaker version of this result is available, which states
that the locally accessible information of a bipartite en-
semble of n qubits is bounded above by n − E, where

E =
∑

i piE
(

̺B1B2

i

)

is the average entanglement E of

the ensemble states. Here E is any measure of bipartite
entanglement that satisfies E(ζB1B2) ≤ maxk=1,2 S

(

ζBk

)

for all bipartite quantum states ζB1B2 , where ζB1 =
trB2

ζB1B2 , and similarly for ζB2 .
Similarly, as in the case of accessible information with

global operations, there also exist a universal lower bound
on locally accessible information, and is given by [25, 26]

ILOCCacc

(

{pi, ̺B1B2

i }
)

≥ ΛLOCC
(

{pi, ̺B1B2

i }
)

≡ QL
(

̺B1B2

)

−
∑

i

piQL

(

̺B1B2

i

)

.(10)

Here ̺B1B2 =
∑

i pi̺
B1B2

i , and the “local subentropy”QL
is given by

QL(ζ) = −dB1
dB2

∫

dαdβ〈α|〈β|ζ|α〉|β〉 log2〈α|〈β|σ|α〉|β〉,
(11)

for a bipartite state ζ of dimensions dB1
⊗ dB2

.
With these concepts in hand, we will now probe the

status of monogamy for locally accessible information.
Case I. We begin by considering the following set

of three-qubit Greenberger-Horne-Zeilinger (GHZ) states
[27]:

|ψ+

0 〉AB1B2
=

1√
2
(|000〉+ |111〉),

|ψ−
0 〉AB1B2

=
1√
2
(|000〉 − |111〉). (12)

Therefore, A and B1 possess the quantum state

1

2
(|00〉〈00|+ |11〉〈11|), (13)

irrespective of whether the three parties, A, B1, and B2

share the state |ψ+

0 〉 or |ψ−
0 〉. Consequently,

ILOCC,A:B1

acc = 0. (14)

Similarly, ILOCC,A:B2

acc is also vanishing, so that

ILOCC,A:B1

acc + ILOCC,A:B2

acc = 0 (15)

in this case. And, ILOCC,A:B1B2

acc = 1 here, so that
monogamy is satisfied in this case. The two GHZ states
considered are distinguishable by LOCC between all the

three parties. However, the complete orthogonal basis
of GHZ states spanning the three-qubit Hilbert space,
which is locally indistinguishable, also satisfies (actually
saturates) the monogamy relation.
Case II. In complete contrast to the previous case, in

this case study, we provide three concrete ensembles, each
of which contains a different amount of average entangle-
ment, such that each of them will violate any monogamy
relation to the maximal extent. Each of the examples
are three-qubit ensembles of two elements each. Let the
three observers be again called A, B1, and B2. The max-
imal value that ILOCC,A:B1

acc can attain for a two element
ensemble is unity. So is the case for ILOCC,A:B2

acc . The
first ensemble (E1) consists of the GHZ states

|ψ+

0 〉AB1B2
=

1√
2
(|000〉+ |111〉),

|ψ+

3 〉AB1B2
=

1√
2
(|011〉 − |100〉). (16)

Forgetting about B2, the ensemble consists of the states

ρAB1

0+ =
1

2
(|00〉〈00|+ |11〉〈11|),

ρAB1

1+
=

1

2
(|01〉〈01|+ |10〉〈10|). (17)

This ensemble can be exactly distinguished by LOCC
between A and B1, by measurement in the computational
basis at A and B1 and communication of the results (say,
by a phone call), so that

ILOCC,A:B1

acc (E1) = 1. (18)

The ensemble E1 is invariant under a swap operation be-
tween B1 and B2, so that we also have

ILOCC,A:B2

acc (E1) = 1. (19)

Consequently, we have

ILOCC,A:B1

acc (E1) + ILOCC,A:B2

acc (E1) = 2, (20)

and 2 is the maximal value that the sum on the left-hand-
side can attain (for an arbitrary two-element ensemble),
because the individual algebraic maxima are unity. This
therefore is a violation of any monogamy relation that
one can envisage for locally accessible information. The
states in the ensemble E1 are genuinely multiparty en-
tangled [28]. However, the violation of monogamy is not
related to this fact, as borne out by the next two en-
sembles. Let us therefore consider the ensemble E2 that
consists of the states

|ψ+〉AB1B2
= |0〉 1√

2
(|00〉+ |11〉),

|ψ−〉AB1B2
= |1〉 1√

2
(|00〉 − |11〉). (21)
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Again we have

ILOCC,A:B1

acc (E2) + ILOCC,A:B2

acc (E2) = 2, (22)

and again 2 is the maximal value that the sum on the left-
hand-side can attain, because the individual algebraic
maxima are unity. The states of this ensemble are still
entangled, although not genuinely multisite entangled.
The third and last ensemble (E3) consists of the states
|000〉 and |111〉, which once more violates any monogamy
relation that one can write down, and this ensemble is
devoid of any quantum correlations in its element states.
Note that just like in Case I, all the ensembles are dis-
tinguishable by LOCC between all the three parties.
Case III. The violations in Case II are all obtained

for tripartite ensembles. However, this is not a neces-
sary restriction, and ensembles of an arbitrary number
of parties can be shown to maximally violate the corre-
sponding monogamy, as seen in the following example.
We present the example by again using a two-element
ensemble, where each element is genuinely multiparty
entangled [28]. Let us therefore consider the ensemble
(Ecat) containing the GHZ states (also called cat states)

|ψ〉catAB1B2...BN
=

1√
2
(|000 . . .0〉+ |111 . . .1〉),

|φ〉catAB1B2...BN
= IA ⊗ σxB1

⊗ . . .⊗ σxBN
|ψ〉catAB1B2...BN

,

(23)

where σx is the Pauli spin-flip operator. Tracing out all
the parties except A and B1, we obtain the ensemble

ρAB1

ψcat =
1

2
(|00〉〈00|+ |11〉〈11|),

ρAB1

φcat =
1

2
(|01〉〈01|+ |10〉〈10|). (24)

This ensemble can be exactly distinguished, and so we
have

ILOCC,A:B1

acc (Ecat) = 1. (25)

However, the ensemble (Ecat) is invariant with respect to
a swap between any two of the Bis (i = 1, 2, . . . , N), and
so we have

ILOCC,A:Bi

acc (Ecat) = 1, ∀i = 1, 2, . . . , N. (26)

However, each of the ILOCC,A:Bi

acc (Ecat) can reach a maxi-
mum of unity, as Ecat is a two-element ensemble. There-
fore, for any monogamy relation to be nontrivial, we

must have the sum
∑N

i=1
ILOCC,A:Bi

acc strictly less than
N . However, the sum is actually equal to N for the en-
semble Ecat.
Case IV. The ensembles that we have considered until

now are all qubit ensembles, and have two elements in
them. Neither of these conditions are necessary. For
example, the ensemble ET , consisting of the three three-
qutrit quantum states (shared between A, B1, and B2

respectively),

|000〉+ |111〉,
|011〉+ |122〉,
|100〉+ |200〉, (27)

also violates any monogamy relation to the maximal ex-
tent. Also, the ensembles that have been considered
above do not form complete bases of the correspond-
ing multiparty Hilbert space. Again, this condition is
not a necessity, as the ensemble EP formed by the eight
three-qubit quantum states |ijk〉 (i, j, k = 0, 1), form a
complete basis, and also violates the monogamy relation
for ILOCCacc . It is also not necessary to consider orthog-
onal ensembles to violate monogamy, as has been done
until now. This can be seen by considering the ensemble
consisting of the states |000〉 and |~n~n~n〉, where |~n〉 is a
qubit state slightly different from |1〉.
Case V. We now consider the ensemble Eshifts of the

following four three-qubit, (globally) orthogonal, quan-
tum states

|01+〉, |1 + 0〉, |+ 01〉, | − −−〉, (28)

where |±〉 = 1√
2
(|0〉 ± |1〉). This set was discovered in

Ref. [13], and it was shown that the set forms an un-
extendible product basis, in the sense that there are no
product states in the orthogonal complement of the sub-
space spanned the elements in Eshifts. It was shown there
that this ensemble cannot be distinguished by LOCC be-
tween the three parties. It was thereafter connected to
the phenomenon of bound entanglement [29]. We will
now show that the ensemble Eshifts violates monogamy.
Let the three parties possessing the states in Eshifts be
called A, B1, and B2 respectively. Leaving out B2, the
ensemble consists of the states

|01〉, |1+〉, |+ 0〉, | − −〉. (29)

Let us try to find the locally accessible information for
this ensemble. Let us begin by noting that the universal
upper and lower bounds on locally accessible information
imply that

1− 1

2
log2 e ≤ ILOCC,A:B1

acc (Eshifts) ≤ 2, (30)

that is

0.27865 ≤ ILOCC,A:B1

acc (Eshifts) ≤ 2. (31)

Here and hereafter, all numerical values are rounded off
to the fifth decimal place. The upper bound does not
help us in violating any monogamy relation. And the
lower bound is too weak for our purposes. We now find
a much stronger lower bound. This is obtained by us-
ing the following LOCC measurement strategy, which in-
cludes a single bit of classical communication from A to
B1. Suppose that A measures in the basis Z = {|0〉, |1〉},
and sends the result to B1 over a classical channel. If
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the result is |0〉, the observer in possession of B1 mea-
sures in the basis Z, and otherwise he measures in the
basis X = {|+〉, |−〉}. The mutual information, between
the ensemble index and the measurement index, that is
obtained by following this LOCC measurement strategy,
can be shown to be

I
LOCC,A:B1

M (Eshifts) ≥ 13

4
− 1

8
[3 log2 3 + 5 log2 5]

≈ 1.20443. (32)

The bound is much better than the universal lower
bound, and indeed will help us to violate monogamy.
Now

ILOCC,A:B1

acc (Eshifts) ≥ I
LOCC,A:B1

M (Eshifts) ≥ 1.20443.
(33)

Also, the ensemble obtained from Eshifts by leaving out
B1, is the same as that obtained by leaving out B2, up
to a swap operation, and we know that locally accessi-
ble information is invariant under the swap operation.
Consequently, we have

ILOCC,A:B2

acc (Eshifts) ≥ 1.20443, (34)

so that

ILOCC,A:B1

acc (Eshifts) + ILOCC,A:B2

acc (Eshifts) ≥ 2.40887.
(35)

However, since there are four elements in the ensemble
Eshifts, we have

ILOCC,A:B1B2

acc (Eshifts) ≤ 2. (36)

Consequently, the monogamy relation is violated for the
locally indistinguishable ensemble Eshifts by more than
20%.
In conclusion, we have shown that locally accessible

information of multisite quantum ensembles can vio-
late monogamy, even maximally. Violation can appear
even for locally indistinguishable, but globally orthogo-
nal, multiparty quantum ensembles. This is despite the
fact that this physically important quantity does satisfy
monotonicity under local operations and classical com-
munication.
None of the dual fundamental properties of monogamy

and monotonicity are expected to be satisfied by a classi-
cal correlation measure of a multiparty system, quantum

or classical. Indeed, just like a single ball can be either
green or blue in color, a set S of ten (or twenty) balls
can be either all green or all blue. [Similarly, the spin
states of a set of ten spin-1/2 particles can be either all
up, in the z-direction, or all down.] The marginals of S
consisting of any two balls is again either both green or
both blue, irrespective of the number of balls in S – a
clear violation of monogamy. Also, monotonicity is vio-
lated by any classical correlation measure, as can be seen
in the following scenario. Suppose that two white balls
are sent to two cities, so that initially there are no corre-
lations in this bipartite system. The receivers of the balls
are then instructed to color them to a some single color
and to choose that color from among green, blue, and
red, and to fix the color by phone call between the par-
ties. So finally, classical correlation is present, whatever
be its value (that depends on the exact measure (and its
normalization) used), in the bipartite system.

While classical correlation measures are not expected
to satisfy these dual properties, quantum correlations
are. Locally accessible information, therefore, contains
elements of both the worlds.

On the application front, the results may have implica-
tions for quantum communication networks, where clas-
sical information is transferred by using quantum means.
Another potential candidate for application is distributed
quantum computing, where efficient transfer of informa-
tion is vital for a robust and competent performance of
the system. Yet another possible region of application
is in secure information transfer, where quantum corre-
lations of quantum ensembles is an important, though
not very well-understood, physical quantity, and the re-
sults obtained may provide inputs towards an axiomatic
formalism of this quantity.

On the fundamental side, we note that the violations
are obtained for systems with an arbitrary number of sub-
systems, and so are valid even for macroscopic systems.
This can have implications for researches in the quantum-
to-classical transition: Macroscopic systems, whether
classical or quantum, have inherent physical quantities
that violate monogamy, but satisfy monotonicity. Lastly,
the results may be important to understand the counter-
intuitive properties obtained in Refs. [12–16], and may
indicate that these nonintuitive properties are a product
of the violation of monogamy of locally accessible infor-
mation.
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