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We show that the classical capacity of quantum states, as quantified by its ability to perform
dense coding, respects an exclusion principle, for arbitrary pure or mixed three-party states in any
dimension. This states that no two bipartite states which are reduced states of a common tripartite
quantum state can have simultaneous quantum advantage in dense coding. The exclusion principle
is robust against noise. Such principle also holds for arbitrary number of parties. This exclusion
principle is independent of the content and distribution of entanglement in the multipartite state. We
also find a strict monogamy relation for multi-port classical capacities of multi-party quantum states
in arbitrary dimensions. In the scenario of two senders and a single receiver, we show that if two of
them wish to send classical information to a single receiver independently, then the corresponding
dense coding capacities satisfy the monogamy relation, similar to the one for quantum correlations.

I. INTRODUCTION

Quantum correlations play an important role in quan-
tum communication protocols [1]. Specifically, entangled
states have been used to transfer classical bits encoded
in a quantum state beyond the classical limit (quantum
dense coding) [2], for transferring an unknown quantum
state by using just two bits of classical communication
(quantum teleportation) [3], and for preparing a known
quantum state at a remote location (remote state prepa-
ration) [4]. Such protocols were initially introduced for
the case of a single sender and a single receiver, and
have also been experimentally realized [5]. However, for a
fruitful application of such communication schemes, it is
of vital importance to consider an information transmis-
sion network that involves several senders and receivers.

Study of correlations between separated physical sys-
tems is an important quantity in all areas of science.
Such correlations can be classical as well as quantum. An
important property of quantum correlations [6] in mul-
tipartite states is that they tend to be “monogamous”
in nature [7–10], in the sense that if two physical sys-
tems are highly quantum correlated, they cannot be cor-
related, individually or as a whole, with any third party.
Monogamy of quantum correlations, therefore, restricts
the sharability of quantum correlations between three or
more parts of a quantum system. Classical correlations
of quantum states are certainly not monogamous, and an
arbitrarily large number of physical systems can share
the same amount of classical correlations with a single
system.

In this paper, we address the question whether there
are restrictions on our ability to send classical informa-
tion through quantum states used as quantum channels
in a multipartite scenario (three or more parties). As
noted above, there are no such restrictions on classi-
cal correlations of quantum states. More precisely, for
a three-party quantum state shared between Alice (A),
Bob (B), and Charu (C), classical correlations between
Alice and Bob, and between Alice and Charu can be both
maximal. However, we show here that the classical ca-
pacity, as quantified by the dense coding capacity, of an

arbitrary (pure or mixed) three-party quantum state of
arbitrary dimensions satisfies a strict monogamy relation
that can be viewed as an exclusion principle: If Alice
has a quantum advantage in transferring classical infor-
mation to Bob, she must necessarily have no quantum
advantage in transferring the same to Charu. This result
is independent of whether the quantum channel by which
the quantum state of the sender is sent to the receiver in
a dense coding protocol is noiseless or noisy. Note that
this is stricter than the monogamy of quantum correla-
tions (of quantum states): There exists quantum states
for which Alice can have quantum correlations with Bob,
and quantum correlations with Charu, i.e., the AB and
the AC reduced quantum densities can both be quantum
correlated, an example being the well-known three-party
W state [11]. We go on to show that the exclusion prin-
ciple holds for an arbitrary number of parties having an
arbitrary amount of entanglement.
Within the realm of tripartite states, we connect the

monogamy of dense coding capacity to the monogamy re-
lations known for quantum correlations. In particular, in
the scenario of two senders and a single receiver, we show
that if Bob and Charu wish to send classical information
to Alice, then the corresponding dense coding capacities
obeys the monogamy relation in the same spirit as for
quantum correlations. We subsequently generalize the
monogamy relation to a multi-port scenario, involving
multi-port channel capacities of multi-party (more than
three-party) quantum states. We also establish a relation
between the sum of the capacities of dense coding in the
AB and AC channels with the corresponding entangle-
ments of formation [12], as well as their quantum discords
[13]. This provides lower bounds to the sum of the ca-
pacities, complementary to the upper bounds obtained
in the monogamy relations.
The paper is organized as follows. For completeness,

we begin with a discussion of the quantum dense coding
capacity in Sec. II. Next, in Sec. III, we first prove the
exclusion principle for dense coding capacity in the tri-
partite scenario. It holds for both the noiseless and noisy
cases. We subsequently consider, in Sec. IV, the multi-
sender single-receiver scenario, and find a monogamy re-
lation in that case. The case of multi-port channel ca-
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pacities is considered in Sec. V and it is found that it
also satisfies a strict monogamy. We present a conclusion
in Sec. VI.

II. QUANTUM DENSE CODING CAPACITY

Quantum dense coding is a quantum communication
protocol that uses a shared quantum state between two
distant observers, and a noiseless quantum channel [14] to
send classical information beyond the classical capacity
of the quantum channel [2]. Let the observers, Alice and
Bob, share the quantum state ̺AB. Alice wishes to use
this quantum state as a channel for sending classical in-
formation to Bob. Let the Hilbert space which are in pos-
session of Alice and Bob, and which supports the quan-
tum state ̺AB, be HA⊗HB. Suppose that Alice receives
a classical message i, which is known to happen with
probability pi. She encodes this classical message in a
unitary operator Ui on the Hilbert space HA, and applies

it to her part of ̺AB to obtain ̺iAB = Ui⊗11B̺ABU
†
i ⊗11B,

where 11B is the identity operator on the Hilbert space
HB. She then sends her part of ̺iAB, through a noise-
less quantum channel [14] between Alice and Bob that
can noiselessly transfer dA-dimensional quantum states,
to Bob. Here, dA = dimHA. After this, Bob is in posses-
sion of the quantum ensemble {pi, ̺

i
AB}, and his task is

to perform a quantum measurement on this ensemble so
as to obtain as much information as possible about the
classical index i.
After the quantum measurement by Bob, suppose that

the post-measurement quantum ensemble is {pi|m, ̺
i|m
AB}i,

and also suppose that this ensemble appears with prob-
ability qm. The amount of classical information gained
by Bob due to his measurement can be quantified by
the mutual information [15] between the index i and the
measurement index m, and is given by

I(i : m) = H({pi})−
∑

m

qmH({pi|m}i) (1)

bits, where H(·) denotes the Shannon entropy of the
probability distribution in its argument. The unit of mu-
tual information is taken here to be “bits”, a result of
the fact that we are using the logarithms with base 2 in
this paper, for both Shannon and von Neumann entropy.
Henceforth, all the entropic quantities are defined in bits.
Now Bob has to perform a measurement that maxi-

mizes his information gain, and this information is the
“accessible information” defined as

Iacc({pi, ̺
i
AB}) = max I(i : m), (2)

where the maximization is over all measurement strate-
gies that Bob is able to implement on his ensemble.
This maximization turns out to be hard to implement.

However, an useful upper bound, called the Holevo bound
[16, 17], exists, and is given by

χ({pi, ̺
i
AB}) = S(̺AB)−

∑

i

piS(̺
i
AB), (3)

where S(·) is the von Neumann entropy of the quantum
state in its argument, and ̺ is the average ensemble state∑

i pi̺
i
AB. This quantity is asymptotically achievable

[18], and therefore the following quantity is termed the
dense coding capacity of the quantum state ̺AB:

C(̺AB) = max
{pi,Ui}

χ({pi, ̺
i
AB}). (4)

It is possible to perform this optimization [19, 20], and
one obtains

CAB ≡ C(̺AB) = log2 dA + S(̺B)− S(̺AB), (5)

where ̺B = trA[̺AB]. It is to be noted that the condi-
tional entropy S(̺AB) − S(̺B) can be of both signs. If
it is positive, one may not use the shared quantum state,
but use the noiseless quantum channel to transfer log2 dA
bits of classical information. In case the conditional en-
tropy is negative, Alice will be able to use the shared
quantum state to send classical information, beyond the
“classical limit” of log2 dA bits, to Bob. We term this as a
“quantum advantage” for Alice in sending classical infor-
mation to Bob. So in general, the dense coding capacity
is given by CAB ≡ C(̺AB) = max[log2 dA, C(̺AB)], and
we term CAB as the quantum part of the dense coding
capacity.

III. EXCLUSION PRINCIPLE FOR DENSE

CODING CAPACITY FOR THREE-PARTY

STATES

In this section, we will begin by presenting the ex-
clusion principle for an arbitrary (pure or mixed) three-
party quantum state of arbitrary dimensions.
Theorem 1: (“Exclusion Principle”) Given an arbitrary
(pure or mixed) three-particle quantum state ̺ABC , no
two bipartite states shared with any one of the parties
can have a quantum advantage in dense coding capacity
simultaneously.

Proof. Let us assume the contrary and suppose that
both ̺AB and ̺AC have quantum advantages in dense
coding, where ̺AB = trC [̺ABC ] and ̺AC = trB[̺ABC ].
Then, we have

CAB + CAC = CAB + CAC

= 2 log2 dA + S(̺B) + S(̺C)− S(̺AB)− S(̺AC), (6)

with ̺C = trAB[̺ABC ], and similarly for ̺A and ̺B.
Strong subadditivity of von Neumann entropy [21] for
the tripartite system between A, B, and C implies that

S(̺B) + S(̺C)− S(̺AB)− S(̺AC) ≤ 0. (7)

Therefore, we get

CAB + CAC ≤ 2 log2 dA. (8)
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Equality sign will be satisfied by all pure three-party
states.
But, if both ̺AB and ̺AC have quantum advantages,

then by definition of the dense coding capacity, CAB +
CAC must be strictly greater than 2 log2 dA, contradicting
our assumption. �

Remark: Note that Theorem 1 can also be interpreted as
a strict monogamy relation of the dense coding capacity:
If Alice has a quantum advantage in sending classical
information to Bob (i.e. if CAB > log2 dA), then Alice
cannot have a quantum advantage with Charu (i.e., CAC

must necessarily be strictly less than log2 dA), so that
Alice will be forced to send classical information at the
classical limit rate to Charu which is equal to log2 dA.
Corollary 1: In a tripartite quantum state ̺ABC , if ̺AB

and ̺AC are two reduced quantum states through which
Alice wants to send classical information to Bob and
Charu, then the sum of the dense coding capacities of
the reduced states ̺AB and ̺AC is bounded above by
3 log2 dA. The bound can be saturated.

Proof. From Theorem 1, it follows that the two channels
cannot have quantum advantages simultaneously. Hence
there are two possibilities – (i) both of them are classical,
which implies CAB + CAC = 2 log2 dA, and (ii) one of the
channels is classical and the other quantum (i.e. has a
quantum advantage). In the case (ii), without loss of
generality, we assume that the AB channel is quantum.
Therefore,

CAB + CAC = 2 log2 dA + S(̺B)− S(̺AB). (9)

The strong subadditivity of von Neumann entropy im-
plies that

S(̺B)− S(̺AB) ≤ S(̺AC)− S(̺C). (10)

On the other hand, the nonnegativity of quantum mutual
information implies that

S(̺AC)− S(̺C) ≤ S(̺A), (11)

so that we have

S(̺B)− S(̺AB) ≤ S(̺A) ≤ log2 dA. (12)

Using this relation in Eq. (9), we obtain

CAB + CAC ≤ 3 log2 dA (13)

The proof follows by combining the cases (i) and (ii). �

We now generalize our findings to states of more than
three parties.
Theorem 2: For an arbitrary (pure or mixed) multi-
party state ̺AB1B2...BN

, shared between (N + 1) parties,
in arbitrary dimensions, only at most a single reduced
density matrix among ̺ABi

(i = 1, 2, . . . , N) can have
quantum advantage in dense coding.

Proof. Suppose, if possible, that ̺ABk1
and ̺ABk2

have
quantum advantages in dense coding. However, in that

case, the reduced states ̺ABk1
and ̺ABk2

of the tripartite
quantum state ̺ABk1

Bk2
violates Theorem 1. �

Corollary 2: In an (N + 1)-party quantum state
̺AB1B2...BN

, the sum of the dense coding capacities in
the cases where A is the sender and Bi, i = 1, 2, . . . , N
are the receivers, is bounded above (N + 1) log2 dA.

Until now, we have considered the situation where the
quantum channel, carrying Alice’s part of the states to
the receivers as noiseless. It turns out that the exclusion
principle holds also in a more general scenario, when the
aforementioned quantum channel is noisy. This is due to
the fact that the capacities will be non-increasing in the
presence of noise. Therefore, the upper bound, obtained
in Theorems 1 and 2 also hold for any noisy channel.
Henceforth, we consider only noiseless channels.

IV. REVEIVER MONOGAMY FOR DENSE

CODING CAPACITIES

For quantum correlations, to check for the status of
monogamy for a particular measure, one usually con-
siders inequalities where the sum of the Alice-Bob and
Alice-Charu quantum correlations is compared with that
share by Alice with the Bob-Charu pair. We now con-
sider the status of such relations, when taken over to the
case of dense coding capacities. We begin with the case
where two senders (Bob and Charu) wish to send infor-
mation to Alice by using the three-party quantum state
ρABC . Again the state can be either pure or mixed, and
in arbitrary dimensions.
Let CBA be the quantum part of the dense coding ca-

pacity when Bob wants to send classical information to
Alice by using the reduced density state ̺AB. Let CCA

be similarly defined. Let CBC:A be the quantum part
of the dense coding capacity when Bob and Charu sends
classical information to Alice by using the quantum state
̺ABC .
Theorem 3: (“Receiver Monogamy”) For an arbitrary
tripartite pure or mixed quantum state ̺ABC, shared be-
tween A, B, and C in arbitrary dimensions, the dense
coding capacities are such that the monogamy

CBA + CCA ≤ CBC:A,

is satisfied, even when B and C are far apart.

Proof: We have CBA = log2 dB + S(̺A) − S(̺AB) and
and CCA = log2 dC + S(̺A)− S(̺AC), where dB and dC
are the dimensions of the Hilbert spaces in possession
of Bob and Charu respectively. Now, using strong sub-
additivity of von Neumann entropy [21] for a tripartite
system between A, B, and C, we have

S(̺A)− S(̺AB) + S(̺A)− S(̺AC) ≤ S(̺A)− S(̺ABC)
(14)

so that

CBA + CCA ≤ log2(dBdC) + S(̺A)− S(̺ABC). (15)
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However, the quantum part of the dense coding capacity
of BC to A is CBC:A = log2(dBdC) + S(̺A)− S(̺ABC).
Note here that for Bob and Charu to attain a dense cod-
ing capacity of log2(dBdC)+S(̺A)−S(̺ABC) for sending
classical information to Alice, it is not necessary for Bob
and Charu to come together, as the dense coding capac-
ity is attained by local encodings [20] (cf. [22]). Hence,
the theorem. �

We now consider the relation stated in Theorem 3 in
the situation when Alice is the sender, instead of being
the receiver of the dense coding channels. Let us there-
fore compare the sum of the quantities CAB and CAC with
the quantum part of the dense coding capacity, CA:BC ,
when Alice wants to send classical information to Bob
and Charu (who are together) by using a shared quan-
tum state between the three parties.
Corollary 3: A tripartite pure state |ψABC〉 satisfies the
relation CAB + CAC ≤ CA:BC , only if it possesses maxi-
mal entanglement between Alice and the Bob-Charu pair.

Proof. For a pure three-party state |ψABC〉, Theorem
1 implies that CAB + CAC = 2 log2 dA. The quantum
part of the dense coding capacity when A is sending to
the BC pair (with the latter being together) is given
by CA:BC = log2 dA + S(̺BC). Therefore, the relation
CAB + CAC ≤ CA:BC for the quantum parts of the ca-
pacities reduces to log2 dA ≤ S(̺BC) = S(̺A). But
the entropy of a system cannot be more than the loga-
rithm of its dimension, i.e., S(̺A) ≥ log2 dA. Therefore,
log2 dA = S(̺BC) = S(̺A). Also, maximal local entropy
for a pure bipartite state implies that it is maximally
entangled. Therefore, the entanglement in the A : BC
bi-partition has to be maximum, if the dense coding ca-
pacities satisfies the relation in the premise of the theo-
rem. �

Note that in the case of three-qubit pure states, the
relation CAB + CAC ≤ CA:BC is satisfied only when the
state has one ebit of entanglement in its A : BC partition.
Corollary 4: If a tripartite pure or mixed state ̺ABC

satisfies the monogamy relation CAB + CAC ≤ CA:BC ,
then the state should satisfy the following inequality:

log2 dA − S(̺A) ≤
∑

i=A,B,C

S(̺i)− S(̺ABC). (16)

Proof. For an arbitrary tripartite pure or mixed state
̺ABC , the monogamy relation CAB + CAC ≤ CA:BC can
be written by using Eq. (5) as

log2 dA + S(̺B) + S(̺C) ≤ S(̺AB) + S(̺BC)

+S(̺AC)− S(̺ABC). (17)

Using the subadditivity of entropy [21], i.e., S(̺AB) ≤
S(̺A) + S(̺B), and after rearrangement, we obtain the
stated sufficient condition. �

We will now derive a lower bound on the sum, CAB +
CAC , of the quantum parts of the capacities, in terms of

measures of quantum correlations. Let the entanglements
of formation [12] between Alice and Bob, and between
Alice and Charu be EAB and EAC respectively. Also,
suppose that the quantum discords [13] between Alice
and Bob, and between Alice and Charu are DAB and
DAC respectively.
Corollary 5: The sum of the quantum parts of the
capacities, CAB and CAC , of a tripartite pure state
|ψABC〉 is bounded below by DAB +DAC = EAB +EAC .

Proof. In case of a pure tripartite state |ψABC〉, Koashi
and Winter [10] have found a relation between the bi-
partite entanglement of formation and bipartite quan-
tum discord, which reads EAB = DAC + S(̺A|C), where
S(̺A|C) = S(̺AC)−S(̺C) is the conditional entropy. By
using Eq. (5), one obtains CAB = DAB −EAC + log2 dA,
and the quantum part of the capacity between A and C
is CAC = DAC − EAB + log2 dA. The sum of these two
quantities will then give

CAB+CAC = DAB+DAC−EAB−EAC+2 log2 dA. (18)

Moreover, the sum of the entanglements of formation of
AB and AC are bounded above by 2 log2 dA [12], i.e.
EAB + EAC ≤ 2 log2 dA. This immediately implies that

CAB + CAC ≥ DAB +DAC = EAB + EAC . (19)

To obtain the last equality, we use Theorem 1 in Eq. (18)
which leads to DAB +DAC − EAB − EAC = 0. �

V. MONOGAMY OF MULTI-PORT DENSE

CODING CAPACITIES

In this section, we generalize the strict monogamy re-
lations to an arbitrary number of parties for the case
of multi-port capacities. Let us consider a situation
where there are N observers, whom we call Alices (A1,
A2, . . ., AN ), and who share an N -party quantum state
̺A1A2...AN

. Let CA1A2...AN−2AN−1
denote the quantum

part of the “distributed” or “multi-port” dense coding
capacity in the case when all Alices except AN−1 and
AN are senders, and AN−1 is the receiver. Let PN

N−1
denote a periodic shift operator that takes N − 1 ele-
ments from the ordered periodic collection A1A2 . . . AN ,
so that PN

N−1A1A2 . . . AN−2AN−1 = A2A3 . . . AN−1AN ,

(PN
N−1)

2A1A2 . . . AN−2AN−1 = A3A4 . . . ANA1, etc.
Therefore, we can visualize the N Alices as situated on
different points in a ring. We suppose that they are or-
dered and we assume that the ordering has been per-
formed in the clockwise direction. Any consecutive N−2
of them are acting as senders, and they are trying to send
classical information to the Alice who is situated just be-
side them in a clockwise direction.
Theorem 4: (“Strict Monogamy for Multi-port Capac-
ities”) For an arbitrary pure or mixed quantum state
̺A1A2...AN

in arbitrary dimensions, the quantum parts
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of the distributed dense coding capacities satisfy the fol-
lowing strict monogamy relation:

N−1∑

j=0

C(PN
N−1

)jA1A2...AN−2AN−1
≤ (N − 2)

N∑

j=1

log2 dAj
, (20)

where dAj
is the dimension of the Hilbert space in

possession of Aj .

Proof. The quantum part of the distributed dense cod-
ing capacity CA1A2...AN−2AN−1

is given by [20]

CA1A2...AN−2AN−1
=

N−2∑

i=1

log2 dAi

+S(̺AN−1
)− S(̺A1A2...AN−2AN−1

), (21)

in which the senders are allowed to perform unitary en-
coding. Here, ̺AN−1

= trA1A2...AN−2AN
̺A1A2...AN

and
̺A1A2...AN−2AN−1

= trAN
̺A1A2...AN

. Below, the local
densities are defined similarly. Using Eq. (21), we have

N−1∑

j=0

C(PN
N−1

)jA1A2...AN−2AN−1
= (N − 2)

N∑

j=1

log2 dAj

+

N∑

j=1

S(̺Aj
)−

N−1∑

j=0

S(̺(PN
N−1

)jA1A2...AN−2AN−1
),(22)

To prove the nonpositivity of the last line in the above
equation (Eq. (22)), we will need the strong subadditiv-
ity of von Neumann entropy involving N parties, which
we now establish, for completeness. We have

N∑

j=1

S(̺Aj
)−

N−1∑

j=0

S(̺(PN
N−1

)jA1A2...AN−2AN−1
)

= −
∑

S(̺Rj |(PN
N−1

)jA1A2...AN−2AN−1
)

≡ Q(̺A1A2...AN
), (23)

where Rj is the observer which is left out from the
N Alices in the collection (PN

N−1)
jA1A2 . . . AN−2AN−1,

and S(̺Rj |(PN
N−1

)jA1A2...AN−2AN−1
) is the conditional en-

tropy defined as S(̺(PN
N−1

)jA1A2...AN−2AN−1
) − S(̺Rj

).

Since the conditional entropies are convex, Q(̺A1A2...AN
)

is also a convex function. Moreover ̺A1A2...AN
can

be written in a spectral decomposition as
∑
pk|K〉〈K|.

So, Q(̺A1A2...AN
) ≤

∑
pkQ(|K〉〈K|). However,

Q(̺A1A2...AN
) = 0 for pure states. Therefore,

N∑

j=1

S(̺Aj
)−

N−1∑

j=0

S(̺(PN
N−1

)jA1A2...AN−2AN−1
) ≤ 0.

Hence the theorem. �

Remark: Theorem 4 implies that not all groups of N − 2
senders can get a quantum advantage in sending classical
information to the corresponding receiver. They must
respect the monogamy relation, given in Eq. (20). There
areN such sender groups and at mostN−1 sender groups
can have quantum advantages. In other words, if N − 1
sender groups have quantum advantages, the Nth sender
group must necessarily have no quantum advantage in
sending classical information to their intended receiver.
In this sense, the monogamy for multi-port capacities is
again strict.

VI. CONCLUSION

Usually, quantum correlations are expected to obey
monogamy. However, in this paper, we have found that
classical capacity of a quantum channel obeys an extreme
form of monogamy, which we refer as an exclusion prin-
ciple. Specifically, we have shown that in a tripartite
scenario, if Alice, Bob, and Charu share an arbitrary
tripartite (pure or mixed) state in arbitrary dimensions,
and Alice wishes to send classical information, encoded in
a quantum state, to Bob and Charu independently, then
quantum protocols can give advantage over classical ones
either in the Alice-Bob protocol or in the Alice-Charu
protocol. This is also true for an arbitrary number of
parties in arbitrary dimensions. This exclusion principle
is independent of the shared entanglement between the
parties. The principle also holds in the case when the
quantum channel carrying the post-encoding quantum
states from the sender to the receiver is noisy. In the op-
posite scenario, where Bob and Charu are the senders, we
find that the dense coding capacity also follow the usual
monogamy relation of quantum correlations. We sub-
sequently proved that a strict monogamy holds for the
case when there are an arbitrary number of senders and
a single receiver in arbitrary dimensions. This has poten-
tial applications in quantum networks, involving several
senders and several receivers.
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