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Abstract – A century ago, it was predicted that the first significant digit appearing in a data
would be nonuniformly distributed, with the number one appearing with the highest frequency.
This law goes by the name of Benford’s law. It holds for data ranging from infectious disease
cases to national greenhouse gas emissions. Quantum phase transitions are cooperative phenom-
ena where qualitative changes occur in many-body systems at zero temperature. We show that
the century-old Benford’s law can detect quantum phase transitions, much like it detects earth-
quakes. Therefore, being certainly of very different physical origins, seismic activity and quantum
cooperative phenomena may be detected by similar methods. The result has immediate implica-
tions in precise measurements in experiments in general, and for realizable quantum computers in
particular. It shows that estimation of the first significant digit of measured physical observables
is enough to detect the presence of quantum phase transitions in macroscopic systems.

Introduction. – Benford’s law is an empirical law,
first observed by Newcomb in 1881 [1] and then by Benford
in 1938 [2], predicting an uneven distribution of the digits
one through nine at the first significant place, for data
obtained in a huge variety of situations. Precisely, the
prediction is that the frequency of occurence of the digit
D will be

PD = log10

(

1 +
1

D

)

. (1)

This implies a much higher occurence of one – about 30%
of the cases – in comparison to the higher digits. The
higher digits are predicted to appear with progressively
lower frequencies of occurence, with e.g. nine appearing
with about 5% probability.
The law has since been checked for a wide spectrum of

situations in the natural sciences, as well as for mathe-
matical series [3]. The situations in the natural sciences
range from the number of cases of infectious diseases oc-
curing globally, to the national greenhouse gas emissions
[3–6]. Mathematical insights into the Benford’s law were
recently obtained in a series of papers by Hill [7–9].
Interestingly, it was recently discovered by Sambridge

et al. [6] that the Benford’s law could be used to distin-
guish earthquakes from background noise, and the thesis
was successfully applied to seismographic data from the

Boxing Day Sumatra-Andaman earthquake in 2004.

We find that the Benford’s law can be used to detect the
position of a (zero temperature) quantum phase transition
in a quantum many-body system. A phase transition in a
bulk system is a qualitative change in one or more physical
quantities characterizing the system, and their importance
appear in diverse natural phenomena. Phase transitions
could be temperature-driven, like the transformation of
ice into water, and are produced by thermal fluctuations
[10]. Quantum phase transitions, however, occur at zero
temperature, and are driven by a system parameter (like,
magnetic field), and they ride on purely quantum fluctua-
tions [11]. Their importance can hardly be overestimated,
and range from fundamental aspects – like understanding
the appearance of pure quantumness in bulk matter – to
revolutionizing applications – like using the Mott insulator
to superfluid transition for realizing quantum computers
[12–15].

We consider a paradigmatic quantum many-body sys-
tem, the quantum transverse Ising model, which exhibits a
quantum phase transition [11,16,17]. There are solid state
compounds that can be described well by this model. In
particular, the LiHoxY1−xF4 compound is known to be
described by the three-dimensional (quantum) transverse
Ising model [18]. Moreover, spectacular recent advances
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in cold gas experimental techniques have made this model
realizable in the laboratory, with the additional feature
that dynamics of the system can be simulated by con-
trolling the system parameters and the applied transverse
field. In particular, the two-component Bose-Bose and
Fermi-Fermi mixture, in the strong coupling limit with
suitable tuning of scattering length and additional tunnel-
ing in the system can be described by the quantum XY
Hamiltonian, of which the Ising Hamiltonian is a special
case [13, 15, 19]. Therefore the phenomenon discussed in
this paper can be verified in the laboratory with curently
available technology. Let us note here that the quantum
phase transition in the transverse Ising model has been
experimentally observed [20].

The Hamiltonian governing the system, and its

diagonalization. – The quantum transverse XY sys-
tem is described on a lattice by the Hamiltonian

H = J
∑

〈ij〉

[

(1 + γ)Sx
i S

x
j + (1− γ)Sy

i S
y
j

]

− a
∑

i

Sz
i , (2)

where J denotes the coupling constant, γ the anisotropy
parameter, and a is the transverse field strength. Sx

i , S
y
i ,

Sz
i are one-half of the Pauli matrices σx

i , σ
y
i , σ

z
i respec-

tively at the ith site. 〈ij〉 indicates that the corresponding
summation runs over nearest neighbor spins on the lattice.
For γ = 1, the system reduces to the quantum transverse
Ising model. For our purposes, we will consider the model
on an infinite one-dimensional lattice, and in this case,
the Hamiltonian is exactly diagonalizable by successive
Jordan-Wigner, Fourier, and Bogoliubov transformations
[21–23].
We now diagonalize the system and find the single-site

as well as two-site physical quantities for the ground state
(at zero temperature) [21–23]. Let us denote the ground
state by ̺. The single-site state is described by a single
physical quantity, the transverse magnetization:

Mz = lim
n→∞

tr

(

1

n

∑

i

σz
i ̺

)

. (3)

The two-site state additionally has the three diagonal cor-
relations:

Cαα = lim
n→∞

tr

(

1

n

∑

i

σα
i σ

α
i+1̺

)

, (4)

α = x, y, z. (Periodic boundary condition is assumed
here.) The magnetization and nearest neighbor correla-
tions are given as follows.

Cxx(ã) = G(−1, ã), Cyy(ã) = G(1, ã), (5)

and
Czz(ã) = [Mz(ã)]2 −G(1, ã)G(−1, ã) (6)

where G(R, ã) (for R = ±1) is given by

G(R, ã) =
1

π

∫ π

0

dφ
1

Λ(ã)
(γ sin(φR) sinφ−cosφ(cosφ−ã))

(7)

And

Mz(ã) = −
1

π

∫ π

0

dφ
(cosφ− ã)

Λ(ã)
(8)

Here

Λ(x) =
{

γ2 sin2 φ + [x− cosφ]2
}

1

2 , (9)

and
ã =

a

J
. (10)

Note that ã is a dimensionless variable, and in the follow-
ing, we will use it as the field parameter.

A measure of entanglement. – Apart from the
classical correlations, Cαα, and the transverse magnetiza-
tion, the two-site state also possesses quantum correlations
aka entanglement [24], which is increasingly being used to
describe and characterize phenomena in many-body sys-
tems [15, 25–28]. There are several measures of quantum
entanglement, and here we choose the logarithmic nega-
tivity [29] as a measure for the two-site state under con-
sideration. It is defined for a two-site state ρAB as

EN (ρAB) = log2[2N (ρAB) + 1], (11)

where the negativity N (ρAB) is defined as the absolute
value of the sum of the negative eigenvalues of ρTA

AB, with

ρTA

AB being the partial transpose of ρAB with respect to
the A-part [30].

The Benford quantity and the violation parame-

ter. – For checking the status of the Benford’s law for a
given quantity Q, it is necessary to suitably shift and scale
it. To see the necessity of this exercise, consider the situ-
ation where we want to check the status of the Benford’s
law for the voltmeter reading of a particular electrical cir-
cuit. Suppose that the power provider promises that the
reading will be 230V, with usual small deviations. Let
us assume that the deviation is never more than 10V, so
that the voltmeter reading will always be between 220V
and 240V. No matter how many readings we take, the first
significant digit will always be 2, a clear, but trivial, vio-
lation of Benford’s law. A simple way to get around this
problem is to shift and scale the quantity, so as to bring
it to the range (0, 1) [31].
Therefore, before checking the status of the Benford’s

law for a particular physical quantity Q, of the quantum
spin model under consideration, we first shift its origin
and scale it, so as to bring it to the range (0, 1) as follows:

QB =
Q−Qmin

Qmax −Qmin

. (12)

We then check the validity of the Benford’s law for the
“Benford Q”, QB. Here Qmin and Qmax are respectively
the minimum and maximum of the physical quantity Q,
in the relevant range of operation.
As a measure to quantify the amount of potential viola-

tion of the Benford’s law for Q, we consider the quantity

δ(QB) =

9
∑

D=1

∣

∣

∣

∣

OD − ED

ED

∣

∣

∣

∣

. (13)
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Here OD is the observed frequency of the digit D as the
first significant digit of QB, chosen from the sample under
consideration. ED is the expected frequency for the same,
so that

ED = NPD, (14)

where N is the sample size, and PD is the probability
expected from the Benford’s law (see Eq. (1)).
Note that the shifting and scaling process mentioned

above produces a zero and unit value for QB, which are
then removed from the data set, as trivial data points.
Correspondingly the sample size is also reduced by 2, and
this reduced value is named N , and used in Eq. (14).
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Fig. 1: (Color online.) Benford’s law detects the quantum
phase transition in the infinite transverse Ising model. The
horizontal axis represents the physical parameter a/J , while
the vertical one represents the violation parameter for trans-
verse magnetization. Both axes depict dimensionless quanti-
ties. The blue dotted, red dashed, and green dot-dashed curves
are respectively for shifting field windows (or more precisely for
shifting a/J windows) of lengths 0.2, 0.15, and 0.1. Each of
the curves have been drawn for N = 1998, but is equal to the
same for N = 1498, indicating that convergence with respect
to N has already been attained. For the plots, the shifting field
window is assumed to shift with discrete jumps of 0.05.

Status of the Benford’s law on a shifting field

window. – Let us begin by considering the status of
the Benford’s law for the transverse magnetization in the
transverse Ising model. We wish to scan the status of the
law as we move along the axis of the transverse field a.
For a given value of the applied transverse field a = a′, we
choose a field window

(a′/J − ǫ/2, a′/J + ǫ/2), (15)

for small ǫ, and choose N points from this field window.
We then find the transverse magnetization of the system
for these N values of the transverse field. We shift and
scale these values of the magnetization to find the Benford
transverse magnetization (see Eq. (12)). These N values
of the Benford transverse magnetization form the sample
for this field window to which we fit the Benford’s law. We
find the corresponding OD’s, and then the corresponding

δ [32]. The lower the value of the δ is, the more is the
Benford’s law satisfied in that window. We scan the field
axis, finding the values of the δ(Mz

B) as we move. We find
that the Benford’s law is more violated in the quantum
paramagnetic region (a/J > 1), than in the magnetically
ordered one (0 < a/J < 1).
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Fig. 2: (Color online.) A comparison of the different behavior
of the relative frequencies of the first significant digits of the
transverse magnetization of the infinite transverse Ising model,
before and after the quantum phase transition in the model. As
stated in the text, the frequencies are actually for the Benford
transverse magnetization (see Eq. (12)). The histogram on
the left is for the field window a/J ∈ (0.82, 0.9), while that on
the right is for a/J ∈ (1.1, 1.18). The number of data points
is 1998 for both the field windows. For each histogram, the
nine columns, from left to right, are for the nine first signif-
icant digits 1 through 9. Each column height is the relative
frequency for the corresponding significant digit. A clearly dif-
ferent behavior is seen in the relative frequency distributions
before and after the quantum phase transition. Both axes of
both the histograms represent dimensionless quantities.

However, the most interesting result is that δ(Mz
B)

clearly signals the position of the quantum phase transi-
tion at a/J = 1. Away from the quantum phase transition,
the violation parameter δ(Mz

B) seems to have “equilibri-
ated”, and is more or less a constant as we move the field
window over the a axis. However, at the quantum phase
transition, there is a sudden and vigorous transverse move-
ment of the violation parameter. See Fig. 1. The con-
stant values of the violation parameter before and after
the vicinity of the quantum phase transition at a/J = 1
are different, and the transverse movements are created as
the system tries to change its equilibriation value of the
violation parameter. While the amount of the transverse
movement and the length of the field window that is re-
quired for the violation parameter to equilibriate, depend
on the length of the field window, all field windows lead
to the same point on the field axis at which the transverse
movement occurs. The situation is very similar to the
detection of the Sumatra-Andaman earthquake by Sam-
bridge et al. [6], where there appeared a distinct change
in the violation parameter considered by them, when the
earthquake entered their shifting time window, which was
otherwise scanning over a background noise. Surprisingly
therefore, although the quantum phase transition of the
transverse Ising model is of a completely different origin
as compared to the seismic activities below the surface of
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the earth, the Benford’s law detects them very similarly.

The violation parameter is a characteristic of the fre-
quency distribution of the first significant figure corre-
sponding to the physical quantity under consideration.
The distribution itself hides further information, and in
particular can also be directly used to detect the quantum
phase transition. And for instance, the behaviors of the
relative frequency distribution for the transverse magne-
tization, before and after the transition, are significantly
different. See Fig. 2.
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Fig. 3: (Color online.) Comparing the violation parameters
for different physical parameters of the infinite transverse Ising
model. The horizontal axis represents the physical parameter
a/J . The vertical one represents the violation parameter for
the Benford Q, where Q denotes the physical parameters Cxx

(nearest neighbor xx classical correlation, plotted as a pink
continuous curve), Czz (nearest neighbor zz classical correla-
tion, plotted as a red dotted curve), single-site von Neumann
entropy (green dashed curve), and entanglement (logarithmic
negativity, plotted as a blue dot-dashed curve). Both axes rep-
resent dimensionless quantities. The shifting field windows are
of length 0.2, with the shifts being of length 0.05, for all the
curves. The plots are for 3998 sample points. Convergence
with respect to the number of sample points was checked by
using N = 1498, 1998, and 2998. Note that the curves for Cxx

and Czz almost coincide for a/J < 1.

Phase transitions, and in particular, quantum phase
transitions can be detected by a variety of indicators, in-
cluding (but certainly not limited to) classical correlations
[11], bipartite and multipartite quantum entanglement
[15,25–28,33], quantum discord [34], ground state fidelity
and fidelity susceptibility [35], etc. The quantum phase
transition in the transverse Ising model can also be de-
tected by using the violation parameter for other physical
quantities, like the classical correlations, and the quantum
correlation, EN . Quantum phase transitions are present
also in the quantum XY models with other values of the
anisotropy γ, and these can also be detected by using the
violation parameter for the different physical quantities in
those models. In Fig. 3, we plot the violation parame-
ter for the Benford Q (see Eq. (12)), where Q denotes
the physical parameters Cxx (nearest neighbor xx clas-
sical correlation), Czz (nearest neighbor zz classical cor-
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Fig. 4: (Color online.) Bounding equilibriated plateaus of dif-
ferent heights that are robust under small changes of the length
of the shifting field window are necessary to detect phase tran-
sitions. The Benford nearest neighbor yy classical correlation
for the infinite transverse Ising model is plotted on the verti-
cal axis against the field parameter a/J on the horizontal axis.
Both axes represent dimensionless quantities. The shifting field
window is of length 0.15 for the pink dotted curve, and is 0.2
for the blue continuous curve. The shifts are of length 0.05 for
both the curves. The plots are for 2998 sample points. Conver-
gence with respect to the number of sample points was checked
by using N = 1498 and 1998.

relation), the single-site von Neumann entropy [36], and
logarithmic negativity, and again find that the quantum
phase transition at a/J = 1 is detected by bi-directional
(i.e. both downwards and upwards) transverse movements
of the violation parameter, bounded on both sides by equi-
libriated plateaus of different heights. A bi-directional
transverse movement is also seen at a/J = 0 in the vi-
olation parameter for the Benford logarithmic negativity.
However, it is not accompanied by bounding equilibriated
plateaus of different heights. A small bi-directional trans-
verse movement is seen in the violation parameter for the
Benford Cyy (Fig. 4) at approximately a/J = 1.1. How-
ever, again it is not bounded by equilibriated plateaus, and
moreover, it vanishes for a slight change of the length of
the shifting field window. [A similar feature was also ob-
served for the Benford EN , for ǫ = 0.15, which got erased
for ǫ = 0.2.] Let us also note here that neither a maxi-
mum nor a minimum of the violation parameter indicates
a quantum phase transition – maxima (minima) of the vi-
olation parameter are obtained for the single-site entropy
and entanglement (Cxx, Cyy, and Czz) at a/J = 0. These
transverse movements at a/J = 0 are however not of the
typical “N”-shape of a transverse motion (as for the ones
at a/J = 1), and moreover are bounded by equilibriated
plateaus of equal heights.

There are two interesting differences between the vi-
olation parameters for the different physical quantities.
Firstly, the violation parameter for magnetization has the
largest delay in returning to equilibrium in comparison
to the situation for the other parameters. Secondly, the
transverse movement of the violation parameter at the
quantum phase transition for entanglement and Cyy is
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more than three times that for magnetization and other
parameters. It is interesting to compare these differences,
and in particular the similarity of the behavior of entan-
glement with a classical correlation, with the usual fragile
nature of entanglement. See e.g. [13, 19, 37–41]. Also,
the more violent transverse motion for entanglement and
Cyy seem to imply that the violation parameter for them
can act as better detectors of quantum phase transitions.
Comparing the behaviors of the violation parameters of
the different physical quantities, it seems plausible that
the quantum phase transition is signaled by the maximum
or minimum value (whichever is of higher modulus) of the
derivative of the corresponding violation parameter.
Let us mention here that the violation parameter for all

physical quantities considered except the single-site en-
tropy, is higher in the paramagnetic region than in the
magnetically ordered one.
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Fig. 5: (Color online.) The transition is already visible in
the violation parameter of the Benford’s law for finite sys-
tems. The Benford transverse magnetization for finite trans-
verse Ising models is plotted on the vertical axis against the
field parameter a/J on the horizontal axis. Both axes repre-
sent dimensionless quantities. The shifting field window is of
length 0.15, and the shifts are of length 0.05 for all the curves.
The innermost curve represents the violation parameter for a
system of 10 spins, and the outermost curve is that of 100 spins,
while the intermediate one is of 25 spins. Each of the curves is
actually an amalgamation of three curves obtained by taking
respectively 1498, 1998, and 2998 sample points, and they al-
most merge with each other for a particular value of the total
number of spins.

An appealing feature of the transverse XY model is
that it can be realized in different physical systems. In
particular, finite chains of spins described by this model
Hamiltonian can be realized with ultracold gases [13, 15,
19]. In the light of this, it is interesting to know whether
the violation parameter for different physical quantities
can show traces of the quantum phase transition already
in finite chains. For a chain of n spins, the transverse
magnetization is given by [21–23]

Mz
n(ã) = −

1

n

n/2
∑

p=1

cosφp − ã

Λp(ã)
, (16)

where

Λp(ã) =
{

γ2 sin2 φp + [x− cosφp]
2
}

1

2 , (17)

with

φp =
2πp

n
. (18)

Here we have assumed the so-called “c-cyclic” boundary
conditions (see Refs. [21, 22]). In Fig. 5, we consider the
violation parameter for the Benford transverse magneti-
zation for finite chains of different lengths, and show that
traces of the quantum phase transition are already dis-
tinctly visible in such systems.

Conclusion and discussions. – A century old em-
pirical law, known as Benford’s law, predicts that the first
significant digit in data, obtained either from natural phe-
nomena or frommathematical tables, will be nonuniformly
distributed, with decreasing frequency of occurrence of the
digits one through nine. We have shown that the Benford’s
law can be used to detect cooperative quantum phenom-
ena in many-body systems. Specifically, we have shown
that the (zero temperature) quantum phase transition in
the quantum transverse XY model of spin-1/2 particles
can be detected by the amounts of violation of the Ben-
ford’s law by several physical quantities of the spin system.
Interestingly, the nature of the detection of the quantum
phase transition is similar to that of a recently discovered
method of detecting earthquakes in a seismic data contain-
ing both background noise and earthquake information of
the 2004 Boxing Day earthquake in the Sumatra-Andaman
region of the Indian ocean.
Apart from its fundamental implications, the first

application-oriented implication of the result is the follow-
ing. Although seismic activity and quantum phase tran-
sitions have very different physical origins, they are both
detected by the Benford’s law in quite a similar method.
It may therefore be possible that other methods known
in one of these streams of study can be successfully ap-
plied to the other stream. In particular, this may help us
to identify new ways to tackle the problems at the inter-
face of quantum information science and condensed matter
physics.
Secondly, and more directly, the results obtained here

have immediate applications in actual experimental detec-
tion of quantum phase transitions. The result shows that
the first significant digit is enough to detect a quantum
phase transition in a many-body system realized in the
laboratory, and that quantum fluctuations in a physically
realizable system can already be detected by looking at the
first significant digit. Decoherence and other noise mecha-
nisms remain a pertinent problem in dealing with quantum
many-body systems, and have e.g. been a reason for scal-
ability problems of quantum computing devices (see e.g.
Refs. [42], and references therein). The realization that
quantum phase transitions can be detected by observing
the first significant digits of physical quantities may open
up new ways of handling noise effects in these systems.
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The result gives us further reasons to believe that the bat-
tle for controlling quantum many-body systems, including
that against the current limitations of quantum informa-
tion processing in many-body systems, can be won.
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