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[1] Perfect or even mediocre weather predictions over a long period are almost impossible
because of the ultimate growth of a small initial error into a significant one. Even though
the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble
of prediction from different possible initial conditions and also a prediction algorithm
capable of resolving the fine structure of the chaotic attractor can reduce the prediction
uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology
are based on single optimum initial condition local models which can model the
sudden divergence of the trajectories with different local functions. Conceptually, global
models are ineffective in modeling the highly unstable structure of the chaotic attractor.
This paper focuses on an ensemble prediction approach by reconstructing the phase
space using different combinations of chaotic parameters, i.e., embedding dimension and
delay time to quantify the uncertainty in initial conditions. The ensemble approach is
implemented through a local learning wavelet network model with a global feed‐forward
neural network structure for the phase space prediction of chaotic streamflow series.
Quantification of uncertainties in future predictions are done by creating an ensemble of
predictions with wavelet network using a range of plausible embedding dimensions
and delay times. The ensemble approach is proved to be 50% more efficient than the
single prediction for both local approximation and wavelet network approaches.
The wavelet network approach has proved to be 30%–50% more superior to the local
approximation approach. Compared to the traditional local approximation approach with
single initial condition, the total predictive uncertainty in the streamflow is reduced
when modeled with ensemble wavelet networks for different lead times. Localization
property of wavelets, utilizing different dilation and translation parameters, helps in
capturing most of the statistical properties of the observed data. The need for taking into
account all plausible initial conditions and also bringing together the characteristics of both
local and global approaches to model the unstable yet ordered chaotic attractor of a
hydrologic series is clearly demonstrated.

Citation: Dhanya, C. T., and D. Nagesh Kumar (2011), Predictive uncertainty of chaotic daily streamflow using ensemble
wavelet networks approach, Water Resour. Res., 47, W06507, doi:10.1029/2010WR010173.

1. Introduction

[2] A major breakthrough in routine weather prediction
occurred in the mid‐20th century with the development of
various climate models that numerically integrate an adequate
set of mathematical equations which explain the physical
laws governing the climatic processes occurring. However,
these mathematical equations form a nonlinear dynamic sys-
tem in which an infinitesimally small uncertainty in the initial
conditions will eventually grow exponentially even with a
perfect model, leading to a chaotic behavior [Smith et al.,
1998]. Lorenz [1972] identified the sensitivity of any deter-
ministic system, even to a slight change in the initial con-

ditions, leading to a vast change in the final solution and
termed it as “butterfly effect” in the field of weather fore-
casting. Hence, Earth’s weather can be treated as a chaotic
system with a finite limit in predictability, arising mainly
because of the incompleteness in initial conditions. The com-
plexity and irregularity in chaotic systems may be due to the
nonlinear interdependent variables involved, with sensitive
dependence on initial conditions. An infinitesimal initial
uncertainty ∂0 grows exponentially with time at a rate of
separation given by the highest Lyapunov exponent l [Wolf
et al., 1985; Rosenstein et al., 1993]. Thus, the separation
or uncertainty after Dt time steps ahead is ∂Dt ffi elDt∂0.
Hence, the predictability of a chaotic system is limited pri-
marily because of (1) the indefiniteness in the initial con-
ditions (given a perfect model) and also (2) the imperfection
of the model itself [Smith, 2000].
[3] Variations in the reliability of any individual forecast

due to the first factor, i.e., indefiniteness in the initial con-
ditions, can be quantified by generating an ensemble of fore-
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casts with slightly varying initial conditions. Any uncertainty
in the initial conditions is reflected in the evolution of the
ensemble and hence the nonlinearity. Smith [2000] stated that
since the ensembles can accurately reflect the likelihood of
occurring of various future conditions; given a perfect model,
any chaos places no a priori limits on predictability. Also, an
estimate of the stability of the forecasts can be obtained by
observing how quickly the ensemble spreads out (or shrinks).
Many operational centers now adopt the ensemble approach,
replacing the traditional best guess initial condition approach.
Shukla [1998] made different runs of the model with dif-
ferent initial conditions to predict sea surface temperatures.
The National Centers for Environmental Prediction Climate
Forecasting System also produces retrospective predictions
by initiating runs from successive days to generate a set of
ensembles with different initial conditions [Saha et al., 2006;
Lee Drbohlav and Krishnamurthy, 2010].
[4] However, research into the applications of chaos

theory in the field of hydrology have been focused primarily
on investigating the existence of the chaotic nature of rainfall
[Jayawardena and Lai, 1994; Puente and Obregón, 1996;
Rodriguez‐Iturbe et al., 1989] and runoff [Liu et al., 1998;
Porporato and Ridolfi, 1997; Wang and Gan, 1998]. The
concept of chaos has also been applied in other areas like
rainfall disaggregation [Sivakumar et al., 2001a], missing
data estimation [Elshorbagy et al., 2002], rainfall‐runoff pro-
cess [Sivakumar et al., 2001b], lake volume [Sangoyomi
et al., 1996], and sediment transport [Shang et al., 2009].
The outcomes of these studies affirm the existence of
low‐dimensional chaos, thus indicating the possibility of
only short‐term predictions. Even so, the existence of low‐
dimensional deterministic chaos in hydrologic processes is
a debatable issue. Schertzer et al. [2002] questioned the
applicability of correlation dimension in hydrological pro-
cesses since it may lead to the depiction of complex systems
as low‐dimensional chaotic systems. Khan et al. [2005]
observed that real hydrologic data may or may not have
a detectable chaotic component. However, they further clar-
ified that the absence of chaotic component in their stream-
flow data may be due to the stochastic mode of dam operation
and the subsequent randomness occurring in the streamflow
process.
[5] The nonlinear predictions of the rainfall and runoff

series considering them as a univariate series [Islam and
Sivakumar, 2002; Sivakumar et al., 1999a, Jayawardena
and Lai, 1994; Porporato and Ridolfi, 1997] and also as a
multivariate series [Porporato and Ridolfi, 2001], utilizing
the information from other time series, are also attempted
in a few studies. The prediction algorithms used in these
studies are based on the theory of dynamic reconstruction
of a scalar series, which is done by reconstructing the phase
space using the method of delays [Takens, 1981]. The phase
space reconstruction provides a simplified, multidimensional
representation of a single‐dimensional nonlinear time series.
According to this approach, given the embedding dimen-
sion m and the time delay t, for a scalar time series Xi,
where i = 1, 2, …, N, the dynamics can be fully embedded
in m‐dimensional phase space represented by the vector

Yj ¼ Xj;Xjþ� Xjþ2� ; . . . ;Xjþ m�1ð Þ�
� �

: ð1Þ

Now the dynamics can be interpreted in the form of an
m‐dimensional map fT such that

YjþT ¼ fT Yj

� �
; ð2Þ

where Yj and Yj+T are vectors of dimension m, Yj being
the state at current time j and Yj+T being the state at future
time j + T.
[6] In all of the studies mentioned above, the determina-

tion of embedding dimension is done using any of the con-
ventional methods such as the correlation dimension method
[Grassberger and Procaccia, 1983], false nearest‐neighbor
algorithm [Kennel et al., 1992], and nonlinear prediction
method [Farmer and Sidorowich, 1987]. Similarly, the delay
time is fixed from either the autocorrelation method or the
mutual information method. However, an accurate estima-
tion of these chaotic parameters depends very much on the
data size, sampling frequency, and noise present in the data.
Khan et al. [2007] commented that even though the sam-
pling size is large, the data size may still be considered as
short in a physical sense if the sampling frequency is inade-
quate to capture the features of the dynamical system. Chaos
identification methods and prediction are also significantly
affected by even small levels of noise [Schreiber and Kantz,
1996; Khan et al., 2005]. Significant improvements were
achieved in the estimates of correlation dimension for the
noise‐reduced river flow and rainfall series [Porporato and
Ridolfi, 1997; Sivakumar et al., 1999b]. Nevertheless, it is
also observed that the suppression of certain frequencies by
noise reduction methods can alter the dynamics of the fil-
tered output signal [Badii et al., 1988; Chennaoui et al.,
1990].
[7] The difficulties mentioned above clearly indicate the

uncertainties associated with chaos identification in hydro-
logical processes. Since almost all chaos identification meth-
ods have their own limitations, it is advisable to employ
diverse techniques to examine the existence of chaotic
dynamics so that the results from one method can be forti-
fied with those from other methods [Dhanya and Nagesh
Kumar, 2010]. Thus, while attempting prediction, instead
of a single initial condition with optimum chaotic param-
eters, i.e., embedding dimension and delay time, the diver-
sity of the parameter values obtained from these methods
can be taken into account by adopting an ensemble approach
with different initial conditions.
[8] The approximation of fT in equation (2) can be done

using either a global or a local nonlinear model. Tradition-
ally, studies have been employing the local approximation
techniques introduced by Farmer and Sidorowich [1987] in
which the domain is broken up into many local neighbor-
hoods and modeling is done for each neighborhood sepa-
rately; that is, there will be a separate fT valid for each
neighborhood. The complexity in modeling fT is thus con-
siderably reduced without affecting the accuracy of predic-
tion. Because of this advantage, most of the studies attempting
prediction have adopted the local approximation method
instead of the global approach. Sivakumar et al. [2002]
made a comparative study between local polynomial models
and the global artificial neural networks (ANNs) and showed
that prediction errors of local models were about 4–8 times
less than those of the ANN model, which is credited to the
capability of local approximation methods in better captur-
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ing the chaotic dynamics of the system. Contrary to this,
Elshorbagy et al. [2002] have reported the superiority of the
ANN model over the widely used local average (approxi-
mation) models for phase space prediction. Karunasinghe
and Liong [2006] have also demonstrated the ability of ANNs
over local approximation models to model both noise‐free
and noisy series. Considering all of these, a combination
of local and global models featuring the benefits of both
approaches may hence be adopted to improve the efficiency
of the model and to increase the predictability of a chaotic
system.
[9] Hence, the present study attempts to address both of

the factors limiting the predictability of a chaotic series, i.e.,
the indefiniteness in the initial conditions, and the imper-
fection of the model. An ensemble of forecasts with varying
combinations of embedding dimensions and delay times is
generated to adequately represent the uncertainties in the ini-
tial conditions. Different combinations of embedding dimen-
sions and delay times will lead to different initial conditions
while attempting phase space reconstruction as shown in
equation (1). In this study, instead of the traditional local
approximation method, a relatively new technique, “wave-
let network,” which is a combination of local and global
approaches, is employed for the phase space prediction. First,
this method is applied for the prediction of basic chaotic
systems such as the Henon map and Lorenz three‐variable
model. Subsequently, the attention is directed toward fore-
casting the daily streamflow series of two stations in Maha-
nadi basin, India. Since much debate has been going on about
the nature of streamflow regarding whether it is chaotic or
not, the chaotic behavior and the predictability of the time
series are analyzed initially by employing various techniques.
The set of plausible parameters thus obtained is used to
generate an ensemble of forecasts of the time series using
the wavelet network. The efficiency of the wavelet network
method is compared with the widely applied local approx-

imation method using the same set of parameters. Section 2
presents a brief overview of data used and the methodology
proposed in the present study.

2. Methodology and Data

2.1. Ensemble Approach

[10] Figure 1 presents a schematic diagram of the ensemble
approach developed in this study for modeling the prediction
uncertainty in the chaotic streamflow series. The delay time
and embedding dimension of the hydrologic variable are
determined using conventional approaches. Suitable ranges
of these parameters are selected for ensemble prediction, and
phase space reconstruction is done for all possible combi-
nations (which in turn leads to different initial conditions).
Since all of these initial conditions may not be significant
during prediction, pruning is done on the basis of the gen-
eralized cross validation (GCV) value [Craven and Wahba,
1978]. Studies such as those of Lall et al. [1996] and Regonda
et al. [2005] had employed similar GCV values for optimiza-
tion of chaotic parameters. The generalized cross validation
value is given by

GCV m; �ð Þ ¼
Pn
i¼1

e2i
n

1� p

n

� �2 ; ð3Þ

where ei is the error, n is the number of data points, and p
is the number of parameters to be determined. In the present
study, since a sufficient number of combinations (around 70–
100) are found falling under a GCV value of 10%, those
combinations with GCV value falling under 10% of the
lowest GCV value are chosen as the best ones. The phase
space is reconstructed with each of these best parameter
combinations. Finally, an ensemble of predictions is gener-

Figure 1. Schematic diagram of proposed ensemble approach.
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ated by modeling fT for each of these phase spaces using both
wavelet network and local approximation methods. Appli-
cation of this ensemble approach is demonstrated with the
streamflow at two stations, Seorinarayan and Basantpur in
Mahanadi basin, India.

2.2. Observed Streamflow Data

[11] The Mahanadi River of eastern India rises in the
highlands of central India in Chattishgarh and flows east
into the Bay of Bengal. The length of the river is 860 km.
The drainage basin extends over an area of 0.141 × 106 km2,
covering the states of Maharashtra, Jharkhand, Orissa, and
Chattisgarh. Mahanadi River is a rain‐fed river with maxi-
mum streamflow during June to September. The streamflow
is primarily used for irrigation and power production. The
data considered for this case study are the daily streamflow
data at Seorinarayan and Basantpur stations in the basin
(Figure 2a). Both stations are on the upstream side of the
Hirakud dam and are thereby unaffected by the stochastic
operations of the dam. While data from Seorinarayan station
are available for the period June 1986 to May 2004 (18 years),
data from Basantpur station is available for the period June
1972 to May 2004 (32 years). Among these, the first 14 years

(5114 points) of Seorinarayan streamflow data and first
28 years (10,227 points) of Basantpur streamflow data are
taken as training data sets. The testing sets are the last 4 years
(1461 points) of both streamflow series. Although the two
stations selected are adjacent, the flow characteristics of
two stations differ much because of the contribution from
the major tributary Hasdeo between them (Figure 2a).
Figures 2b–2e show the frequency histograms of the daily
streamflow series and the box plots of the average daily
streamflows for both stations. The maximum daily flow of
Seorinarayan is 22,800 × 106 m3 and that of Basantpur
station is 33,100 × 106 m3. The maximum frequency is
falling in the range of 0–1000 × 106 m3. The nonmonsoonal
flows are almost invariant, while the monsoon flows show
large deviations from the mean. Table 1 shows the clima-
tological mean and standard deviation of daily streamflow at
both stations.
[12] On account of its wide basin area and devastating

floods, numerous studies have been conducted on Mahanadi
streamflow, focusing on its prediction [Maity and Nagesh
Kumar, 2008; Maity et al., 2010], flood forecasting, the
impact of climate change on the future flows [Asokan and
Dutta, 2008; Mujumdar and Ghosh, 2008; Raje and

Figure 2. (continued)
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Mujumdar, 2009], and reservoir operation [Raje and
Mujumdar, 2010]. All of these studies have assumed the
existence of stochastic nature in the streamflow series. The
limit of the predictability and the subsequent chaotic nature
are not assessed. Dhanya and Nagesh Kumar [2010] have
observed that the daily rainfall series in Mahanadi basin is
inherently nonlinear and exhibits a low‐dimensional chaotic
nature with a predictability limit of only 40 days. Considering
this and also since streamflow is a direct output of rainfall, it
can be assumed that the daily streamflow series in the basin
is also chaotic in nature. The chaos identification techniques
employed in the Dhanya and Nagesh Kumar [2010] study
on the daily rainfall series are repeated in this study also
to countercheck the existence of a low‐dimensional chaotic
nature but without explaining the methods in detail. For
details of the techniques, the readers are requested to refer to
Dhanya and Nagesh Kumar [2010].

2.3. Chaotic Nature and Predictability of Streamflow
Series

[13] The chaotic parameters, i.e., embedding dimension and
delay time, are determined by employing various methods.
The embedding dimension of the streamflow series is esti-
mated using the correlation dimension method [Grassberger
and Procaccia, 1983], false nearest‐neighbor algorithm
[Kennel et al., 1992], and nonlinear prediction method [Farmer
and Sidorowich, 1987]. The delay time is determined using
the autocorrelation method and mutual information method.
Finally, the sensitiveness to initial conditions or predictability
limit is assessed by checking the existence of a positive Lya-
punov exponent [Kantz, 1994]. Since the streamflow series
of both stations are showing similar results, the outputs of
only Basantpur streamflow series are described below. The
similar chaotic characteristics of both streamflow series,
irrespective of the difference in their flow characteristics,
may be due to their adjacency in location.
[14] A saturated correlation exponent of 5.21 at an embed-

ding dimension m = 18 (Figure 3a) and a minimum (and
thereafter constant) fraction of nearest neighbors at an embed-
ding dimension of 7 (Figure 3b) suggests the possible pres-
ence of low‐dimensional chaotic behavior in the streamflow
series. Also, Figure 3c shows that the prediction error is mini-
mum for a neighborhood size of 0.6–0.7 of standard devi-
ation and thereafter it starts increasing for higher values of

neighborhoods. This is in agreement with Casdagli’s test for
nonlinearity [Casdagli, 1991], which states that if the pre-
diction error decreases up to a certain number of nearest
neighbors and increases for higher numbers, it shows the
evidence of chaos in the data series. Further, the prediction
accuracy is measured in terms of correlation coefficient, and
the variation of this for various embedding dimensions using
an optimum nearest‐neighbor size of 0.6 × standard devia-
tion is shown in Figure 3d. The prediction efficiency is
expected to increase to a value close to 1 with an increase in
embedding dimension m up to an optimal m and remain
constant afterward in the case of a chaotic time series. On
the other hand, for a stochastic time series, there would
not be any change in the prediction accuracy with an increase
in the embedding dimension [Casdagli, 1989]. The maximum
prediction accuracy is attained for an embedding dimension
of 6 and it remains almost a constant further (Figure 3d).
These again support the presence of chaos in the rainfall
series, and hence, the optimum embedding dimension from
the nonlinear prediction method is chosen as 6.
[15] Since the power spectrum of the daily streamflow is

exhibiting a power law shape, i.e., P( f ) / f −a with a � 1.35,
the possibility of any pseudo low‐dimensional chaos in the
streamflow series is judged by repeating the correlation
dimension method on the first derivative and the phase ran-
domized data of the original signal [Osborne and Provenzale,
1989; Provenzale et al., 1992]. The variations of the corre-
lation exponent with embedding dimension for the first deriv-
ative of data, phase‐randomized data, and original data are
shown in Figure 3e. While the variation of correlation expo-
nent of first derivative is almost identical to that of the original
data with almost the same saturation value, the correlation
dimension of the phase‐randomized data set is not converging
at all. This eliminates the possibility of any linear correlation
forcing the saturation of correlation exponent and thereby
confirms the presence of a low‐dimensional strange attractor
in the streamflow series.
[16] The choice of the delay time t is made using the

autocorrelation method and the mutual information method.
In the autocorrelation method, the lag time at which the
autocorrelation function attains a zero value (Figure 4a),
i.e., the 74th day, is considered as the delay time. In mutual
information, the delay time is the first minimum value,
which is at the 90th day (Figure 4b).
[17] The Lyapunov exponent provides a measure of

the exponential growth due to infinitesimal perturbations.
Themaximal Lyapunov exponent is calculated employing the
algorithm suggested by Rosenstein et al. [1993], which is
based on the nearest‐neighbor approach. The variations of
S(Dt) with time t for Basantpur station at dimensions m = 4
to 6 is shown in Figure 4c. A positive Lyapunov exponent
(slope of the linear part of the curve) of around 0.167 con-
firms the exponential divergence of trajectories and hence
the chaotic nature of daily streamflow. The inverse of the
Lyapunov exponent defines the predictability of the system,
which is only around 7 days. The results from the above
methods have thus confirmed the daily streamflow series as
an inherently low‐dimensional chaotic system with dimen-
sion in the range 6–7 and with subsequent sensitiveness to
initial conditions and limited predictability.
[18] As explained in section 1, most of the chaos identifi-

cation methods are affected by data size, sampling frequency,
and noise. However, the daily streamflow data from both

Table 1. Climatological Mean (106 m3) and Standard Deviation
(106 m3) of Average Daily Streamflow of Seorinarayan and
Basantpur Stations for the Study Period

Month

Seorinarayan Basantpur

Mean
Standard
Deviation Mean

Standard
Deviation

June 250.6 430.5 277.9 442.2
July 1279.0 1399.5 1555.2 1335.9
August 2081.3 1849.1 2856.3 2451.9
September 1564.7 1270.2 1978.6 1644.8
October 606.7 389.9 685.8 451.6
November 175.6 98.1 239.5 107.3
December 55.1 17.5 113.9 24.4
January 35.4 14.3 83.4 29.3
February 23.1 9.7 66.4 22.7
March 13.4 3.9 44.8 14.0
April 8.1 1.8 35.2 10.0
May 6.3 2.2 29.4 8.5

DHANYA AND KUMAR: UNCERTAINTY OF CHAOTIC DAILY STREAMFLOW W06507W06507

6 of 28



stations used in this study have 6575 points (18 years) and
11,688 points (32 years), which are sufficient to capture
the streamflow dynamics. In order to examine the effect of
noise on the chaotic identification methods, a simple non-

linear noise reduction method [Schreiber, 1993] is applied
on the streamflow data. The repetition of the false nearest‐
neighbor (FNN) method in the noise‐reduced data reveals
that the fraction of FNNs is falling to a minimum at an

Figure 3. (a) Variation of correlation exponent with embedding dimension. (b) Variation of fraction of
false nearest‐neighbors with embedding dimension. (c) Variation of prediction error with neighborhood
size. (d) Variation of correlation coefficient with embedding dimension. (e) Variation of correlation expo-
nent with embedding dimension for original data, phase‐randomized data, and first derivative of data.
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embedding dimension of 7, and the variation is almost sim-
ilar to the original data (Figure 4d).
[19] Even though the embedding dimensions of original

and noise‐reduced data are the same, it is worthwhile to
mention that for assessing the effect of noise on estimators,
a more detailed study would be needed. However, in the
present study, a detailed analysis of the effect of noise reduc-
tion is not attempted as it needs more investigation to find a
suitable noise reduction method and also there is not much
variation in the final results. Besides these, the ensemble pre-
diction approach utilizing a range of parameters will be able to
neutralize the effects of noise in data (if any) and also the
shortcomings of the estimator estimation methods. Section 3
presents a brief overview of the wavelet networks and the
network structure.

3. Wavelet Networks

3.1. Background

[20] Recent studies that applied neural networks for cha-
otic time series prediction have used regular feed‐forward
networks with sigmoid transfer functions. Of the two types
of activation functions (global as in back propagation net-

works and local as in radial basis function networks) com-
monly used in neural networks, the latter can improve the
convergence and efficiency because of its localized learn-
ing skill. On the other hand, global function iterates many
nodes, hence slowing down the adaptation and learning pro-
cedure. It also lacks local learning and manipulation of the
network [Bakshi and Stephanopoulos, 1993]. Several studies
have been carried out to improve the design of neural net-
works by analyzing the relationship between neural networks,
approximation theory, and functional analysis [Zhang and
Benveniste, 1992; Bakshi and Stephanopoulos, 1993; Rying
et al., 2002]. Most of the orthogonal functions, used in func-
tional analysis to represent the continuous functions (as their
weighted sum), are global approximators. The introduction
of an orthogonal function with local properties can improve
the results comparatively, especially while dealing with com-
plex chaotic attractor predictions. A combination of global and
local models that features the advantages of both approaches
may ameliorate the predictability by reducing the uncertainty.
[21] Zhang and Benveniste [1992] proposed a new predic-

tion technique combining the learning and feed‐forward neural
networks and the high‐resolution wavelets. They introduced
a (1 + ½) network employing wavelets as the activation func-

Figure 4. (a) Autocorrelation function of Basantpur streamflow. (b) Variation of mutual information
with lag time. (c) Variations of S(Dt) with time for various embedding dimensions. (d) Variation of frac-
tion of false nearest neighbors with embedding dimension for noise‐removed data and original data.
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tions. Bakshi and Stephanopoulos [1993] have introduced a
second type of wavelet network (or wave‐nets) in which
wavelets are incorporated in a radial basis function network.
Wavelets are a family of basis functions combining the
powerful properties of orthogonality, localization in time and
frequency, fast algorithms, and compact support [Daubechies,
1988; Mallat, 1989]. Wavelets, being both orthogonal and
local provide full advantage of orthonormality and localized
learning, are advisable for chaotic time series prediction. The
effectiveness of this technique for short‐term prediction of
chaotic time series has been illustrated by many studies by
demonstrating it on various basic chaotic systems like the
Lorenz attractor, Ikeda map, logistic map, Rossler attractor,
and Henon attractor [Cao et al., 1995; Alarcon‐Aquino et al.,
2005].García‐Treviño and Alarcon‐Aquino [2006] had shown
the superiority of wavelet networks over similar back propa-
gation networks.

3.2. Wavelet Theory

[22] Wavelet analysis is a powerful tool used for function
analysis similar to Fourier analysis. While Fourier analysis
approximates any periodic function as the sum of sines and
cosines by addressing frequency alone, wavelet analysis
represents any arbitrary function as the sum of wavelets by
addressing both space and scale. Wavelet transform decom-
poses an arbitrary signal into elementary contributions (or
wavelets) which are constructed from one single function y
called the mother wavelet by adjusting its two parameters,
dilation and translation:

y�;� xð Þ ¼ ffiffiffiffi
�

p
y � x� �ð Þ½ � x 2 R; �; � 2 R; � > 0; ð4Þ

where y(x) is the wavelet prototype, a is the dilation
parameter (scale), and b is the translation parameter (space
or time).
3.2.1. Continuous Wavelet Transform
[23] If a pair of radial functions 8, y 2 L2 (R

d) satisfy the
condition

Z∞
0

��1 8̂ �!ð Þ ŷ �!ð Þ d� ¼ 1; 8! 2 Rd ; ð5Þ

where 8̂ and ŷ are the Fourier transforms of 8 and y ,
respectively, then for any function f 2 L2 (R

d), the contin-
uous wavelet transform can be expressed as

wf �; �ð Þ ¼ �d�1=2

Z
Rd

f xð Þ 8 � x� �ð Þð Þ dx; ð6Þ

where ∀a 2 R+, b 2 Rd. This gives a set of wavelet
coefficients over different widths or levels of wavelets.
Reconstruction of the function by summing over the whole
range of translated and dilated wavelets is done by applying
the inverse wavelet transform defined by

f xð Þ ¼
Z

Rþ�Rd

wf �; �ð Þ y � x� �ð Þ½ � �d�1=2 d� d�: ð7Þ

However, for practical application, the inverse wavelet trans-
form needs to be discretized.

3.2.2. Discrete Wavelet Transform
[24] The inverse wavelet transform in equation (7) is dis-

cretized into

f xð Þ ¼
X
i

wi y �i x� �ið Þ½ �: ð8Þ

The existence of such an inverse discrete wavelet trans-
form is dependent on some criteria. One common method
of reconstruction is to form a finite family of dilation and
translation parameters (ai, bi) so that the full family of
decomposed wavelets ai

d/2 y[ai (x − bi)], ∀i 2 Z constitutes
an orthonormal basis. Usually, a regularly spaced grid struc-
ture is used, with constants a0 and b0 defining the step sizes
of the dilation and translation discretizations. Even though
many efficient algorithms have been developed to con-
struct orthonormal bases, the implementation of this method
becomes difficult when dealing with multidimensional wave-
lets [Kugarajah and Zhang, 1995]. An alternative method is
to create a family of wavelets that constitute a frame [Duffin
and Schaeffer, 1952]. This concept provides more freedom
in the choice of wavelet function y .
[25] However, in the above approaches, wavelet bases or

frames are constructed for all available dilations and trans-
lations without utilizing the information from the available
training data. Hence, these methods are particularly suitable
for problems of small input dimension. The efficiency of the
wavelet estimator will be improved if the wavelet basis is
constructed applying the sampled data. In other words, instead
of a regular fixed grid of (ai, bi), the values of (ai, bi) and also
wi are adaptively determined from the training data. Such an
adaptive discrete inverse wavelet transform (equation (8)),
which is much similar to a (1 + ½) layer feed‐forward
neural network, is termed a wavelet network [Zhang, 1997]. In
a wavelet network [Zhang and Benveniste, 1992], inverse
wavelet transform is (re)constructed using neural networks.
Instead of initializing randomly as in usual neural networks,
wavelet networks are initialized with a regular wavelet lattice.

3.3. Structure of Wavelet Network

[26] Wavelet network is organized in the form of a (1 + ½)
layer neural network with wavelets as activation functions as
shown in Figure 5a. The structure of a wavelet network for a
function y : Rd → R is of the following form:

f xð Þ ¼
XN
i¼1

wi y �i * x� �ið Þ½ �; ð9Þ

where wi 2 R, ai, and bi 2 Rd correspond to the wavelet
coefficient and the dilation and translation parameters respec-
tively. The asterisk indicates componentwise multiplication
of two vectors, and the variable N is the number of wavelets.
Instead of using a regular wavelet lattice, wavelet network
adapts the network parameters from the training data and
constructs a discretized wavelet family. A brief description
of the construction of the wavelet network is given below.
Interested readers are referred to Zhang [1997] for a more
detailed presentation.
[27] The best set of wavelets for the network is obtained

using the following approach [Zhang, 1997].
[28] 1. For the construction of a wavelet library, an initial

countable set of dilated and translated representation of
mother wavelet y is created. For convenience, typically, a
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dyadic grid (of the form shown in Figure 5b) is used as
dilation and translation step sizes instead of the regular
lattice structure. This initial set of wavelets is truncated by
scanning the input data and eliminating those wavelets whose
supports do not contain any sample points. Now the wavelet
libraryW of refined family of wavelets is further normalized
for computational convenience. Hence, the wavelet family is

where ai and bi correspond to the dilation and translation
parameters, respectively, x1, x2, …, xM are the training data,
and N is the number of wavelets.
[29] 2. For selection of best wavelets, considering each

wavelet as a regressor, a set of best wavelets from the
wavelet library W are selected for the regression given by

fL xð Þ ¼
XL
i¼1

wi y i xð Þ;

where L ≤ N is the number of best wavelets or regressors
and wi 2 R.
[30] Since extracting all possible L element subsets of W

and performing a minimization of least squares problem to
obtain the wi will be exhaustive and hence infeasible, heu-
ristic procedures are to be adopted to solve this problem. In
the present study, a backward elimination method is used.
[31] In this method, regression is made considering all pos-

sible N wavelets available in the wavelet library W, which
can be expressed as

fN xð Þ ¼
XN
i¼1

wi y i xð Þ: ð11Þ

The wavelet coefficients wi are determined using the least
squares method. Now one wavelet y j is eliminated from
fN (x), and the increment in residual is further calculated.
Finally, fN−1(x) is created by removing the particular wave-
let y j that minimizes the increment in the sum of square
residuals. Likewise, more wavelets are reduced one by one
until the optimum number L is reached.

[32] The optimum number of wavelets L can be decided
using the Akaike final prediction error (FPE) criterion written
as

FPE ¼ 1

2M

1þ np=M

1� np=M

� � XM
j¼1

f̂ xj
� �� yj

h i2
; ð12Þ

where np is the number of parameters to be determined (all
of the dilation and translation parameters considering all of
the wavelets), xj, yj are the training input and output data
respectively and M is the length of training data.
[33] After the elimination of each best contributing wavelet

y j, FPE is evaluated. The elimination is stopped when there
is only one wavelet remaining in the network. The optimum
number of wavelets is chosen as the elimination level cor-
responding to minimum FPE.
[34] 3. The network gets initialized from the above two

steps. A back propagation algorithm is used to enhance the
quality of the model further.
[35] The flowchart of the wavelet network structure is

shown in Figure 6.

3.4. Final Structure of the Wavelet Network

[36] The structure of the wavelet network as given in
equation (9) is slightly modified in order to take the linear

W ¼ y i : y i xð Þ ¼ Ai y �i * x� �ið Þð Þ; Ai ¼
XM
j¼1

y �i * x� �ið Þð Þ½ �2
 !�1=2

; i ¼ 1; 2; . . . ; N

8<
:

9=
;; ð10Þ

Figure 5. (a) Structure of a (1 + ½) layer wavelet neural network. (b) Dyadic grid discretization of
wavelets in the time‐scale space.
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regions in the time series into account in addition to the
nonlinearities. Hence, the final structure of the wavelet net-
work is

f xð Þ ¼
XL
i¼1

wi y �i * x� �ið Þ½ � þ cTxþ b; ð13Þ

where c 2 Rd is the linear coefficient and b 2 R is the bias
term. The modified structure is shown in Figure 7.

3.5. Initialization of Wavelet Network Parameters

[37] The training data is reconstructed into phase space
vectors using equation (1) for the chosen embedding dimen-
sion m and delay time t. Thus, the predictive model is of the
form

xjþ1 ¼ F xj; xj�� ; xj�2� ; . . . ; xj� m�1ð Þ�
� � ð14Þ

in which the reconstructed vectors are the inputs and the
corresponding xj+1 are the output. The mother wavelet func-
tion used for the current study is Mexican hat [Chui, 1992]

of the form y(s) = (1 − s2)e−s
2/2. Thus, equation (13) is

modified into

f xð Þ ¼
XL
i¼1

wi 1� �i * x� �ið Þð Þ2
h i

e� �i * x��ið Þð Þ2=2 þ cT xþ b:

ð15Þ

Figure 6. Flowchart of wavelet network.

Figure 7. Structure of a modified wavelet neural network.
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[38] Initialization of the dilation parameter a and trans-
lation parameter b is done by constructing the wavelet
library W as explained in section 3.3. For each combination
of a and b (i.e., for all of the N available wavelets), the
network parameters w, c, and b are estimated by computing
the least squares solution:

The optimum number of wavelets is fixed further by employ-
ing the backward elimination method and determining the
Akaike final prediction error after eliminating each wavelet.
Considering one wavelet, there are one dilation parameter,
m translation parameters, and one linear parameter to be
determined. Hence, for calculating FPE, the total number of
parameters np for the entire network of N wavelets, after
also taking into account the d + 1 linear network con-
nections, will be equal to N(m + 2) + m + 1. The optimum
number of wavelets is chosen as the one with minimum
FPE. Sections 4 and 5 describe the application of wavelet
network to phase space prediction in known chaotic systems
and also in observed streamflow series.

4. Application to Known Chaotic Systems

[39] Two basic chaotic systems, the Henon map and Lorenz
three‐variable model, are chosen as benchmark problems in
order to ensure the applicability of the wavelet network
algorithm to nonlinear dynamic streamflow series. The pre-
diction accuracy and the effect of sample size are noted for
both the wavelet network method and local approximation
method. The Henon map is a less complex dynamic system
when compared to the Lorenz model.

4.1. Henon Map

[40] The Henon map [Hénon, 1976] is a two‐variable dis-
crete time dynamical system defined by

xnþ1 ¼ yn þ 1� ax2n
ynþ1 ¼ bxn:

ð17Þ

The chaotic nature of the map is dependent on the param-
eters a and b in equation (17). The canonical Henon map
with values of a = 1.4 and b = 0.3 is chaotic in nature. The
Henon map is iterated with these parameter values to gen-
erate 11,700 data points (approximately equal to the data size
of the Basantpur streamflow series). The correlation dimen-
sion and maximum Lyapunov exponent of the Henon map
are 1.21 and 0.418, respectively.
[41] The x variable of the Henon map is reconstructed

for an embedding dimension m = 2 and delay time t = 1

according to equation (1). Of the 11,700 data points, the last
1460 data points are set apart as the testing set for prediction.
To study the sensitivity of the prediction algorithm to data
size, prediction is attempted for different training data set
sizes such as 10,240, 5000, and 1500, keeping the testing data

size the same. The predictive model given by equation (14)
is modeled using both the wavelet network algorithm and
local approximation method for different training data sets.
For wavelet networks, the optimum number of wavelets (i.e.,
minimum FPE) is obtained as 3. The optimum neighbor-
hood size for local approximation method is fixed at 0.6 of
standard deviation. Prediction is done for different lead times
up to 10 for analyzing the predictability potential of each
method.
[42] The root‐mean‐square error (RMSE) and correlation

coefficient (CC) plots (shown in Figures 8a and 8b, respec-
tively) show that the performance of the local approximation
(LA) method is slightly better only for the first data set (with
10,240 points). For the other two data sets with lesser data
points, the wavelet network (WN) algorithm is significantly
more efficient than the LA method with lesser RMSEs and
higher CCs for all lead times. Also, the WN algorithm is
almost insensitive to the data size of training set, as can be
noticed from the constant RMSE and CC for the three data
sets, whereas the efficiency of LA is directly proportional to
data size.

4.2. Lorenz Model

[43] The Lorenz system [Lorenz, 1963] is a dynamical
continuous system exhibiting chaotic behavior which is
much more complex than the Henon map. The equations
governing the Lorenz model are

_x ¼ � y� xð Þ;
_y ¼ x �� zð Þ � y;
_z ¼ x y� � z;

ð18Þ

where s, r, b > 0; s is called the Prandtl number; and r is
called the Rayleigh number. Usually, s = 10, b = 8/3, and r
is varied. The system exhibits chaotic behavior for r = 28.
The three state variables x, y, and z form an inhomogeneous
“butterfly” structure in phase space. Of the two time scales,
the first describes the evolution of the system around the
center of each butterfly wing (i.e., unstable fixed point), and
the second describes the residence time within one of the
butterfly wings. According to Palmer [1993], most of the
unpredictability of the Lorenz model arises when the tra-

1� �1 * x1 � �1ð Þð Þ2
h i

e� �1* x1��1ð Þð Þ2=2 . . . 1� �N * x1 � �Nð Þð Þ2
h i

e� �N* x1��Nð Þð Þ2=2 x1 1

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.

1� �1 * xM � �1ð Þð Þ2
h i

e� �1* xM��1ð Þð Þ2=2 . . . 1� �N * xM � �Nð Þð Þ2
h i

e� �N* xM��Nð Þð Þ2=2 xM 1

2
666666666666664

3
777777777777775

w1
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.

wN
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¼
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yM

2
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3
777775: ð16Þ
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jectory switches form one wing to the other wing of the
attractor, i.e., near the origin. A set of 11,700 data points is
generated with s = 10, b = 8/3, and r = 28. The correlation
dimension and maximum Lyapunov exponent of the Lorenz
model are 2.05 and 0.906, respectively.
[44] The x variable of the Lorenz model is reconstructed

for an embedding dimension m = 3 and delay time t = 2
according to equation (1). Similar to the procedure followed
for Henon data, three data sets of different sizes (10,240,
5000, and 1500) are chosen as training data sets to predict
the last 1460 data points. Prediction is done using the LA
method and WN method for different lead times up to 10. The
root‐mean‐square error and correlation coefficient plots for
different data sets and different lead times for both methods
are shown in Figures 8c and 8d, respectively. The efficacy
of the WN method is more distinguishable even for the largest
data set. The unvarying RMSE and CC for different data
sets prove the insensitivity of the WN algorithm to the data

size. The rate of increase of RMSE or decrease of CC over
lead time by WN is much less when compared to the LA
method, which in turn provides evidence for the increase in
predictability. Hence, for a chaotic series, the WN algorithm
improves the predictability and also is unaffected by the data
size.
[45] Having demonstrated this, the sensitivity of the algo-

rithm for different initial conditions is judged by making
predictions for a set of embedding dimensions and delay
times. The range of embedding dimension and delay time is
chosen as 2–5, thus yielding a total of 16 combinations.
Phase space is constructed for all of these combinations for
the first data set (10,240 points), and prediction is done for
all of these combinations. The box plots of 16 predictions
for the first 200 points from both methods are shown in
Figures 9a and 9b. The widths of box plots are insignificant
for WN method predictions. A comparison of box plot widths
(i.e., 75th percentile to 25th percentile) for both methods is

Figure 8. Variation of root‐mean‐square error (RMSE) and correlation coefficient (CC) over lead time
for predictions from the wavelet network (WN) and local approximation (LA) method for different data
sizes. (a) RMSE for the Henon map. (b) Correlation coefficient for the Henon map. (c) RMSE for the
Lorenz model. (d) Correlation coefficient for the Lorenz model.
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Figure 9. Ensemble prediction of the Lorenz model as box plots for the first 200 data points from
(a) local approximation model and (b) wavelet network. The boxes for a particular period are enlarged
and shown as insets. (c) Box width of predictions for the testing period from wavelet network and local
approximation method.
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shown in Figure 9c. The sensitivity of WN to initial con-
ditions (in terms of box width) is trivial when compared to
that of the LA method.

5. Application to Observed Streamflow Data

5.1. Optimum Range of Embedding Dimension
and Delay Time

[46] The chaos identification methods (described in
section 2.3) have confirmed that the daily streamflow series
is nonlinear and low‐dimensional chaotic. An appropriate
range of embedding dimension and delay time is fixed from
these results to produce an ensemble of predictions. The ranges
of values used for the ensemble prediction are (1) embed-
ding dimension, 3–10 and (2) delay time, 60–100. The range
is fixed the same for streamflow series of both stations.
From all of these available initial conditions (i.e., combina-
tions of embedding dimension and delay time), the optimum
parameter values are selected on the basis of the minimum
GCV value. The phase space reconstructed training sets of
both streamflow series are fitted with a local approximation
model, and the prediction error (in terms of GCV value) is
calculated for each of the available combinations. All of
the parameter combinations falling under 10% of the lowest
GCV value are selected as the relevant ones. The best
parameter combinations which give minimum GCV values
are (1) embedding dimension, 4–7 and (2) delay time, 70–95.
These best combinations are further employed for predic-
tion using both wavelet network and local approximation
methods.

5.2. Ensemble Prediction

[47] Now phase space reconstructions of the training data
of both stations are done for each of the best combinations
of embedding dimension m and delay time t obtained. The
optimum number of wavelets is obtained for both cases on
the basis of the minimum FPE criterion (as described in
sections 3.3 and 3.5). The optimum number of wavelets
ranges between three and five wavelets for all of the relevant
combinations of embedding dimension m and delay time t.
[48] The network parameters are initialized with opti-

mum number of wavelets in the network structure. The ini-
tialized network is trained with the training data sets (phase
reconstructed) applying a back propagation algorithm. Train-
ing is done for all relevant combinations of embedding dimen-
sions and delay times separately to extract the respective

network parameters and the nonlinear function f. This gives
a set of wavelet networks with different parameters, non-
linear functions, and number of wavelets, which is further
used to create an ensemble of predictions for the future.
[49] Prediction is done for the next 4 years (from June

2000 to May 2004, i.e., 1461 data points) using these opti-
mized WN and LA methods for 1 day, 2 day, and 3 day lead
times for both stations. The root‐mean‐square error and cor-
relation coefficient between the observed and mean ensemble
daily streamflow for both stations are shown in Table 2. Sub-
stantially low RMS errors and comparatively higher correla-
tions for all of the lead times show the superiority of wavelet
networks in predicting the chaotic series. In Figure 10, com-
parison is made of the variations of observed streamflow
values and mean ensemble streamflow values from the LA
and WN methods for a low‐flow year (June 2002 to May
2003) and a high‐flow year (June 2003 to May 2004) for all
of the lead times for Seorinarayan station as an illustration.
The extreme daily flows are better captured by the WN
method, although the deviation increases with lead time. The
absolute deviation between the mean ensemble and actual
flow for WN is about half of that of LA as can be noted from
Figure 10.
[50] Detailed analyses are done by comparing the cumu-

lative probability distributions (CDF) of ensembles and the
observed series for the two methods and are shown in
Figures 11a–11f for all three lead times. In all of the cases,
the ensembles from both methods were able to catch the
observed streamflow probabilities well with its range.
Despite this, as the lead time increases, the widths of the
ensemble CDFs also seem to be increasing in both methods,
indicating the limit in predictability. It is observed that the
value of streamflow at which the CDF reaches the value of 1
is around 0.8–1 × 106 m3 for the LA approach, while that
for observed flow is at around 2.3 × 106 m3, which shows
a poor prediction of extreme high flow events by the LA
method.
[51] Figures 12, 13, 14, 15, 16, and 17 show a comparison

between the two methods for mean, variation or standard
deviation, and skewness of daily flows over a year for both
stations. The absolute deviations between the observed and
the mean ensemble of the statistic are shown as bar plots
in Figures 12–17. The wavelet network ensembles are able
to capture both the yearly mean and yearly standard devia-
tion of daily flows within the range of prediction, while
local approximation fails to predict the unusual variations of
streamflow. Even the skewness of the series is also closely
captured by the wavelet networks, as can be inferred from
Figures 16 and 17. The absolute deviations of all statistics
(given as bar plots in Figures 12–17) for the WN method are
always smaller than those for the LA method. The above
results have proved WN to be a much efficient method when
compared to the traditional LA approach.

5.3. Uncertainty in Initial Conditions

[52] The prediction uncertainty due to the sensitivity to ini-
tial conditions can be determined through the box plot widths
of the daily flows. The width of box plots is a measure of the
divergence of the trajectories starting from different initial
conditions. Figures 18a, 18b, 19a, and 19b show the varia-
tion of box plot widths for a low‐flow and a high‐flow year,
respectively, from which it is clear that the WN approach is

Table 2. Root‐Mean‐Square Error (RMSE) and Correlation
Coefficient (CC) Between the Observed and Mean Ensemble Daily
Streamflow Values for Predictions From the Wavelet Network
(WN) and Local Approximation (LA) Methods

1 day 2 day 3 day

RMSE CC RMSE CC RMSE CC

Seorinarayan Station
WN 166.62 0.996 287.29 0.986 373.32 0.974
LA 476.41 0.961 586.73 0.938 633.39 0.926

Basantpur Station
WN 186.46 0.994 320.30 0.982 394.69 0.971
LA 590.54 0.945 730.09 0.910 796.15 0.890
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Figure 10. Comparison of mean ensemble predictions from the WN and LA approaches with observed
streamflow values for a low‐flow period and a high‐flow period: (a) 1 day lead prediction for low‐flow
year, (b) 1 day lead prediction for high‐flow year, (c) 2 day lead prediction for low‐flow year, (d) 2 day
lead prediction for high‐flow year, (e) 3 day lead prediction for low‐flow year, and (f) 3 day lead predic-
tion for high‐flow year. The duration of the period is taken from 1 June to 31 May.
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Figure 11. Cumulative density functions of Seorinarayan daily streamflow for the testing period:
(a) 1 day lead prediction using WN, (b) 1 day lead prediction using LA, (c) 2 day lead prediction using
WN, (d) 2 day lead prediction using LA, (e) 3 day lead prediction using WN, and (f) 3 day lead prediction
using LA. The ensemble CDFs (solid blue lines) and also the observed streamflow CDF (solid red line)
are shown.
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Figure 12. Comparison of box plots of the average daily streamflow values of the ensembles from
the LA and WN methods for the 4 year testing period for Seorinarayan station: (a) 1 day lead prediction,
(b) 2 day lead prediction, and (c) 3 day lead prediction. The observed average daily streamflow values are
also shown. The absolute deviations between the mean ensemble values and the corresponding observed
values are shown as bar plots.
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Figure 13. Same as Figure 12 but for Basantpur station.
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Figure 14. Comparison of box plots of the average standard deviation values of the ensembles from
the LA and WN methods for the 4 year testing period for Seorinarayan station: (a) 1 day lead prediction,
(b) 2 day lead prediction, and (c) 3 day lead prediction. The observed average standard deviations are also
shown. The absolute deviations between the mean ensemble values and the corresponding observed
values are shown as bar plots.
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Figure 15. Same as Figure 14 but for Basantpur station.
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Figure 16. Comparison of box plots of the average skewness of the ensembles from the LA and WN
methods for the 4 year testing period for Seorinarayan station: (a) 1 day lead prediction, (b) 2 day lead
prediction, and (c) 3 day lead prediction. The observed average skewness are also shown. The absolute
deviations between the mean ensemble values and the corresponding observed values are shown as bar
plots.
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Figure 17. Same as Figure 16 but for Basantpur station.
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Figure 18. Comparison of box widths of predictions from the WN and LA methods for (a) low‐flow
year and (b) high‐flow year. Comparison of absolute deviations between observed streamflow values
and mean ensemble prediction from both methods for (c) low‐flow year and (d) high‐flow year.
The results shown above are for 1 day lead prediction. The duration of the year is taken from 1 June
to 31 May.
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less sensitive to the change in the initial conditions, partic-
ularly in low‐flow periods. Except during a few very high
flow days, the box plot widths for the WN method are
always smaller than that of the LA approach. It is to be
noted that, even though the prediction uncertainty is high
during high‐flow days, the absolute deviations between the
mean ensemble and the observed streamflow for the par-
ticular days are very low for the WN method (Figures 18c,
18d, 19c, and 19d).

5.4. Discussion

[53] The predictability of the daily streamflow chosen
is only about 7 days by the Lyapunov exponent. However,
as demonstrated by Dhanya and Nagesh Kumar [2010],
the predictability of daily rainfall (averaged over the basin)
over the same basin can be increased to 40 days. The low
predictability obtained for streamflow may be due to the
influence of other processes such as infiltration or evapo-
ration. Additionally, Dhanya and Nagesh Kumar [2010]
have pointed out that spatial averaging alone can increase
the predictability of a chaotic series. Another point to be
noted here is that the 40 day predictability limit observed
was for the daily rainfall series averaged over the entire

basin, whereas the daily streamflow series considered was
for a single station.
[54] Since a basic assumption in the implementation of

any chaos identification method is that the time series is
infinite, the restriction in data size limits the accurate esti-
mation of parameters (m and t) and also the nonlinear pre-
diction accuracy. While Smith [1988], Procaccia [1988], and
Nerenberg and Essex [1990] pointed out that the minimum
number of data points varies exponentially with the embed-
ding dimension, i.e., 42m, 10m, and 102+0.4m, respectively,
Kurths and Herzel [1987] used only 640 points. Jayawardena
and Lai [1994] have demonstrated on synthetic series that the
number of data points should be ≈1200 for an accurate esti-
mation of chaotic parameters. Sivakumar et al. [1999a] sug-
gested that a minimum of 1500 data points is required to
reveal the rainfall dynamics. However, the application of
wavelet networks on the Henon and Lorenz system (Figure 8)
demonstrates that the proposed method is insensitive to
the number of data points since the performance measures
are almost constant for the different data sets with varying
number of data points.
[55] In spite of the chaotic nature with limited predict-

ability, the predictions from both methods are capable of

Figure 19. Same as Figure 18 but for Basantpur station.
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catching up the variations in streamflow for all of the lead
times considered. It can be noticed that, as the lead time
increases, the divergence from the observed value increases,
thereby reducing the reliability of predictions. Such a behavior
is expected in regular chaotic systems in which the system
will become almost unpredictable as the lead time increases,
irrespective of the prediction method employed. However,
the divergence is much lower in predictions by wavelet
network method for all of the lead times as can be noted
from Figure 10. Hence, the predictability also depends on
the prediction algorithm employed.
[56] The local approximation method entirely depends on

the past observed flows. The reason the failure of the LA
approach in predicting the extremely high flows is the
absence of such flows in the past data. In contrast, the WN
approach has no such limitations and has the potential to
predict unusually high flows also. The root‐mean‐square
error values from WN predictions are about half of those
from the LA approach. Table 3 gives a comparison of the
absolute deviations of mean ensemble values of the WN and
LA methods from the observed values for three lead times.
The deviations of the WN approach are always lesser com-
pared to those of the LA approach. The differences between
the deviations from the two approaches (deviation from LA
minus deviation from WN) are larger for high‐flow years,
which indicates that the WN approach is most efficient in
predicting the unexpected high flows.

[57] The prediction uncertainty due to the sensitiveness to
initial conditions is captured by creating ensembles with
different initial conditions. A comparison of the box widths
(measure of uncertainty) from ensemble predictions from
both approaches is shown in Table 4. The ensembles from
the WN approach are less uncertain except for the high‐
flow days. While prediction uncertainty (i.e., box width) is
high during high‐flow periods, the mean ensemble is much
nearer to the observed value; that is, the absolute deviations
are much lower during those periods. Hence, WN trades off
between these two measures during high‐flow periods.
[58] Table 5 shows the mean absolute deviations from a

single prediction instead of an ensemble approach. The initial
condition is created from an optimum embedding dimen-
sion of 6 (from the correlation dimension method) and a
delay time of 74 (from the autocorrelation method). An
educated comparison of absolute deviations of mean ensemble
(Table 3) and those of single prediction (Table 5) from the
observed value shows that the ensemble approach is 50%
more efficient than the single prediction. Even for single
prediction, the WN approach has proved to be 30%–50%
more superior than the LA approach. Hence, as rightly stated
by Smith [2000], an ensemble of predictions with different
initial conditions from a perfect model can accurately reflect
the likelihood of occurrence of various future conditions.

6. Concluding Remarks

[59] The predictability of a chaotic series is limited to
a few future time steps because of its sensitivity to initial
conditions and the exponential divergence of the trajecto-
ries. Despite this limit in predictability, which is the basic
characteristic of chaotic system, the prediction skill can be
considerably improved by adopting an ensemble approach
with various initial conditions and with efficient methods
with powerful localization properties. In wavelet networks,
the benefits of both neural network (a global approach) and
wavelet decomposition (a local approach) are combined.
While neural network will give a good approximation of the
nonlinear function, wavelet decomposition will provide the
high‐frequency local details. Such a network can efficiently
capture the underlying dynamics of a chaotic system when
compared with the traditional local approximation method,
which works on the nearest‐neighbor approach.

Table 3. Mean Absolute Deviations (106 m3) Over a Year
Between the Observed and Mean Ensemble Daily Streamflow
Values for Predictions From Wavelet Network (WN) and Local
Approximation (LA) Methods

Year

1 day Lead 2 day Lead 3 day Lead

WN LA WN LA WN LA

Seorinarayan Station
1 18.3502 40.21299 39.88485 52.89304 61.8361 60.5545
2 57.0751 77.10709 101.7196 120.0655 133.3843 150.4509
3 20.02199 47.39537 42.31594 60.90499 66.1047 72.9915
4 61.00386 152.2715 116.1334 198.3819 161.6039 225.88

Basantpur Station
1 23.05476 43.2012 50.04199 63.42036 78.8854 81.1098
2 56.90769 124.4384 105.2515 170.8619 138.2082 200.814
3 20.20842 38.9846 40.92355 54.1439 68.0545 74.9838
4 64.97456 168.386 113.9161 236.1052 150.7869 274.8348

Table 4. Mean Box Widths (106 m3) Over a Year for Predictions
From the Wavelet Network (WN) and Local Approximation (LA)
Methods

Year

1 day Lead 2 day Lead 3 day Lead

WN LA WN LA WN LA

Seorinarayan Station
1 24.3829 64.7133 48.2513 86.4905 69.0157 97.2802
2 75.4824 101.0025 136.3 138.4946 185.9075 151.2409
3 33.1983 74.6065 64.8274 101.8228 92.8164 118.8653
4 88.3658 107.5436 166.9715 151.8213 236.6322 180.5148

Basantpur Station
1 30.6059 71.2748 61.8004 100.4692 97.6473 129.0564
2 69.9582 132.2318 130.6388 175.0348 184.6156 213.5233
3 34.4805 72.3271 68.7484 103.7795 107.947 142.8995
4 84.9296 116.2867 159.9328 172.5184 225.3146 217.4818

Table 5. Mean Absolute Deviations (106 m3) Over a Year Between
the Observed and Predicted Daily Streamflow Values From a
Single Initial Condition From the Wavelet Network (WN) and
Local Approximation (LA) Methods

Year

1 day Lead 2 day Lead 3 day Lead

WN LA WN LA WN LA

Seorinarayan Station
1 27.6734 64.9495 60.5542 89.8518 95.1653 106.8514
2 76.7445 101.1523 137.4347 148.6521 186.9305 198.546
3 30.3038 82.8967 56.2994 121.2774 80.8663 143.6372
4 99.6162 179.596 182.2908 268.1606 241.9138 322.0757

Basantpur Station
1 58.8444 65.1224 122.1445 94.7069 159.1572 116.82
2 70.9586 173.0133 128.2393 242.4577 174.8071 283.2043
3 37.6463 83.5924 72.0296 120.4204 105.0406 154.9974
4 87.9809 225.9265 159.9286 308.0498 218.1132 362.9765
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[60] The present study was aimed at generating an
ensemble of predictions by employing the wavelet network
method and examining whether the predictability of a cha-
otic series can be improved. Daily streamflow data at Seor-
inarayan and Basantpur stations in Mahanadi basin, India,
were considered for the study. The data were analyzed for
any chaotic behavior employing various techniques. A posi-
tive Lyapunov exponent of 0.167 and embedding dimension
6–7 obtained from correlation dimension, the false nearest‐
neighbor method, and the nonlinear prediction method con-
firm the existence of a low‐dimensional chaotic attractor in the
streamflow series. These results suggest that the seemingly
irregular behavior of streamflow series can be better explained
though a chaotic framework. A range of embedding dimen-
sions and delay times were selected for the prediction on the
basis of the outputs from these techniques.
[61] Predictions were done employing wavelet networks

and were compared with those from the local approxima-
tion method. A good initialization of the wavelet param-
eters (dilation and translation), network parameters, and the
number of wavelets was done using the least squares method,
backward elimination, and the Akaike final prediction error.
The optimum number of wavelets was in the range of 3–5
for all of the combinations of embedding dimension m and
delay time t. The trained networks with different m and t
were used to generate an ensemble of predictions with lead
times 1, 2, and 3 days.
[62] A comparison of these predictions with those from

the local approximation method indicates that wavelet net-
works provide more reliable predictions by capturing the
mean, standard deviation and also skewness of the observed
data. While the local approximation method failed to predict
the sudden high‐frequency high‐flows, the microscopical
behavior of the wavelet network due to its different dilations
and translations facilitates the near‐accurate prediction of
such flows. The ensembles generated from the wavelet net-
works are of very less spread (except for very high flow
days), hence confirming the reliability in prediction. Even
so, it should be noted that as the lead time increases, the
ensemble spread also increases, thereby decreasing the reli-
ability. However, when compared with the local approxima-
tion results, the widening is much less for higher lead times.
[63] The nonlinear prediction method based on the ensem-

ble approach with wavelet networks considerably improves
the prediction efficiency and hence is typically suitable for
modeling and assessing the underlying dynamics of the
complex chaotic streamflow process. The predictability of
a chaotic series is therefore improved by combining the
global and local approaches. The predictability can be fur-
ther improved using a multivariate wavelet network analysis
by taking information from other climatic and atmospheric
indices which dominantly influence the streamflow dynamics.

[64] Acknowledgments. The authors sincerely acknowledge the
associate editor and three anonymous reviewers for their valuable sugges-
tions and comments that helped us to refine the conceptual aspects of the
subject and hence enabled us to improve the presentation.
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