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Abstract A two-stage methodology is developed to obtain
future projections of daily relative humidity in a river basin
for climate change scenarios. In the first stage, Support
Vector Machine (SVM) models are developed to downscale
nine sets of predictor variables (large-scale atmospheric
variables) for Intergovernmental Panel on Climate Change
Special Report on Emissions Scenarios (SRES) (A1B, A2,
B1, and COMMIT) to RH in a river basin at monthly scale.
Uncertainty in the future projections of RH is studied for
combinations of SRES scenarios, and predictors selected.
Subsequently, in the second stage, the monthly sequences
of RH are disaggregated to daily scale using k-nearest
neighbor method. The effectiveness of the developed
methodology is demonstrated through application to the
catchment of Malaprabha reservoir in India. For down-
scaling, the probable predictor variables are extracted from
the (1) National Centers for Environmental Prediction
reanalysis data set for the period 1978–2000 and (2)
simulations of the third-generation Canadian Coupled

Global Climate Model for the period 1978–2100. The
performance of the downscaling and disaggregation
models is evaluated by split sample validation. Results
show that among the SVM models, the model developed
using predictors pertaining to only land location per-
formed better. The RH is projected to increase in the future
for A1B and A2 scenarios, while no trend is discerned for
B1 and COMMIT.

1 Introduction

Humidity is a decisive factor (besides wind speed and
temperature) in determining the amount and rate of
evaporation and transpiration. Besides this, humidity is
found to have substantial effect on plant growth, as it
affects rate of leaf emergence, plant height, leaf area, leaf
blade length, the number of roots, total root length, and dry
matter production (Hirai et al. 2000). Surface humidity
regulates evaporation and transpiration processes and so has
obvious connections to both hydrological and surface
energy budgets (Gaffen and Ross 1999). This makes it an
important variable in hydrological and agronomy studies,
especially in regions with an arid and semi-arid climate.

Information on spatio-temporal variations in relative
humidity (RH) finds use in (1) evapotranspiration estimation
models (e.g., Penman–Monteith; Monteith 1981), (2) crop
simulation models (e.g., Erosion Productivity Impact
Calculator model; Brown and Rosenberg 1997; Easterling
et al. 1992), (3) mesoscale models to parameterize the cloud
radiative effects (Koch et al. 1997), (4) modeling green-
house (Stanghellini and de Jong 1995), and (5) hydrologic
models. Relative humidity is an important factor in
determining the distribution and occurrence of clouds
(Wright et al. 2010). Also, surface humidity is the principal
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source for the free troposphere where water vapor has
important implications for earth's radiation and energy
budgets and therefore climate sensitivity (Willett et al.
2010). Hence, it is necessary to assess the implications of
projected climate change on RH at river basin scale.

The present study is motivated to develop a two-stage
methodology to obtain future projections of daily RH in a
river basin for various climate change scenarios. The
remainder of this paper is structured as follows: Sect. 2
presents the background of the study and objectives set for
the study. Section 3 provides details of data considered. The
description of the study region is provided in Sect. 4.
Section 5 describes the methodology developed in the study
to arrive at daily sequences of RH at river basin scale for
different climate change scenarios. Section 6 presents the
results and discussion. Finally, Sect. 7 provides summary of
the work presented and conclusions drawn from the study.

2 Background

General climate models (GCMs) simulate climatic con-
ditions on earth, hundreds of years into the future for
plausible future climates referred to as scenarios. However,
as GCMs are generally run at coarser scale to cover the
whole globe, they are ineffective in simulating local
climatic conditions on earth and in providing consistent
estimates of climate change on a river basin scale
(Houghton et al. 2001). Techniques such as downscaling
and disaggregation are used to translate the large-scale
information provided by GCM to the spatial scales that are
relevant to regional impact studies (Houghton et al. 2001).
The downscaling methods in vogue in literature, the
advantages of using Support Vector Machine (SVM) (Vapnik
1995, 1998) for downscaling, and the fundamental principle
of SVM and its formulation are discussed in Appendix 1.

Review of latest literature on statistical downscaling of
RH and the methods available for temporal disaggregation
of RH are presented in Tables 1 and 2, respectively. From
these tables, it can be observed that in the past, very few
studies have addressed downscaling and disaggregation of
RH though it is one of the important variables for climate
change impact assessment. In the present study, a two-stage
methodology based on SVM is advocated for downscaling
RH. In the first stage of the two-stage model, a SVM model
is developed to downscale the large-scale atmospheric
variables to RH in a river basin at monthly scale.
Subsequently, the monthly sequences of RH are disaggre-
gated to daily scale using k-nearest neighbor (k-NN)
method. The idea behind developing the two-stage meth-
odology is that the monthly sequences of atmospheric
variables simulated by the GCM are more reliable than
those simulated at daily scale. Further, the SVM requires

large computational effort to directly downscale daily
sequences of large-scale atmospheric variables to daily
sequences of hydrometeorological variables in a river basin.

Owing to the availability of a number of GCMs,
predictors, scenarios, downscaling methods, etc., there is
uncertainty in the future scenarios of RH. Hence, there is a
need to study the changes in RH of a region by the various
alternatives available.

The following objectives are set for this study: (1) To
investigate whether the relationships between the predictor
variables and RH vary with season and location, (2) to
investigate the performance of season/location-specific
SVM downscaling models to identify the best model, (3)
to study the uncertainties in downscaled RH to predictors
selected and Intergovernmental Panel on Climate Change
Special Report on Emissions Scenarios (IPCC SRES), (4)
to study projected trends of monthly RH over the study
region for IPCC SRES scenarios, and (5) to demonstrate the
effectiveness of the developed disaggregation model over
that based on triangular distribution method.

3 Study region

The catchment of Malaprabha reservoir in the Karnataka
State of India was considered for the study. It has an area of
2,564 km2 situated between 15°30′ N and 15°56′ N
latitudes and 74°12′ E and 75°15′ E longitudes. The
catchment lies between 792.5 and 480.0 m above mean
sea level. The Malaprabha reservoir is a major source of
water for the arid region of north Karnataka, which is
possibly the largest arid region in India outside the Thar
Desert. The reservoir supplies water for an irrigable area of
218,191 ha in north Karnataka. The location map of the
study region is shown in Fig. 1.

4 Data

The observed records of RH were available at daily time
scale for a gauging station near the region. It is situated in
Gadag District (administrative division) at 15°25′ N latitude
and 75°38′ E longitude and has records for the period
January 1978 to December 2000. The primary source of the
data is the Water Resources Development Organization,
Government of Karnataka State, India. One gauging station
for downscaling was used for the entire basin since the
distribution of relative humidity stations around the world
is fewer in number (5,110) when compared to the number
of stations measuring precipitation (27,075) and tempera-
ture (12,783) (New et al. 2002). A number of studies state
that the principal cause of the relatively small number of
published papers on air humidity is the lack of long-term
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hygrometric or psychrometric measurements as well as
the methodological difficulties related to the data
analysis (Wypych 2010; Wang and Gaffen 2001; Gaffen
and Ross 1999).

In India, the year has been divided into four seasons,
namely winter (January, February), pre-monsoon or sum-
mer (March to May), southwest monsoon or summer
monsoon season (June to September), and post-monsoon
season (October to December) (Parthasarathy et al. 1994).
The period from June to September is categorized in India
as the Indian Summer Monsoon Rainfall season because
rainfall in this season is caused by evaporation during
summer. In summer, the weather is dry, and the humidity is

low. The mean monthly daytime RH in the basin during
monsoon season ranges from 83% to 87%, while the same
during post-monsoon (October to January) and summer
(February to May) seasons ranges from 67% to 78% and
57% to 74%, respectively (Fig. 2).

The reanalysis data of the monthly mean atmospheric
variables and latent heat flux in the study region were
extracted from database prepared by the National Centers
for Environmental Prediction (NCEP; Kalnay et al. 1996)
for the period January 1978 to December 2000. The data of
atmospheric variables were collated for nine grid points
whose latitudes range from 12.5° N to 17.5° N and
longitudes range from 72.5° E to 77.5° E at a spatial

Table 1 Literature on predictor selection for statistical downscaling of RH using transfer functions

SN Predictor Predictand and (time scale) Data Technique Region Reference

1 Surface and 925 hpa
temperature, latent
heat, specific humidity
at 925 hpa.

Relative humidity (monthly) NCEP-NCAR reanalysis
data sets, CGCM3

Multi-step linear regression India (river basin) Anandhi (2011)

2 Daily sea level pressure Maximum, minimum,
and average daily
temperature, precipitation
amount and occurrence,
relative humidity,
cloudiness, and sunshine
duration

ECMWF ERA-40
data set

Using 24 objective and
2 subjective atmospheric
circulation classifications
collected and developed
within the COST733
Action

Czech (21 stations) Cahynová and
Huth (2010)

3 Air temperature and specific
humidity at 1,000; 800;
600; and 400 hPa from
NCEP-NCAR reanalysis

Observed air temperature
and specific humidity
(6-hourly)

NCEP-NCAR reanalysis
data sets for March 2004
to May 2006

Least square regression Peru (Cordillera
Blanca)

Hofer et al. (2010)

4 Geopotential height at
500, 850, and 1,000 hpa;
wind speed and vorticity
at 500 and 850 hpa;
temperature, relative
humidity, and specific
humidity at 850 hpa

Relative humidity, water
vapor pressure, dew-point
temperature, and dew point
deficit (07, 14, and 21 h
local time for summer
months June to August)

NCEP-NCAR reanalysis
data sets

Multi-step linear regression Czech Republic
(4 point stations

Huth (2005)

5 (a) Geopotential height at
500, 700, and 1,000 hpa;
geopotential height
thickness 500–700; 500–
1,000; and 700–1,000 hpa;
for classification

Relative humidity (daily) Control Run 591 (C591)
from ECHAM4 at T42
resolution

(a) Classification by cluster
analysis to identify significant
circulation patterns

Germany (52 weather
stations grouped into
6 climate zones)

Enke and Spekat
(1997)

(b) geopotential height,
geostrophical wind zonal
component and meridional
component, scalar wind,
and vorticity at 500; 700;
and 1,000 hpa; scalar wind
thickness 500–700; 500–
1,000; and 700–1,000 hpa,
humidity at 700 hpa

(b) downscaling using multiple
conditional (weather pattern
dependent) screening
regression analysis

Table 2 Literature on methods for disaggregation of RH

SN Method Reference

1 Method based on actual and saturated vapor pressure Debele et al. (2007)

2 Approximate regression quantile method Green and Kozek (2003)

3 Triangular distribution method with adjustment for clear/overcast conditions Neitsch et al. (2001)
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resolution of 2.5°. The data of latent heat flux were
extracted for 25 grid points whose latitudes range from
10.48° N to 18.1° N and longitudes range from 71.25° E to
78.75° E at a spatial resolution of approximately 1.9°.

For obtaining future projections of RH, monthly simu-
lations of the third-generation Canadian Coupled Global
Climate Model (CGCM3) were considered for four scenar-
ios (A1B, A2, B1, and COMMIT) that are relevant to
IPCC's fourth assessment report (AR4) (Alley et al. 2007).
The CGCM3 data were obtained (through website http://
www.cccma.bc.ec.gc.ca/) for the period January 1978 to
December 2100, for 12 grid points whose latitudes range
from 9.28° N to 20.41° N and longitudes range from 71.25°
E to 78.75° E. The spatial resolution of CGCM3 output is
3.75° along the longitude and approximately 3.75° along
the latitude.

The GCM data and the information on atmospheric
flux were re-gridded to a common 2.5° NCEP grid
using Grid Analysis and Display System (GrADS; Doty
and Kinter 1993).

5 Methods of analysis

This section presents the methodology proposed for the
development of the SVM model for spatial downscaling of
atmospheric variables (simulated by NCEP and CGCM3) to
RH in a river basin at monthly scale and for temporal
disaggregation of the downscaled RH from monthly to daily
scale.

The relationships between predictors in NCEP and
GCM data sets and predictor–predictand relationships
were investigated using scatterplots and three measures
of dependence, namely product moment correlation,
Spearman's rank correlation, and Kendall's tau (Helsel
and Hirsch 2002). The performance of the developed
models was evaluated using three statistical measures,
namely Nash–Sutcliffe error estimate (Ef), mean absolute
error (MAE), and product moment correlation (P). The
formulae and description of these measures can be found
in Anandhi et al. (2009).

5.1 Development of downscaling model

The development of downscaling model consists of selection
of probable and potential predictors, stratification of seasons
and location, and finally training and validation of the
downscaling model. The developed model is then used to
obtain future projections of RH from simulations of CGCM3.

5.1.1 Methodology for selection of probable predictors

The selection of appropriate predictors for downscaling a
predictand is one of the most important steps in a

Fig. 1 Location of the study
region in Karnataka State of
India. The latitude, longitude,
and scale of the map refer to the
Karnataka State. The data are
extracted at 12 CGCM3 grid
points. Information on LH
obtained from reanalysis data at
25 grid points spaced at 1.9° are
re-gridded to the nine 2.5°
NCEP grid points. Among the
nine grid points, 1, 4, and 7 are
on the Arabian Sea, and the
remaining points are on land

Fig. 2 Mean monthly daytime relative humidity in the study region
for the period 1978–2000
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downscaling exercise (Anandhi et al. 2009; Teutschbein et
al. 2011). The choice of predictors could vary with region,
season, and the predictand to be downscaled (Kostopoulou
et al. 2007; Wetterhall et al. 2007; Frei et al. 2005). Any
type of variable or index can be used as predictor as long as
it is reasonable to expect that there exists a relationship
between the predictor and the predictand (Wetterhall et al.
2005). Often, in climate impact studies, the predictors
chosen are as variables that are: (1) reliably simulated by
GCMs and readily available from archives of GCM
output and reanalysis data sets, (2) physically related
with the predictand, (3) based on previous studies, and
(4) carry climate change information (Wetterhall et al.
2009; Wilby et al. 1999; Hofer et al. 2010). The predictors
selected have to satisfy one or more of these criteria. For
example, a predictor with less dependence structure may
be selected because it may carry climate change
information (Wetterhall et al. 2009; Wilby et al. 1999),
to account for changing variables that affect the local
climate (Hofer et al. 2010).

In the present study, large-scale atmospheric varia-
bles, namely air temperature and specific humidity at
925 mb, surface air temperature, and latent heat flux
were considered as the probable predictors. They are
denoted by Ta 925, Hus 925, Ta sur, and LH,
respectively. These are chosen as they have a physically
meaningful relationship with the predictand (RH). Hu-
midity represents concentration of water vapor in the air.
Temperature and humidity are associated with local
thermodynamic stability and hence are useful as predic-
tors. In the previous studies, temperature and specific
humidity are considered as potential predictors to down-
scale humidity (Anandhi 2011; Enke and Spekat 1997;
Huth 2005; Hofer et al. 2010). Changes in surface
humidity are reported to be caused by, or at least linked
to, changes in atmospheric circulation patterns. Further,
the changes in the longwave patterns, dominant air mass
types, or strength or position of climatological “centers of
action” will have important influence on local humidity
and temperature regimes (Gaffen and Ross 1999).

Temperature affects the moisture-holding capacity and
the pressure at a location. The pressure gradient affects
the circulation, which in turn affects the moisture
brought into the place and hence the humidity. At
925 mb pressure height, the boundary layer (near
surface effect) is important. LH indicates the amount
of moisture going from the surface to the atmosphere.
The amount of moisture held in the atmosphere is
related to temperature through “Clausius–Clapeyron”
equation. A number of studies have shown strong
relationship between humidity and temperature (Dai
2006; Gaffen and Ross 1999; Wypych 2010), and the
strength of the relationship is found to vary from region to

region (Wypych 2010). Because atmospheric water vapor
provides a strong positive feedback to greenhouse gas-
induced global warming, a realistic humidity–tempera-
ture relationship is vital for climate models to correctly
simulate future climate change (Dai 2006).

Scatterplots were prepared, and cross-correlations
were computed between the predictor variables in NCEP
and GCM data sets to verify if these variables are
reliably simulated by GCM. Similar plots and statistics
were computed between the NCEP predictor variables
and the predictand to investigate the presence of
nonlinearity/linearity in their relationship. The details
are provided in Sect. 6.

5.1.2 Stratification based on seasons and location
(land/sea)

The relationship of RH with a predictor variable may be
sensitive to the location of its grid point (whether on land or
over sea) (Dai 2006) as well as the season. To verify this,
season- and location-based stratifications of predictors were
considered, and nine groups were formed. The groups
include one for each season (wet and dry seasons), location
(land and sea), and combinations of both (wet season and
land, dry season and land, wet season and sea, dry season
and sea). The ninth group constitutes the case with no
predictor stratification. The stratification of climate of the
study region into wet and dry seasons is based on
precipitation. The seasons identified in Anandhi et al.
(2008) for the four IPCC scenarios are adopted for this
study to downscale RH.

5.1.3 Development of SVM downscaling model

The procedure developed for downscaling RH is
explained briefly in this section. It is based on the ideas
that were explained in detail in Anandhi et al. (2008).
Separate SVM models were developed to downscale RH

from potential predictors pertaining to each of the
aforementioned nine groups.

Nine NCEP grid points covering and surrounding the
study region were selected as the spatial domain of the
four probable predictors (m1=4), to adequately cover the
various circulation domains of the predictors. From the m2

probable predictors (m2=4×9; i.e., m1×number of NCEP
grid points considered), the m3 potential predictors for
downscaling RH were selected by specifying two threshold
values (Tng and Tnp). The Tng is for cross-correlation
between predictors in NCEP and GCM data sets, whereas
Tnp denotes the same between predictors in NCEP data set
and RH. From the NCEP data on potential predictors, the
orthogonal principal components (PCs) which preserve
more than 98% of the variance in the data were extracted,
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and the corresponding principal directions were noted. The
PCs of GCM predictor data were extracted along the principal
directions of NCEP predictor data. The PCs account for most
of the variance in the predictor data and also remove
redundancy, if any, among the input data. The use of PCs in
the analysis makes the model more stable and reduces the
computational load. Feature vector for each month was
formed using the PCs extracted for the month. These feature
vectors, formed using the PCs extracted from NCEP data,
were used for development (calibration and validation) of the
SVM models. Different SVM models were developed for
various combinations of stratification and predictor variables.
The performance of the models developed was evaluated
using the three statistical measures (Ef, MAE, and P), and the
best SVM model was identified.

5.2 Development of the disaggregation model

The disaggregation problem considered in this paper entails
the temporal disaggregation of RH over the Malaprabha
catchment from monthly to daily scale using two models.
The first model (model-1) is based on the k-NN technique,
and the second model (model-2) is based on triangular
distribution method of Soil and Water Assessment Tool
(SWAT; Neitsch et al. 2001).

5.2.1 Disaggregation model based on k-NN technique
(model 1)

Statistical relationship is developed between the observed mean
values of predictand atmonthly and daily scales. The relationship
is then used to disaggregate the projections of the predictand
obtained at monthly scale using a downscaling model.

Let the historical (past) and projected (future) values of
predictand be denoted by uhuh;t;j and upup;t;j, respectively, where

the subscripts υh and υp are indices for the past and future
years (υh=1,…, Nh; υp=1,…, Np), and τ denotes the index
for the month within the year (τ=1, 2,…, t,…, ω), j refers to
the index for the day within the month τ. Nh refers to the
number of years of historical record (herein, Nh=23 for data
from 1978 to 2000), Np refers to the projected period (herein,
Np=100 for data from 2001 to 2100), and ω represents the
number of months (=12) in a year. Further, let uhuh;t;� denote

the monthly mean value of the predictand computed using the
observed daily values of the predictand in the month τ of year
υh. Similarly, let the monthly mean value projected for the
predictand in the month τ of year υp be upup;t;�.

uhuh;t;� ¼

PDt

j¼1
uhuh;t;j

Dt
t ¼ 1; . . . ;t; . . . ;w uh ¼ 1; . . . ;Nh

ð1Þ

where Dτ denotes the number of days in month τ. For the
calibration period (which could be less than or equal to the
length of historical record), the observed value of the
predictand on day j in month τ is expressed as a ratio of the
monthly mean value of the predictand as:

wuh;t;j ¼
uhuh;t;j
uhuh;t;�

j ¼ 1; . . . ;Dt t ¼ 1; . . . ;w uh ¼ 1; . . . ;Nh

ð2Þ
Let Wh

uh;t ¼ wuh;t;1; . . . ;wuh;t;Dt

� �
denote the vector

containing the ratios of the daily values of predictand in
month τ of year υh. The following are the key steps of the
proposed algorithm to generate daily values of the
predictand upup;t;j for the projected period 2001–2100.

1. For every projected value of the predictand, identify the
calendar month τ.

2. Form the conditioning set zτ for each month τ. It
comprises the observed monthly values of the predic-
tand for the calendar months falling in the season
window of size M centered on the month τ. For a
window of size 1 month, the conditioning set is

zt ¼ uh1;t;�; . . . ;u
h
uh;t;�; . . . ; u

h
Nh;t;�

n o
. The window size

depends on the projected trend of the downscaled
variable at monthly scale. A window of size 1 month
could be considered if no change in trend is projected
by the SVM model. In the presence of trend, a larger
size window (e.g., 3 months) is recommended to
explore the temporal relationships between a wide
range of monthly and daily values of the predictand
for use in disaggregation.

3. To disaggregate the value of predictand in month τ,
upup;t;�, select its k-nearest neighbors from the condi-

tioning set Zτ based on the Euclidean distance xuh;up
between upup;t;� and uhuh;t;� expressed as

xuh;up ¼ upup;t;� � uhuh;t;�
��� ���; for vh ¼ 1; . . . ;Nh ð3Þ

|| || represents the Euclidean norm. The number of
neighbors k is a smoothing parameter. Lall and Sharma

(1996) suggest using k equal to
ffiffiffiffi
N

p
, as a rule of thumb.

The k-nearest neighbors considered are to be the most
similar to the projected value of the predictand for the
month τ.

4. The conditional probability p(i) is determined based
on the k-nearest neighbors. Assign weights to each of
the k-nearest neighbors using the discrete probability
mass function p(i) (Lall and Sharma 1996). This
discrete kernel was developed through a Poisson
approximation of the probability distribution function
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of state space neighbors. Randomly select a nearest
neighbor to the projected value of the predictand by
constructing cumulative density function using p(i) values.

pðiÞ ¼ 1 i=Pk
j¼1

1 j=ð Þ
i ¼ 1; . . . ; k ð4Þ

It is to be noted that p(i) is the same for all the months in
the projected period. Let uhuh;t;� denote the nearest neighbor.

5. The projected daily values of the predictand for the
month τ in year υp are obtained by multiplying the

projected monthly predictand value upup;t;� with Wh
uh;t

corresponding to the nearest neighbor uhuh;t;�.

5.2.2 Disaggregation model based on triangular
distribution (model 2)

The model based on triangular distribution method generates
daily relative humidity values from monthly relative humidity
values. This model requires four inputs: monthly relative
humidity and a random number between 0.0 and 1.0 (inputs
given by user), maximum and minimum relative humidity
values allowed in a month (estimated from mean monthly
relative humidity). The relevant equations are as follows.

if rand 0; 1ð Þ � Rhmon�RhLmon
RhUmon�RhLmon

� �
then

Rh ¼ RhLmon þ rand 0; 1ð Þ � RhUmon � RhLmonð Þ � Rhmon � RhLmonð Þ½ �0:5

ð5Þ

else if rand 0; 1ð Þ � Rhmon�RhLmon
RhUmon�RhLmon

� �
then

Rh ¼ RhUmon � RhUmon � Rhmonð Þ

� RhUmon� 1�rand 0;1ð Þh i�RhLmon� 1�rand 0;1ð Þh i
RhUmon�Rhmon

h i0:5 ð6Þ

RhUmon ¼ Rhmon þ 1� Rhmonð Þ � exp Rhmon � 1ð Þ ð7Þ

RhLmon ¼ Rhmon � 1� exp �Rhmonð Þð Þ ð8Þ

where RhUmon and RhLmon are the largest and the smallest
relative humidity values that were recorded in a month. Rh

and Rhmon are the daily and monthly RH, respectively and
rand(0, 1) is a random number between 0.0 and 1.0.

6 Results and discussion

Downscaling and disaggregation models were developed
following the methodology described in Sect. 5. The results
are presented and discussed in this section.

6.1 Probable predictors

Reanalysis data set is often held as an example of the best
possible historical GCM output (Reichler and Kim 2008;
Maurer et al. 2010). Also the coherence, accessibility, and
completeness of the NCEP-National Center for Atmospheric
Research (NCAR) data sets make them attractive for
comparative analyses of GCM performance (Schoof and
Pryor 2003). Hence, in this study, the reliability of the
GCM in simulating the chosen predictor variables is
examined by comparing the simulations of GCM with the
NCEP/NCAR reanalysis data sets using correlation and
scatterplots (Figs. 3 and 4). The reliability of the variables
in the reanalysis data sets is classified into four classes
(A to D), depending on the relative influence of the
observational data and the model on the variable. As per
these classifications, among the predictors chosen for this
study, temperature at 925 mb is in the most reliable class (class
A), surface temperature and humidity are in class B, while
latent heat flux is in the less reliable class (class C).

Scatterplots and cross-correlation bar plots were pre-
pared to verify the reliability of the simulations of the
predictor variables by the GCM and to study the predictor–
predictand relationships (Figs. 5 and 6). Results of the
analysis show that the correlation between predictor
variables in NCEP/NCAR and GCM simulations decreases
from predictors in class A to class C. Among the predictors,
temperature at 925 mb (class A variable) has highest
correlation, and latent heat flux (class C variable) has the
least correlation, while the correlations of surface temper-
ature and specific humidity at 925 mb (class B variables)
are in between (reasonably large). Since caution should be
exercised in interpreting results of reanalysis especially for
categories B and C (Kalnay et al. 1996), it is speculated that
low correlation in predictors need not indicate less
reliability in GCM simulation as this could be due to the
contribution of uncertainty in simulations from reanalysis.
In the past, downscaling approaches have used some
predictors of class C (Hofer et al. 2010; Widmann et al.
2003; Schmidli et al. 2006; Doblas-Reyes et al. 2006). In an
earlier study, Bader (2004) evaluated ten coupled models by
comparing the simulations of specific humidity with NCEP-
NCAR and ERA15 reanalysis data sets. They found that the
accuracy of specific humidity estimates decreases substan-
tially with height, and at 850 hPa, the mean over the ten
models agrees better with NCEP-NCAR reanalysis than it
does with ERA15. In this study, this specific humidity at
925 mb (Hus 925) is used as one of the predictors.

Further, from the plots between the probable predictor
variables in NCEP data and the predictand (Figs. 5 and 6),
the dependence structure between the predictor and the
predictand (RH) can be observed. Ta sur and Ta 925 are
negatively correlated with the predictand (Fig. 6), which is
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related to the fact that RH is the ratio of the actual moisture
content in the air to the maximum moisture content it could
hold when saturated. If the moisture in the air remains

unchanged and the temperature rises, the maximum amount
of moisture that the air could hold increases, indicating a
drop in RH. Thus, the RH is low when temperature of earth's

(a) 

(b) 

(c) 

Wet Dry 

Sea  Land 

Dry and Sea Dry and Land Wet and Land Wet and Sea

Fig. 3 Scatterplots prepared to
investigate dependence structure
between probable predictor
variables in NCEP and GCM
data sets for the period
1978–2000. a, b, and c denote
plots for predictors stratified
based on season, location, and
their combinations, respectively.
In each plot, the ordinate
denotes the GCM value of the
predictor variable, whereas the
abscissa represents the NCEP
value of the predictor variable

Fig. 4 Bar plots showing
cross-correlations computed
between each of the four
probable predictor variables in
NCEP and GCM data sets, for
each of the nine stratifications
considered for the period
1978–2000. a, b, c, and d
denote plots for each of the four
probable predictor variables,
namely temperature at 925 mb,
temperature at earth's surface,
specific humidity at 925 mb, and
latent heat flux, respectively.
Cross-correlations computed
using product moment correlation
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surface is high. Similar negative correlation was also
observed in selected sites in Australia (Jones et al. 2010).
Further, the surface evaporation over the arid/semi-arid

regions is limited by soil wetness, and it often cannot meet
atmospheric demand to maintain a constant RH as air
temperature increases (Dai 2006). The results of this study

(a) 

(b) 

(c) 

Wet Dry 

Sea  Land 

Dry and Sea Dry and Land Wet and Land Wet and Sea

Fig. 5 Scatterplots prepared to
investigate dependence structure
between probable predictor
variables in NCEP data and
predictand for the period
1978–2000. a, b, and c denote
plots for predictors stratified
based on season, location, and
their combinations, respectively.
In each plot, the ordinate
denotes the predictand whereas
the abscissa represents the
NCEP value of the predictor
variable

Fig. 6 Bar plots showing
cross-correlations computed
between each of the four
probable predictor variables in
NCEP data and the predictand, for
each of the nine stratifications
considered for the period
1978–2000. a, b, c, and d denote
plots for each of the four
probable predictor variables,
namely temperature at 925 mb,
temperature at earth's surface,
specific humidity at 925 mb, and
latent heat flux, respectively.
Cross-correlations computed
using product moment
correlation
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do not show a very strong correlation between RH and
temperatures, and the correlation is found to further
decrease at annual scales. These are consistent with the
results shown in Dai (2006). However, the results in their
work show an insignificant positive correlation (0 to 0.2)
between RH and the temperatures of areas in and around the
study region. It can be safely speculated that the possible
difference in the direction of correlation could be due to the
heterogeneities within the grid cell used in their study. The
remaining two predictors, Hus 925 and LH, are positively
correlated with the predictand (Fig. 6). The correlation
coefficient between Hus 925 and RH is strong (>0.6) as
expected because any increases in Hus (e.g., due to
increased soil wetness from precipitation) should raise the
local RH (Dai 2006). In this study, the predictors such as
latent heat flux and temperature at the earth's surface have
less correlation with the predictand for all the stratifications
except latent heat in wet season stratification. However,
these were selected as predictors since they satisfy criteria
two and four. For example, latent heat flux helps to control
surface temperatures, with important implications for
regional climate characteristics such as the intensity and
duration of heat waves (Jung et al. 2010).

6.2 Stratification

For each of the nine groups of predictors described in
Subsect. 5.1.2., scatter plots and cross-correlation bar plots
were prepared to verify the reliability of the simulation of
the predictor variables by the GCM (Figs. 3 and 4) and to
study the predictor–predictand relationships (Figs. 5 and 6).
Predictors ranked based on product moment correlation as
well as rank correlations (Spearman's and Kendall) lead to
the same conclusion. Henceforth, values of product
moment correlation only are mentioned, for brevity.

From a perusal of the scatterplots and correlation bar
plots between the probable predictor variables in NCEP and
GCM data sets (Figs. 3 and 4), it can be seen that the ability
of the GCM to simulate the predictor variables varies with
the predictor, season, and location. Ta 925 and Ta sur in
NCEP data are highly correlated with those in GCM data
for the grid points on land during dry season (correlations
are 0.89 and 0.83, respectively), and the same are less
correlated at the grid points on sea during wet season
(correlations are 0.58 and 0.38, respectively). These results
are consistent with the results in Dai (2006). Further, Hus
925 in NCEP and GCM data sets is highly correlated for
grid points on sea (correlation is 0.87) and is less correlated
for the grid points on land during wet season (correlation is
0.54). LH in the data sets is highly correlated during dry
season (correlation is 0.72) than in wet season, and it is less
correlated for the grid points on sea during dry season
(correlation is −0.03). The variables that are highly

correlated between NCEP and GCM data sets are consid-
ered to be realistically simulated by GCM.

From the above results, it can be inferred that there is
a high variability in (1) the ability of the GCM to
simulate the predictor variables with location and season
and (2) dependence structure between the predictor
variables and RH for the various stratifications considered
in this study. Hence, seasonal and location-based stratifica-
tions are necessary for selecting the potential predictors for
downscaling.

6.3 Selection of potential predictors for downscaling

The potential predictor variables were identified from the
probable predictors by analyzing the scatterplots and the
cross-correlation bar plots prepared for each of the nine
predictor groups at each of the nine NCEP grid points.
Typical plots prepared for one scenario (where no stratifi-
cation is considered) are shown in Figs. 7, 8, and 9. Results
indicate that the selected potential predictors depend on the
chosen predictor group and the thresholds given for
correlations between the predictors in NCEP and GCM
data (Tng) and between the predictors in NCEP data and the
predictand (Tnp).

Scatterplots in Fig. 7 were prepared to investigate the
relationship between the probable predictor variables in
NCEP and GCM data sets for the various predictor groups
considered in this study, while the scatterplots in Fig. 8
were prepared to investigate the relationship between the
probable predictor variables in NCEP data and the
predictand data.

The potential predictors selected for a threshold of 0.6
are presented in Table 3 for brevity. Only Hus 925 is
selected as a potential predictor for dry season, from the
predictor groups pertaining to land and/or sea grid points.
In addition to Hus 925, Ta 925 and Ta sur are selected as
potential predictors from the predictor groups pertaining to
wet season, and wet season and land.

The scatterplots and correlation bar plots between the
probable predictor variables in NCEP data sets and the
predictand (Figs. 3 and 6) show that the linear dependence
structure between each of the predictor variables and the
predictand varies with the stratification.

In general, the choice of thresholds Tng and Tnp is
subjective and can theoretically vary from 0 to 1. In this
study, the threshold is varied between 0.01 and 0.84 for
scrutinizing its effect on the selection of potential predic-
tors. A low threshold (say 0.01) resulted in selecting all the
predictors, which include variables that are not realistically
simulated by GCM and have less dependence structure with
the predictand. For example, the LH with stratifications
such as wet, sea, wet and sea, dry and sea are not
realistically simulated by GCM. These predictors have less
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Fig. 7 Scatterplots prepared to
investigate dependence structure
between predictor variables in
NCEP and GCM data sets, for
selecting potential predictors for
the period 1978–2000. The
ordinate denotes the GCM value
of the predictor variable,
whereas the abscissa represents
the NCEP value of the same

Fig. 8 Scatterplots prepared to
investigate dependence structure
between predictor variables in
NCEP and predictand, for
selecting potential predictors for
the period 1978–2000. The
value of the NCEP predictor
variable is plotted as ordinate,
whereas the value of the
predictand is plotted as abscissa
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correlation with the predictand. In contrast, a high threshold
resulted in selecting only a few of the probable predictors
as the potential predictors, for example, Hus 925. In
general, Hus 925 is found to be highly correlated with the
predictand, and it is followed by Ta 925 and Ta sur. LH is
found to be the least correlated potential predictor. For a
threshold of 0.8, Hus 925 over grid points 1 to 6 is selected

as the potential predictor. Among these, points 1 and 4 are
on the ocean, whereas points 2, 3, 5, and 6 are on land.

From the foregoing discussion (Sect. 6.1 to 6.3), it can
be inferred that the relationship between the predictor
variables and the RH varies with season and location. The
seasonal cycle is brought out well by the models, which
gives confidence in the model ability to simulate the large-

Table 3 List of potential
predictors selected for
developing downscaling models
for each of the nine groups of
predictors, for a threshold of 0.6
between probable predictors in
NCEP data and the predictand

The numbers shown for NCEP
grid points correspond to Fig. 1

Group number Stratification type Potential predictors selected

Names NCEP grid points

1 No stratification Ta_sur 8

Hus_925 1, 2, 3, 4, 5, 6, 7, 8, 9

LH 3, 6

2 Dry season Hus_925 1, 2, 3, 4, 5, 6, 7, 8, 9

3 Wet season Ta_925 1, 2, 3, 4, 5, 6, 7, 8, 9

Ta_sur 1, 2, 3, 4, 5, 6, 7, 8, 9

Hus_925 1, 2, 3, 4, 6, 7

4 Land location Hus_925 2, 3, 5, 6, 8, 9

LH 6, 9

5 Sea location Hus_925 1, 4, 7

6 Wet season and land Ta_925 2, 3, 5, 6, 8, 9

Ta_sur 2, 3, 5, 6

Hus_925 2, 3, 6

7 Wet season and sea Ta_925 1, 4, 7

Hus_925 4, 7

8 Dry season and land Hus_925 2, 6, 9

9 Dry season and sea Hus_925 1, 4

Fig. 9 Correlation bar plots
prepared for selecting potential
predictors for the period
1978–2000. X denotes correlation
between predictor variables in
NCEP and GCM data sets. The
correlation between predictor
variables in NCEP and the
predictand is represented as Y.
The blue, green, and red bars
in X and Y represent product
moment correlation, Spearman's
rank correlation, and Kendall's
tau, respectively
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scale features. From among the nine groups of
predictors considered, for a threshold, the number of
feature vectors extracted may be inadequate to discern
any relationship for the three stratifications namely
“dry season and land,” “wet season and sea,” and “dry
season and sea.” Further, predictors based on sea
stratification alone cannot be effective, as the study
region is far from sea. A downscaling model was not
developed for “wet and land” stratification, since
developing a model for only “wet and land” stratifica-
tion will provide downscaled results for wet period
alone. There are no values for the dry and land, as a
separate downscaling model was not developed for
reasons mentioned earlier. Hence, SVM models have
been developed to downscale RH from each of the four
stratification groups (wet season, dry season, land, and
no stratification). This addresses objective 1 mentioned
in Sect. 2.

6.4 Development of SVM downscaling models

Nine SVM downscaling models were developed for various
combinations of stratification groups and predictor varia-
bles chosen for downscaling based on thresholds. Set (1)
consists of all the four predictors (Hus 925, Ta 925, Ta sur,
and LH) for land grid points, set (2) has three predictors
(Hus 925, Ta 925, and Ta sur) for land grid points, set (3)
comprises Ta 925 and Ta sur for land grid points, whereas
set (4) has only Hus 925 for land grid points. Sets (5) to (8)
have the same four (Hus 925, Ta 925, Ta sur, and LH),
three (Hus 925, Ta 925, Ta sur), two (Ta 925, Ta sur), and
one (Hus 925) numbers of predictors, but there is no
stratification, and all the nine grids were considered. Set (9)
comprises predictors which resulted in the best SVM

downscaled model from among those developed using the
nine predictor groups listed in Subsect. 5.1.2. The first set
was chosen to study the overall effect of using all the
predictors, the second set enables studying the effect of
removing the predictor LH that is least correlated between
NCEP and GCM data sets, while the third set was useful to
investigate the effect of using only predictors that are
negatively correlated with the predictand, and finally, the
fourth set was considered to assess the impact of using only
the most realistically simulated predictor as input to SVM.
Sets (1) to (9) were analyzed to study the uncertainty due to
stratification.

The optimal ranges of SVM parameters, namely kernel
width (σ) and penalty term (C), are obtained using the grid
search procedure. Typical results of the domain search
performed to estimate the optimal ranges of the
parameters are shown in Fig. 10. From this figure, the
range of σ and C having the least Normalized Mean
Square Error (NMSE) is selected as the optimal parameter
range. The NMSE values are indicated in the barcode
provided close to the figure. The optimal value of each
parameter is obtained from its optimum range using
genetic algorithm.

The performance of the nine SVM models (one for
each set) was evaluated using three statistical measures,
and results are shown in Fig. 11. From the figure, it can
be observed that among the models considered, the
performance of the model developed using potential
predictors pertaining to land grid points (set 9) is
better. The optimal values of σ and C parameters for the
best SVM model are 129 and 511, respectively. Results of
this model for the validation period (January 1994 to
December 2000) are shown in Fig. 12. This addresses
objective 2 listed in Sect. 2.
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Fig. 10 Typical results of the
domain search to determine
optimal ranges of the parameters
(kernel width, σ; penalty, C) for
the SVM models developed in
the study. The bar code
indicates the NMSE values. The
parameters giving the least
NMSE values are estimated
from the optimal ranges using
genetic algorithm
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6.5 Uncertainty in predictors selected

To address objective 3, the sensitivity of the SVM outputs
to variations in their inputs has been examined using the
nine sets of predictors.

The uncertainty in the monthly sequences of RH

generated by the nine SVM downscaling models is
represented in two ways, (1) using three performance
measures (Ef, MAE, and P) (Fig. 11) and (2) using
cumulative distribution functions (CDFs) (Fig. 13).

In Fig. 13 a, the uncertainty of RH downscaled for the
period January 1978–December 2000 using predictors in
NCEP data sets is brought out for the study region. The
uncertainties of RH obtained using GCM simulations of
predictors are shown in part b of the figure.

For different threshold values (Tng and Tnp) mentioned in
Subsect. 5.1.3, the predictors selected for downscaling
varied. A SVM downscaling model was developed with the
selected predictors for a threshold. The performance of all
the developed SVM models was compared. The results
indicate that the performance of the developed SVM
models was good with thresholds greater than 0.3.
However, the performance decreased considerably with a

drop in the threshold below 0.3. This is because predictors
with low dependence get selected as potential predictor for
low threshold, which affects the model performance. The
LH is not realistically simulated by GCM. Further, the
NCEP reanalysis gridded field of LH is highly model
dependent (Kalnay et al. 1996). The use of Ta 925 and Ta
sur as predictors did not improve the model performance
but affected the projected trend of the predictand, which
will be discussed in detail in the next subsection. Among all
the developed models, the model based on single predictor
of set (4) showed better performance than the model
developed using the four predictors in set (1). But its
performance was inferior to the model developed using
three predictors in set (2) which does not contain LH. This
could be because only one predictor chosen for set (4) may
be insufficient to represent the thermodynamics and
dynamics of circulation in the region. On the other hand,
selecting all the predictors creates noise, which affects the
performance of the developed model.

6.6 Assessment of trend in the downscaled predictand

The statistical significance of the trend in the projected
RH scenarios is assessed using null hypothesis considering
99% confidence level. This addresses objective 4 set for
the study. For the test, it is assumed that the variances of
past and projected RH are unknown and unequal. In the
null hypothesis, the mean RH for the past (1978–2000)
and the projected future periods (2001–2100) are assumed
to be equal. The test statistic, T (Kottegoda and Rosso
1998), is computed for the various IPCC scenarios for
the nine sets.

From Fig. 14, contradictory trends (positive, negative,
and neutral) can be observed for SRES A2, followed by
A1B, B1, and the least for COMMIT scenarios. Results
show that selecting predictors with increasing trend and
with positive correlation with RH produces a significant
increasing trend in RH, while selecting predictors with
increasing trend and with negative correlation with RH

produces a significant decreasing trend in RH. For example,

Fig. 12 Typical results from the best SVM downscaling model for the
validation period (January 1994 to December 2000). Observed
sequence of monthly relative humidity (RH) is compared with RH

downscaled using each of the models. The best SVM model
downscaled RH from potential predictors pertaining to land location
in NCEP data

Fig. 11 Uncertainty of SVM models developed for each of the nine
sets of predictors and stratifications mentioned in Sect. 6.4. Down-
scaled RH values are compared with observed RH values for the period
1978 to 2000, to estimate the three performance measures (Ef, MAE,
and P). Maximum value of Ef, MAE, and P indicates better
performance
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the projections for the predictand based only on the
predictors Ta 925 and Ta sur showed a significant negative
trend for A1B, A2, and B1 scenarios, whereas no trend is
discerned with COMMIT. This is due to the fact that
temperature is projected to increase in the future for A1B,
A2, and B1 scenarios (highest for A2 and least for B1), and
it is negatively correlated to RH. Hence, it can be inferred
that the trend in the downscaled predictand depended on the
trend of predictors (positive, negative, or no trend), the
predictor–predictand correlation (positive, negative, or no
correlation), and the noise inherent in the selected pre-
dictors. The conflict in trends is more pronounced for the
A2 scenario as the predictors have highest increasing trends
and predictor–predictand correlation.

From the significance tests, it can be observed that in the
overall context, for the best SVM model, the RH is
projected to increase in the future for A1B and A2
scenarios, whereas no trend is discerned for B1 and
COMMIT scenarios. This increase in RH, temperature
(Anandhi et al. 2009), and cloud cover (Anandhi 2008),
observed at a smaller scale in this basin in India, is in
agreement with the results in Dai (2006). Dai (2006) also
showed an increase in RH over India during the period
1976–2004 and attributed it to the increase in the surface
specific humidity coupled with moderate warming and
increase in low clouds over these regions. The study by
O'Gorman and Muller (2010) also showed a slight increase
in multi-model mean RH for this region for A1B emissions
scenario during the period 2080–2099. They used outputs
from 12 GCMs participating in the IPCC AR4 report.

Simmons et al. (2010) showed a small reduction in relative
humidity over land/Asia over a period of 10 years ending
with 2008, based on monthly anomalies in the surface air
temperature and humidity from comprehensive European
Centre for Medium-Range Weather Forecasts reanalyses
(ERA-40 and ERA-Interim) and from Climatic Research
Unit and Hadley Centre analyses of monthly station
temperature data (CRUTEM3) and the synoptic humidity
observations (Hadley Centre and Climate Research Unit
global surface humidity, HadCRUH). They point to faster
warming over the land relative to the oceans as a causal
mechanism for the decreasing RH from 2001 to 2008.
Willett et al. (2010) showed an increase in humidity in the
Asian region when observed changes in the HadCRUH
global land surface specific humidity and CRUTEM3
surface temperature from 1973 to 1999 are compared with
CMIP3 archive climate model simulations with 20th
century forcings. They found that the variability over
Southern Asia is biased high in the majority of models,
especially in June–July–August season.

The uncertainty in the future projections of RH was
discerned from the CDFs shown in Fig. 14 for the various
combinations of scenarios, predictor sets, and downscaling
methods.

6.7 Development of disaggregation models

The monthly values of RH obtained from the SVM
downscaling model are disaggregated to daily values using
each of the two disaggregation models (models 1 and 2) to

Fig. 14 Uncertainties in
downscaled future scenarios of
RH to IPCC SRES scenarios
(A1B, A2, B1, and COMMIT)
and predictors selected (nine sets
of predictors and stratifications).
In each of the plots, the black
bold line represents the CDF
obtained using daily observed
data for the study region for the
period 2001–2100

Fig. 13 The CDFs showing
the uncertainty in the RH

downscaled using SVM method
for nine sets of predictor and
stratification combinations for
the period 1978–2000
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identify the better disaggregation model. The results
presented in Table 4 show that the disaggregation model
based on k-NN technique (model 1) performs better than
the disaggregation model based on the triangular distribu-
tion method of SWAT (Neitsch et al. 2001) (model 2). The
disaggregated values obtained based on model 1 were
compared with the observed mean daily values of RH for
1994–2000 in Figs. 15 and 16. Thus, objective 5 set for the
study is addressed.

7 Summary and conclusions

A two-stage methodology was developed to obtain the
future projections of daily RH in a river basin for
combinations of IPCC SRES scenarios (A1B, A2, B1,
and COMMIT) and the selected predictors (nine sets of
predictors) using SVM for downscaling.. In the first
stage, SVM model was developed to downscale large-
scale atmospheric variables to RH in a river basin at
monthly scale. Subsequently, the monthly sequences of
RH were disaggregated to daily scale using k-NN method.
The idea behind developing the two-stage methodology
is that the monthly sequences of atmospheric variables
simulated by the GCM are more reliable than those
simulated at daily scale. Further, the SVM requires

large computational effort to directly downscale daily
sequences of the large-scale atmospheric variables to
daily sequences of hydrometeorological variables in a
river basin.

The large-scale atmospheric variables namely tempera-
ture and specific humidity at 925 mb, latent heat, and
surface temperature, which have a physically meaningful
relationship with RH, were chosen as the predictors for
downscaling RH.

Stratifications based on the seasons and the location
(land/sea) were considered to facilitate the develop-
ment of a separate downscaling model for capturing
relationship between the predictors and predictand for
each season (wet and dry), location (land and sea),
and combination of season and location (wet season
and land, dry season and land, wet season and sea,
dry season and sea). Scatterplots and the three
measures of dependence (product moment correlation,
Spearman's rank correlation, and Kendall's tau) were
used to evaluate the relationships between predictors in
NCEP and GCM data sets and to study the predictor–
predictand relationships.

Results indicate that the relationship between the
predictor variables and the RH varies with season and
location, and stratifications are necessary for selecting
the potential predictors for downscaling. Selecting very
few predictors did not improve the model performance,
as they were insufficient to represent the thermodynam-
ics and dynamics of circulation in the region. On the
other hand, selecting all the predictors had adverse
affect on the performance of the developed model, due
to the addition of noise. Hence, a judicious combination
of the predictors was preferred. The results of SVM
downscaling models indicated that the RH downscaled
using the predictors for land-based stratification per-
formed the best.
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Fig. 16 The distribution of the disaggregated mean daily relative
humidity obtained using k-NN disaggregation model. The solid line
denotes the 95 percentile of the disaggregated values, whereas the
dotted line indicates the 5 percentile of the same, respectively. The
circle denotes the observed mean daily relative humidity for the
validation period (January 1994 to December 2000)
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Fig. 15 Observed mean daily relative humidity for the validation
period (January 1994 to December 2000) is compared with that
obtained using k-NN disaggregation model

Table 4 Error statistics computed for daily sequences of relative
humidity generated by the two disaggregation models for the
validation period

Performance measure Model 1 Model 2

Ef 0.20 −0.39
MAE 0.21 −0.18
P 0.60 0.57

Maximum values of Ef, MAE, and P indicate better performance
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On the whole, for the best SVM model, the RH was
projected to increase in the future for A1B and A2
scenarios, whereas no trend was discerned for B1 and
COMMIT scenarios. The trend in the projected RH was
found to be sensitive to the predictors selected.

The k-NN model developed to disaggregate the sequence
of monthly mean RH to daily mean RH was found to be
more efficient than the triangular distribution method of the
SWAT model.
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Appendix 1

The downscaled scenarios are constructed by translating
GCM-simulated information from coarser scale to finer
watershed scale using spatial downscaling models, based
on the assumption that regional climate is conditioned
by the climate on a relatively larger scale (e.g.,
continental). The spatial downscaling techniques can be
broadly classified into dynamic downscaling and statis-
tical downscaling. In the dynamic downscaling approach, a
Regional Climate Model (RCM) is embedded into
GCM. The RCM is essentially a numerical model in
which GCMs are used to fix boundary conditions. The
major drawback of RCM, which restricts its use in
climate impact studies, is its complicated design and
high computational cost. Whereas, the statistical down-
scaling involves deriving empirical relationships that
transform large-scale features of the GCM (LF) to
regional-scale variables (RSV)

RSV ¼ g LFð Þ
where RSV represents predictands, LF refers to predictors,
and g is a downscaling function which could be
deterministic or stochastic.

The classical statistical downscaling techniques in-
clude weather classification methods, weather genera-
tors, and transfer functions. The simple and commonly
used statistical downscaling approaches are based on
transfer functions, which model relationships between
predictors and predictand using methods such as linear
and nonlinear regression, artificial neural networks,
canonical correlation, principal component analysis,
and SVM. In this paper, the transfer function-based

statistical downscaling method is chosen for determining
plausible future scenarios of relative humidity.

Least-Square Support Vector Machine

The Least-Square Support Vector Machine (LS-SVM) has
been used in this study for downscaling. Details of the
same can be found in Suykens (2001) and Tripathi et al.
(2006). This subsection presents the underlying principle of
the LS-SVM.

Consider a finite training sample of N patterns
xi; yið Þ; i ¼ 1; :::;Nf g, where xi is the ith pattern in n-

dimensional space (i.e., xi ¼ x1i; . . . ; xni½ � 2 <n), and it
constitutes input to LS-SVM, whereas Yi ∈ ℜ is the
corresponding value of the desired model output. Further,
let the learning machine be defined by a set of possible
mappings x 7!f x;wð Þ, where f (·) is a deterministic function
which, for a given input pattern x and adjustable parameters
w (w 2 <n), always gives the same output. The training
phase of the learning machine involves adjusting the
parameter w. These parameters are estimated by minimizing
the cost function ΨL (w,e).

yL w;eð Þ ¼ 1

2
wTwþ 1

2
C
XN
i¼1

e2i ð5Þ

subject to the equality constraint

yi � byi ¼ ei i ¼ 1; :::;N ð6Þ

where C is a positive real constant, and byi is the actual
model output. The first term of the cost function represents
weight decay or model complexity–penalty function. It is
used to regularize the weight sizes and to penalize the large
weights. This helps in improving the generalization
performance (Hush and Horne 1993). The second term of
the cost function represents penalty function.

The solution of the optimization problem is obtained by
considering the Lagrangian as

L w; b; e;að Þ ¼ 1

2
wTwþ 1

2
C
XN
i¼1

e2i �
XN
i¼1

ai byi þ ei � yif g ð7Þ

where αi are Lagrange multipliers, and b is the bias term.
The conditions for optimality are given by

@L
@w ¼ w�PN

i¼1
aif xið Þ ¼ 0

@L
@b ¼

PN
i¼1

ai ¼ 0

@L
@ei

¼ ai � Cei ¼ 0 i ¼ 1; :::;N
@L
@ai

¼ byi þ ei � yi ¼ 0 i ¼ 1; :::;N

8>>>>>>><>>>>>>>:
ð8Þ
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The above conditions of optimality can be expressed as
the solution to the following set of linear equations after
elimination of w and ei.

0 1
!T

1
!

Ω þ C�1I

" #
b
a

� 	
¼ 0

y

� 	
ð9Þ

where

y ¼
y1
y2
..
.

yN

26664
37775; 1!¼

1
1
..
.

1

2664
3775
N�1

;a ¼
a1

a2

..

.

aN

26664
37775;

I ¼
1 0 . . . 0
0 1 . . . 0
..
. ..

. ..
. ..

.

0 0 . . . 1

2664
3775
N�N

ð10Þ

In Eq. (9), Ω is obtained from the application of Mercer's
theorem.

Ωi;j ¼ K xi; xj

 � ¼ f xið ÞTf xj


 � 8i; j ð11Þ

where ϕ(·) represents nonlinear transformation function
defined to convert a nonlinear problem in the original lower
dimensional input space to linear problem in a higher
dimensional feature space.

The resulting LS-SVM model for function estimation is:

f ðxÞ ¼
X

a
»

i K xi; xð Þ þ b
» ð12Þ

where a
»
i and b* are the solutions to Eq. (7), K(xi, x) is the

inner product kernel function defined in accordance with
Mercer's theorem (Courant and Hilbert 1970; Mercer 1909),
and b* is the bias. There are several choices of kernel
functions, including linear, polynomial, sigmoid, splines,
and radial basis function (RBF). The linear kernel is a
special case of RBF (Keerthi and Lin 2003). Further, the
sigmoid kernel behaves like RBF for certain parameters
(Lin and Lin 2003). In this study, RBF is chosen to map the
input data into higher dimensional feature space, which is
given by:

K xi; xj

 � ¼ exp � xi; xj

�� ��2
s

 !
ð13Þ

where, σ is the width of the RBF kernel, which can be
adjusted to control the expressivity of RBF. The RBF
kernels have localized and finite responses across the entire
range of predictors.

The advantage of RBF kernel is that it maps the training
data non-linearly into a possibly infinite-dimensional space,
and thus, it can effectively handle the situations when the
relationship between predictors and predictand is nonlinear.

Moreover, the RBF is computationally simpler than
polynomial kernel, which requires more parameters. It is
worth mentioning that developing LS-SVM with RBF
kernel involves a judicious selection of RBF kernel width
σ and parameter C.

The software used in this study is the “LS-SVMlab: a
MATLAB toolbox for Least Squares Support Vector
Machines.” Details of the software can be found at http://
www.esat.kuleuven.ac.be/sista/lssvmlab/tutorial/lssvmlab_
paper0.pdf. The running time for the worst case (the
maximum of the running times over all nine cases
considered in the study) was 15 min, while the same for
the best case was 5 min (on a Pentium PC). The average
run time over all the cases was 9 min.
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