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s u m m a r y

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial con-
ditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the
ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an
attempt is made to quantify these uncertainties involved and thereby improve the predictability by
adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India
for the period 1955–2000 is used for the study. It is found to exhibit a low dimensional chaotic nature
with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate
data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest
neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing
principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs).
This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nat-
ure with dimension 10. Nonlinear prediction employing local approximation method is done using uni-
variate series (rainfall alone) and multivariate series for different combinations of embedding dimensions
and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space
using different combinations of parameters. The ensembles generated from multivariate predictions are
found to be better than those from univariate predictions. The uncertainty in predictions is decreased or
in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The
restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in
the initial conditions and also by including other possible variables, which may influence the system.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A major break through in the routine weather prediction oc-
curred in the mid 20th century with the development of various
climate models that numerically integrate an adequate set of
mathematical equations which explain the physical laws govern-
ing the climatic processes. However, these mathematical equations
form a nonlinear dynamical system in which an infinitesimally
small uncertainty in the initial conditions will grow exponentially
even under a perfect model, leading to a chaotic behavior (Smith
et al., 1998). The sensitivity of any deterministic system to a slight
change in the initial conditions leading to a vast change in the final
solution is often known as ‘‘butterfly effect’’ in the field of weather
forecasting (Lorenz, 1972). Hence, earth’s weather can be treated
as a chaotic system with a finite limit in the predictability, arising
mainly due to the indefiniteness of the initial conditions.

An infinitesimal initial uncertainty @0 grows exponentially with
time at a rate of separation given by the highest Lyapunov expo-
nent k (Wolf et al., 1985; Rosenstein et al., 1993). Thus, the separa-
tion or uncertainty after Dt time steps ahead is @Dt ffi ekDt@0.
Variations in the reliability of any individual forecast due to this
uncertainty can be quantified by generating an ensemble of fore-
casts with slightly varying initial conditions. Any uncertainty in
the initial conditions is reflected in the evolution of the ensemble,
and hence the nonlinearity. Also, an estimate of the stability of the
forecasts can be obtained by observing how quickly the ensemble
spreads out (or shrinks). Many operational centers now adopt the
ensemble approach replacing the traditional best guess initial con-
dition approach. Smith (2000) stated that since the ensembles can
accurately reflect the likelihood of occurring of various future con-
ditions, given a perfect model, chaos places no a priori limits on
predictability. Hence, the predictability of a chaotic system is lim-
ited primarily (i) due to the indefiniteness in the initial conditions
(given a perfect model) and also (ii) due to the imperfection of the
model.

Many of the weather phenomena have been modeled so far
employing the concept of stochastic systems. However, a large
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number of studies employing the science of chaos to model and
predict various hydrological phenomena have emerged only in
the past 20 years (Elshorbagy et al., 2002; Islam and Sivakumar,
2002; Jayawardena and Lai, 1994; Porporato and Ridolfi, 1996,
1997; Puente and Obregon, 1996; Rodriguez-Iturbe et al., 1989;
Liu et al., 1998; Sangoyomi et al., 1996; Sivakumar et al., 1999,
2001; Sivakumar, 2001; Shang et al., 2009; Wang and Gan,
1998). Most of these studies dealt with scalar time series data of
various hydrological phenomena like rainfall, runoff, sediment
transport, lake volume, etc. In these cases, since neither the math-
ematical relations nor the influencing variables are known, the
state space in which the variable is lying is reconstructed from
the time series itself using phase space reconstruction method by
Takens (1981). The outcomes of these studies affirm the existence
of low-dimensional chaos, thus indicating the possibility of only
short-term predictions. Better predictions can be obtained using
the chaotic approach since it takes into account the dynamics of
the irregular hydrological phenomena from a chaotic deterministic
view, thereby reducing the model uncertainty. Also, the dynamic
approach employing chaotic theory outperforms the traditional
stochastic approach in prediction (Jayawardena and Gurung,
2000). Studies attempting prediction have dealt with mainly uni-
variate prediction by reconstructing the phase space from a scalar
time series.

Most of these studies rely only on the low correlation dimen-
sion as a measure of the chaotic nature of the time series and as
an estimate of the embedding dimension. Osborne and Provenzale
(1989) claimed that a low correlation dimension can also be ob-
served for a linear stochastic process. Hence, it is advised to assess
the chaotic nature and to determine the embedding dimension and
delay time by employing a variety of methods (Islam and Sivaku-
mar, 2002; Dhanya and Kumar, 2010). Since different methods give
slightly different embedding dimensions and delay times for a sin-
gle series, one should opt for an ensemble of predictions with a set
of these parameters in order to capture the uncertainty in param-
eter estimation (Dhanya and Kumar, 2010, 2011). Thus, while
dealing with time series data, the uncertainty in initial conditions
can be quantified by generating a set of predictions with different
combinations of parameters.

Although according to embedding theorem by Takens (1981), a
scalar series is sufficient to reconstruct the dynamics of the system,
its application in practical problems is not very fruitful. For exam-
ple, while considering the three – variable Lorenz system (Lorenz,
1963), the measurements of z co-ordinate alone cannot resolve the
dynamics of the Lorenz system (Cao et al., 1998). Hence, inclusion
of other influencing variables in the time series strengthen the
model, thus substantially improving the prediction. A very small
number of studies (Cao et al., 1998; Jin et al., 2005; Porporato
and Ridolfi, 2001) have attempted multivariate prediction by uti-
lizing the information from other time series.

In view of the above, the present study attempts to improve the
predictability of a chaotic daily rainfall series by employing a mul-
tivariate phase space prediction method. The information from
various atmospheric variables is incorporated. Also, the uncer-
tainty in initial conditions is quantified by generating an ensemble
of predictions with a variety of plausible parameters. The predict-
ability of a multivariate case is then compared with that of the uni-
variate case.

2. Data used

The daily rainfall data of Malaprabha basin in India for the per-
iod 1955–2000 is considered for the present study. The daily rain-
fall data for the basin is extracted from the daily gridded rainfall
data at 1� � 1� resolution from the Indian Meteorological Depart-

ment (IMD) (Rajeevan et al., 2006). The location map of Malap-
rabha basin is shown in Fig. 1. It has a basin area of 2500 km2

area situated between 15�30N and 15�56N latitudes and 74�12E
and 75�15E longitudes. The catchment receives an average mon-
soon (June–September) rainfall of around 1800 mm. The mean
and standard deviations of monthly rainfall of the region are pre-
sented in Table 1.

Anandhi et al. (2008) had selected 15 variables as the probable
predictors for downscaling precipitation in Malaprabha basin. The
daily variables extracted from the National Centre for Environmen-
tal Prediction (NCEP) reanalysis data sets (Kalnay et al., 1996) are
the air temperature at 925, 700, 500 and 200 mb pressure levels
(at925, at700 at500 and at200), geopotential height at 925, 500
and 200 mb pressure levels (gpt925, gpt500 and gpt200), specific
humidity at 925 and 850 mb pressure levels (sh925 and sh850), zo-
nal (u-wind) and meridional (v-wind) wind velocities at 925 and
200 mb pressure levels (uwnd925, uwnd200, vwnd925 and
vwnd200), precipitable water (pwr) and surface pressure (press).
In addition to these variables, daily surface air temperature (atsurf)
for the period 1955–2000 is also considered for multivariate non-
linear prediction, since it is directly related to the daily rainfall.
These climate variables are extracted for the grid point at 15�N
and 75�E.

The correlation of daily rainfall with these atmospheric vari-
ables for different lags is shown in Fig. 2. In most cases, the maxi-
mum correlation (either positive or negative) is obtained for lags
zero or one.

3. Methodology

The methods employed and the stepwise procedure adopted for
generating the ensemble prediction are described below.

3.1. Phase space reconstruction

The prediction algorithms on nonlinear dynamics are based
upon the theory of dynamic reconstruction of a scalar series, which
is done by reconstructing the phase space using the method of de-
lays by Takens (1981). The phase space reconstruction provides a
simplified, multi-dimensional representation of a single-dimen-
sional nonlinear time series. According to this approach, for a sca-
lar time series Xi where i = 1, 2, . . . , N, the dynamics can be fully
embedded in m-dimensional phase space represented by the
vector,

Yj ¼ ðxj; xj�s; xj�2s; . . . ; xj�ðm�1ÞsÞ ð1Þ

where j = 1, 2, . . . , N � (m � 1)s/Dt; m is called the embedding
dimension (m P d, where d is the dimension of the attractor); s is
the delay time and Dt is the sampling time. The dimension m can
be considered as the minimum number of state variables required
to describe the system. The popular methods used for estimating
the embedding dimension are the Grassberger–Procaccia approach
(GPA) (Grassberger and Procaccia, 1983), and the False Nearest
Neighbor (FNN) method (Kennel et al., 1992). The delay time s is
the average length of memory of the system. An appropriate delay
time is to be chosen for the best representation of a phase space.
The phase space coordinates would not be independent if s is too
small, thus resulting in loss of information about the characteristics
of the attractor structure. On the other hand, if s is too large, there
would be no dynamic correlation between the state vectors since
the neighboring trajectories diverge, thus resulting in loss of infor-
mation about the original system. The optimum s which allows a
reasonable spread of state space data points is usually determined
using either autocorrelation function or the mutual information
method (Frazer and Swinney, 1986).
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The dynamics can be interpreted in the form of an m-dimen-
sional map fT such that

YjþT ¼ FTðYjÞ ð2Þ

where Yj and Yj+T are vectors of dimension m, Yj being the state at
current time j and Yj+T being the state at future time j + T.

In multivariate case, instead of a single scalar series (p = 1), the
time series of a number of independent variables are considered
(p > 1). Consider a p-dimensional time series X1, X2, . . . , XN, where
Xi = (x1,i, x2,i, . . . , xp,i), i = 1, 2, . . . , N. The time delay vectors can
be reconstructed as in the case of scalar time series in Eq. (1):

Yj ¼

x1;j; x1;j�s1 ; x1;j�2s1 ; . . . ; x1;j�ðm1�1Þs1 ;

x2;j; x2;j�s2 ; x2;j�2s2 ; . . . ; x2;j�ðm2�1Þs2 ;

� � � � � � � � �
xp;j; xp;j�sM ; xp;j�2sM ; . . . ; xp;j�ðmp�1Þsp

0
BBB@

1
CCCA ð3Þ

where si, mi, i = 1, 2, . . . , p are the delay times and the embedding
dimensions of the p variables respectively. The total embedding

dimension M is the sum of the individual embedding dimensions
for each time series M ¼

Pp
i¼1mi.

Similar to Eq. (2) there exists a function F : Rd ! Rd Mð
¼
Pp

i¼1miÞ. Thus, the future value is based on the relation
Yj+T = FT(Yj).

This is also equivalent to

x1;jþT ¼ F1;TðYjÞ
x2;jþT ¼ F2;TðYjÞ

..

. ..
.

xp;jþT ¼ Fp;TðYjÞ

ð4Þ

provided m or mi is sufficiently large.
The time delays si are determined separately for each time ser-

ies using auto correlation function or mutual information method.
The complexity lies in the determination of embedding dimension
of the multivariate data. All possible combinations with different
mi0’s need to be tried out to determine the optimal combination
of embedding dimensions.

3.2. Correlation dimension method

Correlation dimension method also known as correlation inte-
gral analysis, is employed to analyse the chaotic nature of the daily
rainfall time series. In this method, the correlation integral C(r) is
estimated using the Grassberger–Procaccia algorithm (Grassberger
and Procaccia, 1983). According to the algorithm, for an m-dimen-
sional reconstructed phase space (as given in Eq. (1)), the correla-
tion integral C(r) is given by

CðrÞ ¼ lim
N!1

2
NðN � 1Þ

X
i;j

ð16i<j6NÞ

Hðr � jYi � YjjÞ ð5Þ

where H is the Heaviside function, with H(u) = 1 for u > 0 and
H(u) = 0 for u 6 0, where u = (r � |Yi � Yj|), r is the radius of the

Fig. 1. Location map of Malaprabha basin. The latitude, longitude and scale of the map refer to the Karnataka state.

Table 1
Mean and standard deviations of monthly rainfall for the period 1955–2000.

Month Mean (mm) Standard deviation (mm)

January 1.0 3.9
February 0.8 2.1
March 6.0 11.6
April 29.0 27.1
May 83.7 78.0
June 417.4 168.5
July 770.0 299.8
August 441.3 195.4
September 167.1 74.1
October 138.4 93.4
November 39.5 49.1
December 5.2 11.4
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sphere centered on Yi or Yj and N is the number of data. For small
values of r, the correlation integral holds a power law relation on
r, C(r) � rd, where d is the correlation dimension of the attractor.
The correlation exponent or the dimension, d can be calculated from
the slope of the plot of log C(r) versus log r.

The series is generally considered to be chaotic, if the correla-
tion exponent saturates to a constant value even on increase in
embedding dimension m. The nearest integer above that saturation
value indicates the number of variables necessary to describe the
evolution in time. On the other hand, if the correlation exponent
increases without reaching a constant value on increase in the
embedding dimension, the system under investigation is generally
considered as stochastic. This is because, contrary to the low
dimensional chaotic systems, stochastic systems acquire large
dimensional subsets of the system phase space, leading to an infi-
nite dimension value.

3.3. False nearest neighbor (FNN) method

The false nearest neighbor method (Kennel et al., 1992) is based
on the concept that if the dynamics in phase space can be repre-
sented by a smooth vector field, then the neighboring states would
be subject to almost the same time evolution (Kantz and Schreiber,
2004). Hence, any two close neighboring trajectories emerging
from them should still be close neighbors, after a short time into
the future. The original algorithm of Kennel et al. (1992) is modi-
fied by Hegger and Kantz (1999) to avoid any spurious results
due to noise. This modified algorithm in which the fraction of false
nearest neighbors is computed in a probabilistic way has been used
in the present study.

In this modified algorithm, the basic idea is to search for all the
data points which are neighbors in a particular embedding dimen-
sion m and which do not remain so, upon increasing the embed-
ding dimension to m + 1. To do this, consider a particular data
point and determine its nearest neighbor in the mth dimension.
Compute the ratio of the distances between these two points in
the m + 1th and mth dimensions. If this ratio is larger than a partic-
ular threshold f, the neighbor is false. When the percentage of false

nearest neighbors falls to zero (or a minimum value), the corre-
sponding embedding dimension is considered high enough to rep-
resent the dynamics of the series.

While dealing with multivariate time series, the total dimension
M is determined from the individual embedding dimensions mi’s
for each component. The exact combination of individual embed-
ding dimensions mi’s can be computed by either the prediction er-
ror minimization method by Cao et al. (1998) or the dimension
reduction method by Velichov (2004). However, in the present
study, since the approach is to generate an ensemble of predictions
with different combinations of embedding dimensions, an exact
combination of dimensions taken by each variable is not required.
The following approach employing FNN algorithm is used to deter-
mine an approximate combination of the embedding dimensions
and hence the total embedding dimension required for the data
set.

The basic idea of FNN algorithm for multivariate case is the
same as that for the univariate case. The change in the fraction of
FNN is calculated over an increase in the embedding dimension
from m to m + 1. For multivariate data set of p components, as
mentioned in Section 3.1, total dimension M is the sum of the
individual embedding dimensions for each component i.e., M ¼Pp

i¼1mi.
For calculating the particular embedding dimension M ¼Pp

i¼1mi, all the combinations of the dimension vector m = (m1,
m2, . . . , mp) need to be considered. The fraction of FNN is calculated
for each such m = (m1, m2, . . . , mp) with all possible combinations
in which M is increased to M + 1 i.e., (m1 + 1, m2,. . ., mp), (m1,
m2 + 1,. . ., mp),. . ., (m1, m2,. . ., mp + 1). The procedure is illustrated
up to M = 3 for a bivariate series in Fig. 3. This is done until the
FNN fraction drops to zero for at least one of the embedding
dimension vectors m = (m1, m2,. . ., mp) (Vlachos and Kugiumtzis,
2008).

3.4. Nonlinear prediction

To obtain contrasting predictions, nonlinear prediction method
is used to counter-check the embedding dimensions obtained from

Fig. 2. Correlation of daily rainfall with all atmospheric variables for different lag times.
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the correlation integral and false nearest neighbor methods. The
procedure of nonlinear prediction can be explained as follows: As
a first step, the phase space reconstruction of the scalar series Xi

where i = 1, 2, . . . , N is done, using the method of delays as per
Eq. (1). Once the reconstruction of the attractor is successfully
achieved in an embedding dimension m, the dynamics can be
interpreted in the form of an m-dimensional map fT such that

YjþT ¼ fTðYjÞ ð6Þ

where Yj and Yj+T are vectors of dimension m, Yj being the state at
current time j and Yj+T being the state at future time j + T. Now
the problem is to find a good approximation of fT using the current
data.

The selection of a nonlinear model for fT can be made either
globally or locally. The global approach approximates the map by
working on the entire phase space of the attractor and seeking a
form, valid for all points. Neural networks and radial basis func-
tions adopt the global approach. In the local approach which works
on local approximation (Farmer and Sidorowich, 1987), the
dynamics are modeled locally piecewise in the embedding space.
The domain is broken up into many local neighborhoods and mod-
eling is done for each neighborhood separately, i.e., there will be a
separate fT valid for each neighborhood. The complexity in model-
ing fT is thus considerably reduced without affecting the accuracy
of prediction. Because of these advantages, local approximation
method is employed in this study.

In local approximation method, the prediction of Yj+T is done
based on values of Yj and k nearest neighbors of Yj. These k nearest
neighbors are selected based on the minimum values of kYj � Yj0 k
where j0 < j. If only one nearest neighbor is considered then Yj+T will
be Yj’+T. Since normally k > 1, the prediction of Yj+T is taken as the
weighted average of the k values. In the present study, the predic-
tion of Yj+T is done by averaging for k neighbors in the form
bY jþT ¼ 1

k

Pk
i¼1Yi0þT . The optimum number of nearest neighbors is

decided by trial and error. The prediction accuracy is estimated
using the correlation coefficient, Nash efficiency coefficient and
also normalized mean square error between the predicted series
and the corresponding observed series.

Nonlinear prediction of multivariate case is similar to that for
univariate case except in the phase space reconstruction. Once
the reconstruction of the attractor is successfully achieved, the
approximation of FT in Eqs. (2) and (4) can be done using local
approximation approach.

3.5. Principal component analysis (PCA)

Principal component analysis method generates a new set of
variables which are linear combinations of the original variables.
These uncorrelated new variables called principal components
(PCs) contain no redundant information since they are orthogonal
to each other. The principal components as a whole form an
orthogonal basis for the space of the data. The following steps
are used to derive the principal components:

i. The time series is standardized by dividing it with the corre-
sponding standard deviation of each variable.

ii. The covariance matrix of the standardized time series is
computed.

iii. The eigenvalues k and the eigenvectors are calculated.
iv. These eigenvectors will be orthogonal to each other. The

eigenvalues and the corresponding vectors are arranged
according to the descending value of the eigenvalues. Hence,
kth eigenvector corresponds to kth largest eigenvalue kk.

v. The multivariate series is projected on the space spanned by
the eigenvectors to obtain the principal components (PCs).
This is done by multiplying the eigenvector matrix and the
original standardized time series.

vi. The percentage total variance xk explained by the kth prin-
cipal component is given by: xk ¼ kkPp

i¼1
ki
� 100, where p is

the dimensionality of the original data set.

3.6. Stepwise procedure

Univariate prediction:

(1) The range of delay time of the daily rainfall series is esti-
mated using auto correlation and mutual information
methods.

M = 1 (1,0) (0,1) 

(2,0) (1,1) (0,2) 

(3,0) (2,1) (1,2) (0,3) M = 3

M = 2

Fig. 3. Various combinations of embedding dimensions considered for a bivariate
series.
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mutual information with lag time.
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(2) The range of embedding dimension of the daily rainfall ser-
ies is estimated through correlation dimension, FNN and
nonlinear prediction (local approximation) methods. The
optimum neighborhood size (radius) from which the nearest
neighbors are to be searched is determined using nonlinear
prediction method. The neighborhood radius is expressed
as a fraction a of the standard deviation.

(3) The phase space is reconstructed according to Eq. (1) for all
the available combinations of the parameters m and s. These
parameter combinations are used to produce an ensemble of
forecasts.

Multivariate prediction:

(4) The range of neighborhood is kept the same to allow a com-
parison with the univariate case.

(5) Analyze the chaotic nature of each time series using false
nearest neighbor method.

(6) Reduce the dimension of the predictor time series (=16) by
principal component analysis (PCA) method, retaining ‘n’
number of principal components (PCs) which explain more
than 90% of the variance of the original time series.

(7) The multivariate time series is generated by combining rain-
fall with n PCs.

(8) Determine the delay time si for n PCs using the autocorrela-
tion method and mutual information method.

(9) Check the embedding dimension of this multivariate series
using false nearest neighbor method.

(10) Reconstruct the phase space according to Eq. (3) for dimen-
sions from n + 1 to 2(n + 1) with various possible combina-
tions of mi. Ensembles are generated with all these
combinations.

(11) The quality of the ensembles of univariate and multivariate
cases is analyzed using rank histogram which is a graphical
method to evaluate the reliability and probable predictability
of the targeted parameter by the ensembles. If there are N
observation forecast pairs and Nens ensemble forecasts corre-
sponding to each observation, then, assuming that for each of
these N data sets, all the ensembles and also the observations
are having the same probability distribution, the rank of the
observation is likely to take any of the values i = 1, 2,
3, . . . , Nens + 1. The rank of the observation is determined for
each of the n data points. These ranks are plotted in the form
of a histogram to produce the rank histogram. While an ideal
rank histogram is a flat one, a U-shaped rank histogram indi-
cates ensemble members from a less variable distribution. U-
shaped histogram indicates that the spread is too small and
that many observations are falling outside the extremes of
the ensembles; whereas a dome shape indicates that ensem-
ble spread is too large and that too many observations are fall-
ing in the middle range. An ensemble bias (positive or
negative) excessively populates the low and high ranks.
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4. Results and discussion

4.1. Univariate series

4.1.1. Determination of delay time
The choice of the delay time s is made using the autocorrelation

method and the mutual information method. In autocorrelation
method, the delay time is determined as the lag time at which
the autocorrelation function attains a zero value. In mutual infor-
mation method, the delay time is chosen as the first minimum va-
lue. The autocorrelation and mutual information plots for various
lag times are shown in Fig. 4a and b respectively. The delay times
obtained from these two methods are 71 and 93 respectively. The
range of delay time for the ensemble prediction is adopted as 60–
100 days, allowing a little extra spread.

4.1.2. Determination of embedding dimension
The embedding dimension of the daily rainfall series of Malap-

rabha is determined using correlation dimension, false nearest
neighbor and nonlinear prediction methods. The chaotic nature
and the nonlinearity structure of the Malaprabha daily rainfall
are analyzed in detail in Dhanya and Kumar (2010). Some of those
results are reproduced here for ready reference.

The correlation integral C(r) is determined according to Grass-
berger–Procaccia algorithm for embedding dimensions 1–40. The
variation of the correlation exponent with the embedding dimen-
sion is shown in Fig. 5a. It can be noticed that the correlation expo-
nent is increasing with embedding dimension and reaching a
constant value at embedding dimension m P 18, which indicates
the chaotic nature of the rainfall.

The variation of fraction of FNN with embedding dimension is
shown in Fig. 5b. The fraction of nearest neighbors is falling to a

minimum value at an embedding dimension of 7. The steep in-
crease of FNN after 7th dimension up to m = 18 can be attributed
to the presence of additive noise in the data series or to the pres-
ence of a large amount of zeros (about 57%) in the time series (Dha-
nya and Kumar, 2010). The presence of additive noise leads to high
space dimensionality at smaller scales. Since the selection of a suit-
able noise reduction method needs further investigation, it is not
dealt in the present study. Still, the application of a simple nonlin-
ear noise reduction method (Schreiber, 1993) reveals that the unu-
sual rise of FNN fraction does not exist in the noise reduced data
(Fig. 5b). At higher dimensions, the FNN fraction of noise reduced
data and original data are merging. However, in the noise reduced
data also, the decrease of FNN fraction after an embedding dimen-
sion of 7 is minimal. Thus, the optimum embedding dimension is
adopted as 7.

Nonlinear local constant prediction method is used as inverse
method to determine the embedding dimension. For this, daily
rainfall for the year 2000 is predicted using the daily rainfall series
from 1955 to 1999. The optimum neighborhood size is determined
by plotting the variation of the prediction error (root mean square
error, RMSE) with the neighborhood size (which is a fraction of
standard deviation) for m = 6 and is shown in Fig. 5c. The optimum
neighborhood size is adopted as 0.5� standard deviation for which
the prediction error is the least.

In order to determine the embedding dimension, the prediction
accuracy (in terms of normalized mean square error (NMSE), Nash
efficiency coefficient and correlation coefficient) is calculated for
various embedding dimensions using the optimum nearest neigh-
bors and its variation is shown in Fig. 5d. The maximum prediction
accuracy is found for an embedding dimension of 5. Since the
embedding dimensions obtained by the various methods differ
slightly, the range of embedding dimension for ensemble predic-
tion is adopted as 3–10.
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4.2. Multivariate series

4.2.1. Analysis of chaotic nature of atmospheric variables
The chaotic dynamics of atmospheric variables is analyzed by

false nearest neighbor (FNN) method. The threshold value f is fixed
at 5. The fall of fraction of FNN with embedding dimension for all
variables is shown in Fig. 6. The FNN fraction decreases with an
increase in embedding dimension, finally achieving a minimum
value (or even zero). The embedding dimension at which the
fraction of nearest neighbors is reaching a minimum value is in the
range of 8–10 for all variables. This indicates the presence of a low
dimensional strange attractor (thus chaos) in all these atmospheric
time series. Therefore, an embedding dimension of 8–10 is consid-
ered sufficient to explain the dynamics of these variables.

4.2.2. Principal component analysis
The initial dimension of the multivariate time series is 17 (rain-

fall and 16 atmospheric variables), when all the atmospheric vari-
ables are included. This may cause an over embedding while
performing phase space reconstruction of the multivariate time
series. The 16 atmospheric variables chosen as predictors are also
dependent on each other as can be noticed from the correlation
map of the variables shown in Fig. 7a. Some of the variables exhibit
a high positive correlation, while a few others exhibit a medium
negative correlation. Hence, it would be appropriate to reduce
the dimension of this correlated atmospheric time series (dimen-
sion = 16) to a smaller number of uncorrelated variables called
principal components. The principal components of the atmo-
spheric time series of dimension 16 are extracted.

Fig. 7b shows the percentage of variance explained by the prin-
cipal components. Around 95.1% of the total variability of the data
set is explained by the first 8 principal components. Therefore,
along with the daily rainfall series, these first 8 PCs are selected
for multivariate phase space reconstruction. Thus, the dimension
of the multivariate data set is reduced to 9.

4.2.3. Determination of delay time of eight PCs
The delay time of the first variable in the multivariate data set

i.e., daily rainfall is determined using autocorrelation and mutual

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
0

0.5

1

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
−1

0

1

0 100 200 300 400 500
−1

0

1

Lag time (days)

A
ut

o 
co

rr
el

at
io

n

0 100 200 300 400 500
−1

0

1

PC 2

PC 3 PC 4

PC 5 PC 6

PC 7 PC 8

PC 1

0 50 100 150 200
0

2

4

0 50 100 150 200
0

2

4

0 50 100 150 200
0

2

4

0 50 100 150 200
0

2

4

0 50 100 150 200
0

1

2

0 50 100 150 200
0

2

4

0 50 100 150 200
0

2

4

Delay time (days)

M
ut

ua
l i

nf
or

m
at

io
n

0 50 100 150 200
0

1

2

PC 1 PC 2

PC 3 PC 4

PC 5 PC 6

PC 7 PC 8

(a) Auto correlation

(b) Mutual information

Fig. 8. Variation of (a) autocorrelation and (b) mutual information with lag time for
all PCs.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Embedding dimension

F
ra

ct
io

n 
of

 f
al

se
 n

ea
re

st
 n

ei
gh

bo
rs

Fig. 9. Variation of fraction of FNN with total embedding dimension.

Table 2
A sample of various combinations of individual embedding dimensions taken for
multivariate phase space reconstruction.

Total
dimension, M

Rainfall PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

9 1 1 1 1 1 1 1 1 1

10 2 1 1 1 1 1 1 1 1

11 3 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1

12 4 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1

Table 3
Comparison of daily rainfall correlations, average daily rainfall correlations and daily
rainfall RMS errors of univariate and multivariate predictions.

Year Corrln. daily flow Corrln. mean daily flow Mean RMSE (mm)

Uni Multi Uni Multi Uni Multi

1996 0.3539 0.4200 0.7718 0.8451 8.9535 5.9529
1997 0.5729 0.6275 0.8565 0.9169 9.6578 6.8830
1998 0.4752 0.4793 0.9317 0.9498 7.9928 5.2425
1999 0.5129 0.5338 0.8533 0.8600 8.9069 6.5211
2000 0.5032 0.5090 0.9249 0.9683 8.2302 5.7646
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information methods as explained in Section 3.1. In order to recon-
struct the multivariate phase space as given in Eq. (3), the delay
times si of rest of the eight variables (eight PCs) need to be deter-
mined. The variation of autocorrelation and mutual information
with lag time for each series is shown in Fig. 8a and b respectively.
While the variation of mutual information over lag time is evident

for the first few PCs, the values are either zero or very low for the
rest of the PCs after 1–2 days. This is obvious since much of the var-
iance of the data set is captured by first few PCs themselves.

The zero auto correlation and the first minimum mutual infor-
mation for the first three PCs are in the range of 75–95 days. To
avoid more combinations of delay time and also since the delay
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time of rainfall series is similar to that of PCs, daily rainfall and also
all the eight PCs are delayed at the same rate for phase space
reconstruction. Hence, the range of delay time for the multivariate
ensemble prediction is adopted as 75–95 days (with an increment
of 5 days).

4.2.4. Determination of dimension of multivariate series (rainfall and 8
PCs)

As explained in Section 3.3, all possible combinations in which
M is increased to M + 1 are considered. The variation of fraction of
FNN with total embedding dimension M is shown in Fig. 9. The
embedding dimension at which the FNN fraction falls to a zero va-
lue is 10. Hence, the minimum total dimension required for the
multivariate series can be fixed at 10.

However, the range of total embedding dimension for multivar-
iate ensemble prediction is varied in the range of 9–18. This range
is selected since the initial dimension of the data set itself is nine
(rainfall and eight PCs) and also from correlation dimension analy-
sis of univariate daily rainfall series (see Fig. 5a) the maximum
number of variables required to explain the system dynamics is
�18. Since the main objective is the prediction of rainfall series
only (1st component), instead of trying out all the combinations
of individual mi’s which result in the variation of M from 9 to 18,
those combinations which satisfy the criteria of m1 P m2 P � � �
P mp; mi P 1 8i ¼ 1;2; . . . p and 9 6

Pp
i¼1mp P 18 only are consid-

ered. Hence, rainfall and the first eight PCs are embedded into a

higher dimension (therefore more components in the phase space)
when compared to the rest of the PCs. Also, the criterion mi P 1
ensures the existence of all components in the phase space. Such
a priority to the rainfall series and the first eight PCs may help in
better capturing the dynamics and hence the unusual variations
in the future daily rainfall. A sample of the combinations consid-
ered is given in Table 2 for M = 9 to M = 12. Thus, a total of 95
combinations are considered up to M = 18.

4.3. Ensemble prediction

The ranges of parameters considered for univariate and multi-
variate cases are given below:

Univariate case: (i) Embedding dimension: 3–12 (10 values); (ii)
Delay time: 60–100 (41 values). Phase space is reconstructed for all
the available parameter combinations, thus generating a total of
410 ensembles.

Multivariate case: (i) Total embedding dimension, M: 9–18. This
will lead to 95 combinations of mi’s as sampled in Table 2. (ii) Delay
time: 75–95. In order to reduce the total number of ensembles, in
this case, the delay times are considered in increments of 5 days
only. Hence, the total number of parameter combinations for
which phase space is to be reconstructed is 475.

Predictions are done with local approximation method using
the above selected parameter combinations for both univariate
case and multivariate case. Ensembles are generated for both cases
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Fig. 10 (continued)
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for a particular year using the data till the corresponding preceding
year. This is done for 5 years from 1996 to 2000. A comparison of
the correlations of the observed daily rainfall for each year with the
mean ensemble daily rainfall values, correlations with observed
average daily rainfall values for a month and mean ensemble

average daily rainfall values and root mean square error (RMSE)
of the daily rainfall for both univariate and multivariate predictions
are shown in Table 3. Multivariate prediction ensembles
show higher correlations for both daily rainfall and mean daily
rainfall of all the five years. Similarly, RMS error is always less
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Fig. 11. Box plots of the mean daily rainfall values of the ensembles for both cases. The median ensemble values are shown as a dashed line within each box. (a) Univariate
prediction for 1996. (b) Multivariate prediction for 1996. (c) Univariate prediction for 1997. (d) Multivariate prediction for 1997. (e) Univariate prediction for 1998. (f)
Multivariate prediction for 1998. (g) Univariate prediction for 1999. (h) Multivariate prediction for 1999. (i) Univariate prediction for 2000. (j) Multivariate prediction for
2000.
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for multivariate case. This indicates that multivariate phase space
reconstruction is able to effectively reveal the dynamics of the dai-
ly rainfall system.

The probability density functions (PDF) of the ensembles (in
blue) and the corresponding observed series (solid black line) for
both univariate and multivariate cases for all the 5 years are shown
in Fig. 10a–j. Even though both the predictions are able to catch the
observed series PDF within its spread, the width (probability den-
sity) of the PDF is less for the multivariate case for all the years
considered. This in turn indicates a reduction in the uncertainty
caused due to the indefiniteness of the reconstructed parameters.

A detailed analysis is done by constructing the box plots of
absolute deviations of average daily ensemble rainfall from the
corresponding average daily observed rainfall values. The box plots
of these absolute deviations of average daily rainfall values for the
5 years are shown in Fig. 11a–j. The box plots give the range of
deviations of the ensembles from the observed. A box in the box
plots indicates the inter-quartile range of the absolute deviations
and the horizontal dashed line within the box indicates the median
of the absolute deviations. The upper and lower whiskers of the
box plots indicate the 95th and 5th percentile value and thus show
the extent of the rest of the data. The box plots are shown for both
univariate and multivariate ensembles. The box plots (or the range
of the absolute deviation) of univariate predictions are much wider
than those of multivariate predictions. This further confirms the

reduction in uncertainty by multivariate representation and hence
an increase in the predictability of the series. It can be seen that the
predictions obtained from multivariate case are significantly better
than those obtained from univariate series.

The quality of the ensembles generated using both approaches
are further compared using rank histograms. The rank histograms
for evaluating the mean and spread of the ensembles (410 for Uni-
variate and 475 for Multivariate) generated for mean daily rainfall
over a month for each year (a total of 12 � 5 = 60 data points) are
prepared and are compared in Fig. 12a. The rank histograms for
both cases are given as insets. There is an ensemble bias which
causes more population towards the lower ranks in univariate pre-
diction. Such a bias is due to the inability of univariate representa-
tion to capture too low rainfall values. The rank histograms of
multivariate ensembles are almost flat implying ensembles of reli-
able spread.

Further, the time evolution of average root mean square error
(RMSE) of all ensembles for 5 years is computed and compared
for both cases in Fig. 12b. The mean RMSE for multivariate case
is always lesser than the corresponding univariate value. Such
reduction in RMSE establishes the increase in predictability due
to the multivariate approach. This further proves that even though
daily rainfall series is chaotic and hence limitedly predictable, the
predictability can be significantly improved by utilizing informa-
tion from the influencing atmospheric variables.
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5. Conclusions

The unexpected exponential growth due to the infinitesimal
uncertainty in the initial conditions limits the predictability of
any chaotic series. Many atmospheric variables, wind patterns,
rainfall etc have been proven to exhibit such a sensitive dependence
on initial conditions. In a chaotic system, predictability is limited
due to the uncertainty in initial conditions and also due to the
uncertainty in the model dynamics. The present study was aimed

at quantifying these uncertainties by adopting a multivariate non-
linear ensemble prediction. The uncertainty in initial conditions
was quantified by reconstructing the phase space for different com-
binations of parameters (embedding dimension and delay time).
This will ultimately generate a set of attractors, which in turn will
lead to a change in the initial condition. The model dynamics was
further modified by exploiting information from other influencing
variables and reconstructing a multivariate phase space, since it
may contain more information about the dynamic system.

(i) Univariate (ii) Multivariate

0 50 100 150 200 250 300 350
10

−1

10
0

10
1

Days

R
oo

t M
ea

n 
Sq

ua
re

 E
rr

or
 (

R
M

SE
)

Univariate
Multivariate

(a)

(b)
Fig. 12. (a) Rank plots for mean daily rainfall ensembles. Rank plot for univariate and multivariate predictions are shown. The original rank histograms are shown in insets
(the axes labels are same as those of the main figure). (b) Evolution of mean RMSE over days for univariate and multivariate case.
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Daily rainfall data for the period 1955–2000 of Malaprabha was
considered for the study. This series was found to exhibit a low
dimensional chaotic behavior with an embedding dimension 5–7.
For multivariate prediction, 16 atmospheric variables were consid-
ered. The chaotic nature of these atmospheric variables was con-
firmed by employing false nearest neighbor method. Since these
variables may be interdependent and hence may contain redundant
information, the dimension of the atmospheric data set was reduced
to 8 by retaining the first eight uncorrelated principal components
(PCs) that capture around 95% variance of the original data set. The
daily rainfall series along with these eight PCs were considered for
multivariate phase space reconstruction and prediction.

An ensemble of predictions was generated using a range of
parameters (embedding dimension and delay time) for both uni-
variate series and multivariate series. For univariate series, the
embedding dimension was varied from 3 to 12 and delay time
was varied from 60 to 100. For multivariate series (initial dimen-
sion = 9), the total embedding dimension was varied from 9 to 18
and delay time was varied from 75 to 95. Selected combinations
of parameters were only considered for multivariate case, so that
priority can be given to rainfall series followed by the PCs catching
large variance. Ensembles were generated for 5 years from 1996,
considering data till the corresponding previous year.

A comparison of the ensembles generated by both approaches
revealed that the uncertainty in the multivariate ensembles is sig-
nificantly small compared to that in the univariate ensembles. The
probability density functions (PDFs) from both approaches were
able to capture the observed PDF in its spread. The reduction in
the uncertainty using multivariate approach was evident from
the reduced width of absolute deviation boxes. The reliability of
multivariate ensembles was also noticeable from the rank histo-
grams. A comparison of the evolution of root mean square error
also revealed the superiority of the multivariate ensembles and
its increased predictability.

The uncertainty in the initial conditions of a chaotic system was
hence quantified by making predictions from different initial con-
ditions (different parameter combinations). Better predictions ob-
tained from multivariate nonlinear prediction method confirm
the suitability of modeling and understanding the underlying
dynamics of the complex rainfall process by utilizing information
from the causative atmospheric variables. It is worthwhile to note
that even for a chaotic system, predictability can be improved by
efficaciously quantifying the underlying uncertainties.
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