
ar
X

iv
:1

30
3.

07
06

v1
  [

qu
an

t-
ph

] 
 4

 M
ar

 2
01

3

Limit on Time-Energy Uncertainty with Multipartite Entanglement
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We establish a relation between the geometric time-energy uncertainty and multipartite entan-
glement. In particular, we show that the time-energy uncertainty relation is bounded below by the
geometric measure of multipartite entanglement for an arbitrary quantum evolution of any multi-
partite system. The product of the time-averaged speed of the quantum evolution and the time
interval of the evolution is bounded below by the multipartite entanglement of the target state.
This relation holds for pure as well as for mixed states. We provide examples of physical systems
for which the bound reaches close to saturation.

I. INTRODUCTION

In the beginning of the last century, the geometry of
space-time has played an important role in the reformu-
lation of classical mechanics. Similarly, it is hoped that
a geometric formulation of quantum theory, and an un-
derstanding of the geometry of quantum state space can
provide new insights into the nature of quantum world
and, in particular, into the field of quantum information
science. In quantum theory, the geometric properties of
the quantum state space are characterized by the Rie-
mannian metrics defined on the corresponding projective
Hilbert space [1–6]. The discovery of geometric phase,
by Pancharatnam [7] and then by Berry [8], provided a
new fillip to the importance of geometric properties in
the quantum domain. The connection of this phase to
the Riemannian metrics lead to a new understandings in
terms of the geometrical ideas on the projective Hilbert
space [9]. One of the significant outcomes of this geo-
metric approach is the geometric quantum uncertainty
relation (GQUR) [2, 4, 10] which constraints the motion
of a system in its projective Hilbert space. Importantly,
it was found that for any such evolution, there exists a
lower bound on the product of the time separation be-
tween initial and final state and its time-averaged energy
fluctuation [4].

Entanglement has played a pivotal role in the recent
developments of quantum information [11]. On the prac-
tical side, the major challenge is to create, store, and
process multiparty entanglement in a controlled manner.
This has created an immense interest to understand the
properties of entangled quantum states and the dynam-
ics of entanglement in a multiparticle scenario [12]. An
unentangled multiparty quantum system, if allowed to
interact, may evolve to an entangled state, depending
on the initial state and the driving Hamiltonian. Hence
it is important to identify the class of initial states and
the class of non-local Hamiltonians that can create a de-
sired entangled quantum state. The entangling capac-
ity of Hamiltonians for two qubits and the relation of
the “speed” of the quantum evolution with the entan-
glements of the initial and final states were addressed in
Ref. [13].

In this article, we pose the question: does multipar-
tite entanglement have any connection to the geometry

of quantum evolution? Or, more generally, can the geo-
metric quantum uncertainty relation be connected, quan-
titatively, with the multipartite entanglement present in
the system? This question is important not only due
to its fundamental nature, but also because of its prac-
tical relevance in quantum information. We establish a
relationship between the multipartite entanglement in a
many-body quantum system and the total distance trav-
eled by the state (pure or mixed) during its evolution.
This leads us naturally to consider the geometric time-
energy uncertainty relation for multiparty quantum sys-
tems, and to provide a connection of the same to mul-
tipartite entanglement. In particular, we find that the
minimum time taken by an initial quantum state (pure
or mixed) to reach a target entangled state is bounded
below by the geometric measure of multipartite entangle-
ment [14, 15] (cf. [16] ) upto a factor depending upon the
corresponding path-integrated energy fluctuation. In the
case of mixed states, we show that the relation is generic,
in that its form is independent of the specific metric used.
We exemplify this by using various metrics such as, the
Fubini-Study [2, 5], the Hilbert-Schmidt [4], and the Bu-
res metrics [6, 10]. We then investigate the relation of
genuine multipartite entanglement with the GQUR by
considering a physically realizable quantum many-body
model, viz., the Heisenberg spin chain.

The structure of the article is as follows. In Sec. II,
we introduce the geometric quantum uncertainty rela-
tion (GQUR) in connection to quantum evolution for
pure states. We derive the relation between the GQUR
and the multipartite entanglement measures for the cor-
responding pure states, and illustrate the relation with
examples, in Sec. III. In Sec. IV, we show that a simi-
lar connection can be obtained for mixed quantum states
using different metrics. Finally, we conclude in Sec. V.

II. GEOMETRIC QUANTUM UNCERTAINTY

RELATION

The Hilbert space formalism of quantum mechanics
possesses interesting geometric properties, and their in-
herent features are used to build the geometric quantum
uncertainty relation [1–4, 6, 17]. Let {|Ψ〉} be a set of
vectors in a multiparticle Hilbert space H = ⊗N

i=1Hi.
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Since two unit vectors differing only in phase, represent
the same physically (i.e., quantum mechanically) equiv-
alent states, one can construct a ray space from these
equivalent classes of states. The set of rays of H, via a
projection map, forms the projective Hilbert space P(H).

If dimHi = d ∀i, thenH ∼= CdN

. Correspondingly, for the

projective Hilbert space P = P(H) ∼= (CdN −{0})/U(1),
which is a complex manifold of dimension (dN − 1). This
can also be considered as a real manifold of dimension
2(dN − 1). Any quantum state at a given instant of time
can be represented as a point in P via the projection
map Π : |Ψ〉 → |Ψ〉〈Ψ|. The evolution of the state vector
represents a curve C : t → |Ψ(t)〉 in H whose projection
Π(C) lies in P [1–6, 9, 17].
For a given curve, one can ask how much distance the

system has traveled during its time evolution. As the
state evolves under the Schrödinger evolution, it traces a
curve in the Hilbert space. Different Hamiltonians may
give different curves, but all of them may be projected
to a single curve in P . For pure states, the distance, S,
between any two points in the projective Hilbert space P ,

corresponding to the quantum states |Ψ(λ)〉 and |Ψ(λ
′
)〉

can be defined with the Fubini-Study distance [2], as

S2 = 4
(

1− |〈Ψ(λ
′
)|Ψ(λ)〉|2

)

, (1)

where λ and λ
′
are parameters on which these states de-

pend. The distance is in fact between rays corresponding
to the vectors of H, and is hence defined in P . If two vec-
tors differ from each other infinitesimally then we have
the infinitesimal Fubini-Study metric as given by

dS2 = 4
(

1− |〈Ψ(λ+ dλ)|Ψ(λ)〉|2
)

= 4 (〈∂iΨ|∂jΨ〉 − 〈∂iΨ|Ψ〉〈Ψ|∂jΨ〉) dλidλj ,
(2)

where we have retained terms upto second order only.
Another distance, denoted as S can be defined via the
Bargmann angle [2]

|〈Ψ1|Ψ2〉|2 = cos2
(S
2

)

. (3)

For infinitesimally close vectors, the Fubini-Study dis-
tance, and the distance obtained via the Bargmann angle
are the same and is given by Eq. (2). In addition, one
can also define the “minimum normed distance” between
the states |ψ1〉 and |ψ2〉 as [1, 5]

S2
N = 2 (1− |〈Ψ1|Ψ2〉|) . (4)

However, when the states differ infinitesimally, we get
4dS2

N = dS2.
Let us now consider the parametrization of a curve in

H using the time t. During the unitary time evolution
of the quantum state by the Hamiltonian H , the path
taken by the state should be guided by the property of
the quantum state and the characteristics of the Hamil-
tonian. The important result obtained by Aharonov and

Anandan is that the energy fluctuation of the state drives
the quantum evolution [2]. In the projective Hilbert space
P , an isolated system can move if and only if it is not in a
stationary state, i.e., it has a non-zero energy fluctuation,
which for the state |ψ(t)〉 is denoted as ∆H(t).
Suppose that a quantum state |Ψ(t)〉 is transported

to a state |Ψ(t + dt)〉 after an infinitesimal time inter-
val dt, following the Schrödinger evolution governed by
the Hamiltonian H(t). By using the Fubini-Study met-
ric in Eq. (2), the infinitesimal distance that the system
traverses during this evolution is given by [2]

dS =
2

~
∆H(t)dt, (5)

where ∆H(t) is the energy fluctuation, defined by

∆H(t)2 = 〈Ψ(t)|H(t)2|Ψ(t)〉 − 〈Ψ(t)|H(t)|Ψ(t)〉2. (6)

The above relation implies that a higher energy fluctua-
tion leads to a higher speed in the evolution. If the initial
state |Ψ(0)〉 is transported to the state |Ψ(τ)〉 after a time
τ , it follows a path whose total distance is

S =
2

~

∫ τ

0

∆H(t)dt. (7)

For a time independent Hamiltonian, the energy uncer-
tainty, ∆H , is a constant throughout the evolution. In
this case, the total distance that the system traverses
during its evolution, from |Ψ(0)〉 to |Ψ(τ)〉, is given by

S =
2

~
τ ∆H. (8)

Note here that there are infinitely many Hamiltonians
can be used to transport the same initial state |Ψ(0)〉
to the same final state |Ψ(τ)〉. The distance traversed
for any such path must be lower than S0, where S0 is
the shortest geodesic connecting |Ψ(0)〉 and |Ψ(τ)〉 in P ,
according to the same metric that is used to calculate
the actual distance traveled in the quantum evolution.
In other words, we have

τ∆H > ~ cos−1(|〈Ψ(0)|Ψ(τ)〉|). (9)

where we have used the metric generated via the
Bargmann angle. One can also use the Fubini-Study dis-
tance of Eq. (1) or the minimum normed distance of Eq.
(4) to generate the metric, in which case weaker rela-
tions are obtained. Such relations are usually referred to
as the geometric quantum uncertainty relation (GQUR).
The equality in Eq. (9) holds only for the quantum tra-
jectories that coincide with the geodesics in P . Quantum
states which satisfy the equality are known as intelligent
states [18]. In case, the Hamiltonian is time-dependent,
the GQUR is

∫ τ

0

∆H(t)dt > ~ cos−1(|〈Ψ(0)|Ψ(τ)〉|). (10)
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III. GQUR AND MULTIPARTITE QUANTUM

ENTANGLEMENT

Entanglement measures of multiparty quantum states
can be defined by considering the geometric distance
as measured by a given metric from a specified set of
non-entangled (separable) quantum states, in the Hilbert
space. Depending on the set of non-entangled states,
from which the distance is measured, the distance quan-
tifies different types of entanglement present in the sys-
tem. For an N-party pure quantum state |ΨN 〉, such a
measure of multipartite entanglement can be defined as
[14, 15]

EC(|ΨN 〉) = min
{|Φm〉∈SC}

(

1− |〈Φm|ΨN〉|2
)

, (11)

where the minimization is carried over a certain set of
separable states SC . There is a hierarchy of such geomet-
ric measures, depending on the set of states {|Φm〉 ∈ SC}
chosen for the minimization. Among the set of such mul-
tipartite entanglement measures, EC , two are more promi-
nent, in that they are defined with respect to two ex-
tremal choices of the set SC . More precisely, choosing SC

to be the set, S0, of all fully separable states, i.e., states
of the form |Φ1〉⊗|Φ2〉⊗ . . .⊗|ΦN 〉 in the N-party tensor
product Hilbert space of the N-party system, we obtain
the “geometric measure” (GM) of multiparty entangle-
ment [14]. We denote it by E0. On the other hand, if the
set SC is formed by the states which are not genuinely
multipartite entangled, the “generalized geometric mea-
sure” (GGM), is obtained [15]. An N-party pure quan-
tum state is said to be genuinely multiparty entangled
if it is entangled across every partition of the N parties
into two disjoint sets. We denote this set of separable
set as SG and the GGM as EG. In general, if the mini-
mization is carried out over the set of (k − 1)-separable
states, the measure will be called the geometric measure
EN−k+1. Note that the GGM, EG, gives the lowest value
among all the geometric multipartite entanglement mea-
sures, for a given multipartite quantum state. We can
define another geometric multipartite entanglement mea-
sure, G (EC), which is a monotonically increasing function
of EC, as

G (EC) = cos−1
√

1− EC . (12)

Note that G (EC) also satisfies all the properties of entan-
glement measures which EC satisfies.
Let us now build the connection between the geometric

quantum uncertainty relation and the geometric measure
of entanglement, EC.
Theorem: For an arbitrary quantum evolution, the time

interval multiplied by the time-averaged energy fluctua-
tion is bounded below by the geometric measure of mul-

tipartite entanglement, provided the initial state is unen-
tangled.

Proof: By definition, we have

|〈Ψ(0)|Ψ(τ)〉|2 6 1− EC (|Ψ(τ)〉) (13)

With the definition in Eq. (12) and remembering that the
distance function is always positive, the above relation
becomes

cos−1 (|〈Ψ(0)|Ψ(τ)〉|) > G (EC) . (14)

Now, using the geometric quantum uncertainty relation
in Eq. (10) and the above equation, we obtain

∆Hτ > ~ G (EC) , (15)

where ∆H is the time-averaged energy fluctuation, de-
fined as

∆H =
1

τ

∫ τ

0

∆H(t)dt, (16)

which can also be interpreted as the time-averaged speed
of the evolution. The equality in Eq. (15) holds only
when the Hamiltonian which drives the state follows the
geodesic, and the |Ψ(0)〉 coincides with the state |Φmin〉
for which the minimization is achieved in EC . �

Note here that the “unentangled” initial state in the
statement of the theorem is from the same set of sepa-
rable states, SC , which is used in the definition of the
EC .
The theorem implies that for a given energy uncer-

tainty ∆H , the minimum time τ required to connect
the initial and final states depends on the entanglement
present in the final state. It requires more time, τ when
the final state has more multipartite geometric entan-
glement. This result is potentially important in founda-
tional as well as practical aspects of quantum information
and beyond.
Let us now illustrate the effectiveness of the above

bound by considering some specific Hamiltonians. Con-
sider the N -qubit product state in the standard product
form given by

|Ψ〉 = |ϕ〉⊗N , (17)

where |ϕ〉 = cos θ|0〉 + exp(−iφ) sin θ|1〉 with θ ∈ [0, π]
and φ ∈ [0, 2π), and where |0〉 and |1〉 are eigen vectors
of the σz Pauli matrix with the eigen values +1 and -1,
respectively. Suppose that the evolution of the state is
guided by the Ising Hamiltonian

HI =
J

4

(

N−1
∑

i=1

(I − σz
i )(I − σz

i+1)

)

. (18)

We are therefore considering a liner arrangement of N
quantum spin-1/2 particles. σa

i (a = x, y, z) are the Pauli
spin matrices at the site i. J is a system parameter hav-
ing the dimension of energy. This Hamiltonian has been
used to obtain the “cluster state” which is an important
substrate for quantum computation [19].
Starting from the initial state |Ψ〉 with φ = 0, we now

check whether the lower bound given in Eq. (15) for this
Hamiltonian is tight or not. To do this, we generate all
possible initial states by varying the state parameter θ,
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and evolve the system for each such initial state, by using
the Ising Hamiltonian.
For ease of demonstration, we set

δ =
τ∆H

~
− G(EG). (19)

So the entanglement bound of the time-energy geometric
uncertainty is saturated if δ = 0. In Fig. 1, we plot δ,
in which the evolution is governed by the Hamiltonian
given in Eq. (18), consisting of three spins, with respect
to the evolution time τ and the initial state parameter θ.

FIG. 1. (Color online) Plot of δ = τ∆H

~
−G(EG) with respect

to Jτ

~
and initial state parameter θ. The product state, given

by Eq. (17), evolves according to the cluster Hamiltonian,
given in Eq. (18). The bound is tight for small evolution
time. While δ and Jτ

~
are dimensionless parameters, θ is

measured in radians.

To investigate whether the saturation of the lower
bound is potentially generic, we evolve the state, given
in Eq. (17), by considering the anisotropic XYZ (Heisen-
berg) Hamiltonian, given by

HH = J
N
∑

i=1

[

(1 + γ)σx
i σ

x
i+1 + (1 − γ)σy

i σ
y
i+1

+µσz
i σ

z
i+1 + hσz

i

]

. (20)

Here, γ ∈ [0, 1] is the anisotropy parameter which
modulates the relative strengths of the xx− and
yy−interactions and µ determines the strength of the
zz−interaction. And h is the applied magnetic field. γ, µ
and h are the dimensionless system parameters. J is a
system parameter that has the dimension of energy. The
Hamiltonian, HH , again describes a system of N quan-
tum spin-1/2 particles arranged in a ring. The case for
which γ = 1 and µ = 0 corresponds to the transverse
Ising Hamiltonian, while that for which γ = 0 and µ = 1
corresponds to the isotropic Heisenberg Hamiltonian. By
simulating the dynamics numerically, we observe that for
any choice of γ, δ, andh, the bound is tight for all low
values of the time of evolution. However, there exist in-
termediate values of initial state parameter θ, for which

the bound, given in Eq. (15), saturates also at large times
of the evolution. Also, in the (τ, θ)-space the saturation
of the bound happens in a larger area for high magnetic
fields, in comparison to low fields (see Fig. 2).

IV. MIXED STATES GQUR AND

MULTIPARTITE ENTANGLEMENT

Until now, we have dealt with the relation of the time-
energy uncertainty with multipartite entanglement, for
pure quantum states. In this section, we show that it is
also possible to obtain similar uncertainty relations for
mixed multipartite quantum states, by again involving
geometric multipartite entanglement measures. Unlike
for pure states, there are quantitatively distinct relations
that are obtained for different metrics that can be utilized
to metrize the space of density operators on the Hilbert
space corresponding to the physical system under con-
sideration. However, all metrics produce quantitatively
similar relations.

A. GQUR and multipartite entanglement using

Fubini-Study metric

The distance between two arbitrary mixed quantum
states can be quantified in several ways. One of the
prominent ones is the Hilbert-Schmidt distance, which
is defined for two arbitrary density matrices, ρ1 and ρ2,
as

SHS [ρ1, ρ2] =

√

Tr (ρ1 − ρ2)
2
. (21)

The above distance is Riemannian although it, in general,
is not contractive under completely positive maps. If
two density matrices, obtained via time evolution with
the same Hamiltonian and from the same initial state,
differ infinitesimally in the time parameter t, the metric
becomes

dS2
HS = Tr [ρ(t+ dt)− ρ(t)]

2

= Tr (ρ̇)
2
dt2,

(22)

where the ρ̇ is the time-derivative of ρ(t). The time evo-
lution, governed by the Hamiltonian H , following the
Schrödinger-von Neumann equation, i~ρ̇ = [H, ρ], leads
to

dS2
HS

dt2
=

4

~2
Tr
[

(ρ2H2)− (ρH)2
]

. (23)

The expression 2Tr
[

(ρ2H2)− (ρH)2
]

has been argued as
an quantum mechanical fluctuation in energy. We denote
it as ∆HQ(t)

2 [4]. A similar expression (up to a fac-
tor) also can be derived by using the Anandan distance,
which is an extension of the Fubini-Study (FS) distance
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FIG. 2. (Color online) Projection plots of δ with respect to the evolution time Jτ

~
(horizontal axes) and initial state parameter

θ (vertical axes). (a) and (b) respectively represent δ with no magnetic field (i.e., h = 0) and with h = 1.5. (1) is the plot of δ
for γ = 0andµ = 0.5, (2) corresponds to the same for γ = 0.5 andµ = 0, and (3) represents the same for γ = 0.5 andµ = 0.5.
Clearly, in all the cases, the bound is tighter for low τ than for larger times. However, at large time, when the applied magnetic
field is high, then the bound is more effective as compared to low magnetic fields. This feature remains the same for other
choices of the parameters γ, µ, and h. The units are as in Fig. 1.

for mixed states [4]. In fact, the metric, dSFS , in this
case, is related to dSHS as

dS2
FS = 4

(

1− Tr [ρ(t+ dt)ρ(t)]

Tr [ρ(t)2]

)

= 2 dS2
HS ,

(24)

where we assume that the Hilbert-Schmidt distance is
normalized by the trace of the square of the density ma-
trix at time t. Note here that the latter quantity (i.e., the
normalization) is time-independent. For pure states, the
above expression reduces to Eq. (2). So, by using Eqs.
(23) and (24), we obtain a relation between the speed of
the quantum evolution of the mixed quantum state with
the quantum fluctuation in energy, as

dSFS

dt
=

2

~
∆HQ(t). (25)

Therefore, if quantum fluctuation in energy is large, the
speed of quantum evolution will be fast. Following the
arguments given in the case of pure quantum states, the
geodesic distance S0 measured between two mixed states,
ρ1 and ρ2, with the help of the Fubini-Study metric, can
be given by

Tr [ρ1ρ2]

Tr [ρ21]
= cos2

(

S0

2

)

. (26)

Let us now consider that an initial state ρ(0) evolves to
a final state ρ(τ) in the time interval τ . In that case, the
geometric uncertainty relation is given by

1

~

∫ τ

0

∆HQ(t)dt > S0 = 2cos−1

√

Tr [ρ(0)ρ(τ)]

Tr [ρ(0)2]
(27)

For a time-independent Hamiltonian H , the above in-
equality reduces to

τ ∆HQ > ~ S0. (28)

To relate the uncertainty relation to multipartite en-
tanglement measures, let us introduce a distance-based
measure of quantum entanglement, based on the Fubini-
Study metric. For an arbitrary N-party quantum state
ρA1...AN

, the measure of multipartite entanglement, us-
ing the FS metric, is defined as

EFS
C (ρA1...AN

) = min
ρS

A1...AN
∈SC

(

1−
Tr
[

ρA1...AN
ρSA1...AN

]

Tr
[

ρ2A1...AN

]

)

(29)
where the minimization is carried over a certain class,
SC , of separable states. There is again a hierarchy
in the geometric measures defined in this way, just
like for pure states. For example, if the ρSA1...AN

are
fully separable, the corresponding measure denoted here
as EFS

0 (ρA1...AN
), can be called “geometric measure”

of entanglement under the FS metric. If the mini-
mization is considered over all the states which are
not (k − 1)-separable, then the measure, denoted as
EFS
N−k+1(ρA1...AN

), quantifies the entanglement content of
the class of states {ρA1...AN

} which are (k−2)-separable,
(k − 3)-separable and so on upto the set of genuinely
multipartite entangled states. Like in the case of pure
states, we can also define a valid measure of multipartite
entanglement, given by

G
(

EFS
C

)

= cos−1

√

1− EFS
C , (30)
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which is a monotonically increasing function of EFS
C . By

definition, ~S0 > ~G
(

EFS
C

)

. Hence from Eq. (28), we
obtain

τ ∆HQ > ~ G
(

EFS
C

)

, (31)

which is an uncertainty relation involving multipartite
entanglement and the energy fluctuation of multipartite
quantum states involved in a quantum dynamics.

B. Bures metric, GQUR, and entanglement

The distance between two arbitrary quantum states
can geometrically be measured also by the Bures metric,
which is defined as

dS2
B =

(

2− 2
√

F (ρ(t), ρ(t+ dt))
)

, (32)

where the Uhlmann fidelity, F , is given by

F (ρ1, ρ2) =

(

Tr
√√

ρ1ρ2
√
ρ1

)2

. (33)

The metric is Riemannian. Moreover in contrast to the
FS metric, it is also contractive under completely positive
maps. In this case, the energy fluctuation, ∆H(t)2 =
Tr(ρH2) − (TrρH)2, can be shown to be related to the
Uhlmann fidelity [10] as

∫ τ

0

∆H(t)dt > ~ cos−1
√

F (ρ(0), ρ(τ)). (34)

where ρ(0) and ρ(τ) respectively correspond to the quan-
tum states at times t = 0 and t = τ . For time-
independent Hamiltonians, it again reduces to

τ ∆H > ~ cos−1
√

F (ρ(0), ρ(τ)). (35)

The above relation is known as the time energy geometric
quantum uncertainty relation using Bures metric.
We can exploit the Bures metric to define distance

based measure of multipartite entanglement, and for an
arbitrary N-party quantum state ρA1...AN

, it reads

EB
C (ρA1...AN

) =

min
ρS

A1...AN
∈SC

(

1− Tr

√

√

ρSA1...AN
(ρA1...AN

)
√

ρSA1...AN

)

.

(36)

In particular, if the minimum is taken over the set of
states which are not genuinely multipartite entangled,

the corresponding measure is denoted as EB
G (ρA1...AN

),
and quantifies the genuine multipartite entanglement
present in the quantum state. Therefore, time-energy ge-
ometric quantum uncertainty relation, in terms of mul-
tipartite entanglement measure quantified by using the
Bures metric, is given by

τ ∆H > ~ G
(

EB
C

)

. (37)

A similar relation, but involving the time integral of the
energy fluctuation, holds for time-dependent Hamiltoni-
ans.

V. CONCLUSION

In quantum theory, the celebrated Heisenberg uncer-
tainty relation provides a bound on the position and mo-
mentum uncertainties, in terms of Planck’s constant. In-
deed, for most of the history of quantum theory, the
Planck’s constant has played a dominating role in pro-
viding the ultimate bounds on our ability to measure
two incompatible observables and in a variety of other
aspects. In the ground-breaking works on Bell inequality
and other quantum information tasks, it is quantum en-
tanglement that seems to dominate most of the develop-
ments. It is intriguing to ask whether quantum entangle-
ment also sets a fundamental bound on the quantum fluc-
tuations. In this work, for the first time, we have shown
that it is not only the Planck’s constant but also quantum
entanglement that plays an important role in setting the
limits for the quantum uncertainties. This is attained by
using the geometry of space of quantum states. This un-
derlines the power of geometric ideas in quantum theory –
they help to bring together two of the most fundamental
ingredients of quantum theory, namely, the “quantum of
action” and the quantum entanglement”. To be specific,
we have found a relation between the time-energy uncer-
tainty and the geometric measure of multipartite entan-
glement for both pure and mixed quantum states. The
time-energy uncertainty relation is shown to be bounded
below by the multipartite entanglement. We find that
the minimum time taken for an initial quantum state to
reach a target entangled state is directly proportional to
the geometric measure of multipartite entanglement. We
have given examples by which our results can be illus-
trated clearly. We believe that these findings will have
important bearing in many areas of quantum theory, in-
cluding quantum information processing, precession mea-
surements and quantum metrology.
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