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Tuning interaction strength leads to ergodic-nonergodic transition of quantum

correlations in anisotropic Heisenberg spin model

Utkarsh Mishra, R. Prabhu, Aditi Sen(De), and Ujjwal Sen
Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India

We investigate the time dynamics of quantum correlations of the anisotropic Heisenberg model in
a time-dependent magnetic field, in one-dimensional, ladder, and two-dimensional lattices. We find
that quantum correlation measures in the entanglement-separability paradigm are ergodic in these
systems irrespective of system parameters. However, information-theoretic quantum correlation
measures can also be nonergodic, and exhibit a transition from nonergodic to ergodic behavior with
the change of interaction strength in the direction of the magnetic field. We also observe that
the transition point changes drastically as we go from one-dimensional and ladder lattices to the
two-dimensional one.

I. INTRODUCTION

Statistical mechanical models provide a quantitative
way to understand physical phenomena involving a large
number of particles which are interacting among them-
selves. These models have been established as promis-
ing substrates in different physical systems for imple-
menting many quantum information protocols which in-
clude, for example, one-way quantum computation [1]
and quantum communication tasks [2]. The character-
ization, quantification and realization of quantum cor-
relations in many-body systems are some of the main
challenges in quantum information [3–6].

Quantum correlation concepts in multiparty sys-
tems can broadly be classified into two categories
– entanglement-separability paradigm measures and
information-theoretic ones. Quantum correlations of
the first kind are established to be useful resources for
many quantum information tasks which include quan-
tum dense coding [7], quantum teleportation [8], and se-
cure quantum cryptography [9]. Recently however, sev-
eral non-classical phenomena have been discovered in
which entanglement is absent [10–14]. To understand
and quantify the resource necessary for exhibiting such
non-classicality, information-theoretic quantum correla-
tion measures like quantum discord [15, 16] and quantum
work-deficit [17] have been proposed.

Measures of both the paradigms have proven to be ad-
vantageous in investigations of cooperative physical phe-
nomena observed in many-body systems [3–6, 18]. Due to
the paucity of analytical as well as numerical methods to
solve quantum spin models, most of these considerations
are restricted to the ground state or the thermal state
of the system. While it is important to understand the
quantum correlation properties of these “static states” of
the system, the time-evolution of the system is an inte-
gral part of several quantum information processing pro-
tocols, a prominent example being the one-way quantum
computer [1].

Properties like magnetization, susceptibility, classical
and quantum correlations in the static states of the
isotropic Heisenberg model have been studied exten-
sively, both theoretically and experimentally [5, 6, 19, 20].

The model can be exactly solved by the Bethe ansatz [21].
Variation of different physical parameters in this model
leads to the appearance of rich phases [22, 23], like spin-
liquid, resonating valence bond states, etc. Moreover,
such models can now be created in the laboratories in a
controlled way by using e.g., photons [24], trapped ions
[25], and cavity QED [26]. However, numerical simula-
tions or approximate methods are the only techniques
that can be used to investigate properties of the time-
evolved states of this model. Here we investigate the
behavior of quantum correlations of the evolved state as
well as the equilibrium state in the anisotropic Heisen-
berg model in low-dimensional systems, under the influ-
ence of time-dependent magnetic fields and temperature.
In particular, we observe collapse and revival of quantum
correlation measures of the evolved state in this system.

The usual statistical mechanical description of a phys-
ical quantity is valid only when the time-average of the
quantity matches with its ensemble average, and in that
case, the physical quantity is termed as ergodic. Ergod-
icity of physical quantities in spin models has been of
interest to researchers for a long time [27–31]. In par-
ticular, the question of ergodicity of physical quantities
like magnetization, classical correlations, and entangle-
ment in quantum XY spin chains have been investigated
[27–30, 32].

Here we consider the validity of the statistical me-
chanical description of quantum correlation measures of
anisotropic Heisenberg models in one-dimension (1D),
ladder and two-dimension (2D). Specifically, we find
that the entanglement measures remain ergodic, irrespec-
tive of the initial strength of the applied magnetic field
in the z-direction and the interaction strengths, whereas
for intermediate values of the initial magnetic field, the
information-theoretic measures like quantum discord and
quantum work-deficit show a transition from nonergodic
to ergodic behavior, with the tuning of the strength of
the two-body interaction in the z-direction. The results
hold irrespective of the relative strength (“anisotopy”)
of the xx- and yy-interactions. However, the transition
point depends on the xy-anisotropy (i.e., the parameter
that controls the relative strength of the xx- and yy-
interactions) and the strength of the magnetic field.
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The paper is organized as follows. In Sec. II, we give a
brief description of the model under investigation. In Sec.
III, we discuss about the canonical equilibrium state, the
time-evolved state, and ergodicity. Calculation of bipar-
tite quantum correlations requires the two-site density
matrix of the system. We discuss properties of single-
site and two-site density matrices for the equilibrium as
well as the time-evolved state in Sec. IV. Measures of
quantum correlations for both the paradigms are defined
in Sec. V. We present our results in Sec. VI (for 1D),
in Sec. VII (for ladder), and in Sec. VIII (for 2D). We
conclude in Sec. IX.

II. THE MODEL

We consider a system of N quantum spin- 1
2
particles

arranged in a lattice with unequal nearest-neighbor in-
teractions along x, y, and z directions. It is therefore the
antiferromagnetic anisotropic Heisenberg model or the
XYZ model, and is given by

Hint =
1

4

∑

[Jxσ
x
~i
σx
~j
+ Jyσ

y
~i
σ
y
~j
+ Jzσ

z
~i
σz
~j
], (1)

where σa
~i
(a = x, y, z) are the Pauli spin matrices at

the site ~i of the spin lattice, and Jx, Jy, and Jz repre-
sent the coupling constants in the x, y and z directions
respectively. The summation in Eq. (1) runs over all
nearest-neighbor pairs on the lattice. Periodic bound-
ary conditions are assumed in all cases considered in this
paper. We will consider systems of quantum spins ar-
ranged in lattices in different low dimensions. Assign-
ing different relations among Jx, Jy, andJz , in the above
Hamiltonian lead to various other well-known spin mod-
els, including the isotropic Heisenberg model for which
Jx = Jy = Jz, and the anisotropic XY model for which
Jx 6= Jy, Jz = 0. To check for ergodic properties of differ-
ent physical quantities of these Heisenberg spin models,
we will consider the initial state of the evolution to be
the canonical equilibrium state at the initial instant (see
discussion in the succeeding section). A non-trivial evo-
lution of the system can be obtained in this case by intro-
ducing a magnetic field represented by Hmag, in such a
way that [Hint, Hmag] 6= 0. Hence the total Hamiltonian
can now be written as

H(t) = Hint − h(t)Hmag. (2)

For the present paper, we choose Jx = J(1 + γ)J, Jy =

J(1 − γ), Jz = Jδ and Hmag = J
2

∑

σz
~i
, with the sum-

mation running over all sites of the lattice. Here J > 0
is assumed to have the dimension of energy, while γ and
δ are dimensionless system parameters. Here γ represent
xy-anisotropy. For brevity, we will sometimes call it sim-
ple as “anisotropy”. The time-dependence of the applied
magnetic field is of the form

h(t) =

{

a, t ≤ 0
0, t > 0,

(3)

where a 6= 0 is a dimensionless parameter. Here t repre-
sents the time. Therefore, the total Hamiltonian is given
by

H(J, γ, δ, h(t)) = J
4

∑

[(1 + γ)σx
~i
σx
~j
+ (1− γ)σy

~i
σ
y
~j

+ δσz
~i
σz
~j
]− J

2
h(t)

∑

σz
~i
. (4)

When h(t) = 0 and Jx = Jy = Jz, the above Hamiltonian
is exactly solvable by using Bethe ansatz [21] by which
the ground state energy can be obtained [33]. However,
there exists no such exact solution for the anisotropic
Heisenberg model. Moreover, we wish to study the evo-
lution of the system and hence require the single site- and
two-site properties of the entire energy spectrum of the
system at a given time. Hence, to study the statistical
mechanical properties of such systems at finite temper-
ature, we opt for exact diagonalization using numerical
simulations.

III. STATISTICAL MECHANICAL

PROPERTIES

In this paper, we aim to study the statistical mechan-
ical properties of the anisotropic Heisenberg model in
time-dependent external magnetic fields. The statisti-
cal mechanical notions like canonical equilibrium state,
time-evolved state and ergodicity will be briefly defined
in this section, mainly to set the terminology and the no-
tations. In particular, we introduce a quantity called the
“ergodicity score” which helps us to quantify the degree
to which a physical quantity is possibly nonergodic.

A. Time-evolution

For the quantum spin system, described by the Hamil-
tonian in Eq. (4), we denote the canonical equilibrium
state of the system, at time t, as ρβeq, and is given by

ρβeq(t) =
exp(−βH(t))

Z
, (5)

where Z is the partition function,

Z = tr[exp(−βH(t))],

and β = 1

kBT
, with kB being the Boltzmann constant. T

represents the absolute temperature.
The canonical equilibrium state can evolve due to the

application of external “disturbances”, like switching on
of the magnetic field across the system. In our case,
the evolution of the system is governed by the Hamilto-
nian given in Eq. (4). We assume that the system is in
contact with a heat bath at temperature T ′ for a long
time until t = 0. We assume that the contact is in the
canonical sense, so that the system and the heat bath
exchange energy (under the normal average energy con-
straint), but do not exchange particles. We assume that
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this contact leads the system to the canonical equilibrium
state at t = 0, i.e., the state of the system at t = 0 is
ραeq(0), where α = 1

kBT ′
. For t > 0, the magnetic field

is switched off, and we consider the situation where the
contact with the heat bath is also cut off for all times
t > 0. The system therefore starts evolving according to
the Schrödinger equation governed by the Hamiltonian
in Eq. (4), with the initial state of this evolution being
ραeq(0), and we denote the corresponding evolved state as
ρα(t). Note here that ραeq(t = 0) = ρα(0).

B. Ergodicity and Ergodicity Score

To check whether a given physical quantity Q is er-
godic, we consider the value of Q in the evolved state at
a “large time”. The time of evolution, tl, is termed as
large, for the physical quantity Q, if (i) there are no fluc-
tuations in the physical quantity Q with respect to time
for t > tl, or if (ii) the fluctuation amplitude ofQ with re-
spect to time is smaller than the required precision level,
for t > tl, or if (iii) the fluctuations of Q with respect to
time is of a constant amplitude. We are interested in the
time-average of the physical quantity Q at large-times.
For the cases (i) and (ii), an explicit time-averaging is
not required, as the system dynamics brings the quan-
tity Q to its time-averaged value. For the case (iii), an
explicit time-averaging for times t > tl is required. We
now ask whether there exists a temperature T ′, at which
the large-time time-averaged value of a physical quantity
Q in the evolved state is equal to the value of same phys-
ical quantity in the equilibrium state at temperature T
at large-time. The physically relevant range of T can be
considered as up to an order of magnitude of the initial
temperature T ′. This difference between T and T ′ is, for
example, to allow for possible errors in an experimental
realization of the physical system or some typical theo-
retical effective standard deviation in that system.
If the time-average of a physical quantity is the same as

the ensemble average, the quantity is said to be ergodic.
Such a study is therefore based on the comparison of
the large-time time-averaged value, Q∞(T ′, a), with the
canonical equilibrium value, Qcan(T, h(t = ∞)). Note
that these quantities also depend on the system param-
eters J, γ, and δ. The physical quantity Q is therefore
said to be ergodic if

Q∞(T ′, a) = Qcan(T, h(t = ∞)). (6)

Otherwise, it is termed as nonergodic.
Let us now introduce a quantity which can quantify

the degree to which a given physical quantity, Q fails to
be ergodic. We call it the “ergodicity score”, and define
it as

Q(δ̃, α) = max[0,Q∞(T ′, a)−max
T

Qcan(T, h(t = ∞))]

(7)

where δ̃ denotes the aggregate of all physical parameters
required to define the Hamiltonian of the system under

consideration. For the system considered in this paper, δ̃
consists of J, h, δ and γ. We remember that α = 1

kBT ′
.

The maximization over T is for all T that falls in the
physically relevant range around T ′, as discussed earlier.
Note therefore that a non-zero value of ηQ implies that Q
is nonergodic and that a vanishing Q indicates ergodicity.

IV. SINGLE- AND TWO-SITE DENSITY

MATRICES OF TIME-DEPENDENT

HEISENBERG MODEL

To analyze the ergodic properties of quantum corre-
lations, let us now find the general form of the single-
and two-site density matrices of equilibrium and evolved
states of the Hamiltonian given in Eq. (4). The general
single-site density matrix is given by

ρ1 =
1

2
[I+ ~m.~σ], (8)

where I is the 2×2 identity matrix, and ~m = tr[ρ1~σ] is the
magnetization vector. If the entire system is of N qubits,
then the single-site density matrix can be obtained by
tracing out N − 1 parties. For a periodic lattice, tracing
out of any N − 1 qubits will lead to the same single-site
density matrix. In the equilibrium state, since ρβ∗eq (t) =

ρβeq(t), where the complex conjugation has been taken in
the computational basis, mx = 0. Moreover, in this case,
my = 0, since [H,

∏

i σ
z
i ] = 0. Therefore, the single-site

density matrix for the equilibrium state reduces to

ρ1eq(t) =
1

2
[I+meq

z (t)σz ]. (9)

where we have hidden the dependence on temperature
in the notation. The single-site density matrix for the
evolved state also turns out to be ρ1(t) = 1

2
(I+mz(t)σ

z),
using the Wick’s theorem [28, 34].
The nearest-neighbor two-site density matrix can be

written, in general, as

ρ12 =
1

4
[I⊗ I+ ~m.~σ⊗ I+ I⊗ ~m.~σ+

∑

i,j=x,y,z

T ij(σi ⊗ σj)]

where T ij = tr[(σi ⊗ σj)ρ12] represent the two-site cor-
relation functions. Since periodic boundary conditions
are assumed, the nearest-neighbor state ρ12 is indepen-
dent of which two neighboring sites are chosen for con-
structing the nearest-neighbor state. Due to the form of
the single-site density matrices that has already been de-
rived, the two-site density matrices for both equilibrium
and evolved states reduces to

ρ12 =
1

4
[I⊗I+mz(σ

z⊗I+I⊗σz)+
∑

i,j=x,y,z

T ij(σi⊗σj)].

Using Wick’s theorem, we can show that all off-diagonal
correlations vanish for the equilibrium state. However,
for the evolved state, only xz- and yz-ones vanish.
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V. MEASURES OF QUANTUM CORRELATION

We will now quickly define the measures of quan-
tum correlations used in this paper. We will intro-
duce two measures within the entanglement-separability
paradigm, namely logarithmic negativity and concur-
rence. We will subsequently define two information-
theoretic quantum correlation measures, viz. quantum
discord and quantum work-deficit.

A. Logarithmic Negativity

Given a bipartite quantum state, ρAB, shared between
two parties A and B, the logarithmic negativity [35]
quantifies the amount of entanglement present in the bi-
partite state. The definition of logarithmic negativity
is based on negativity, N(ρAB), which is defined as the
sum of the absolute values of the negative eigenvalues of
the partial transposed density matrix [36] of the bipartite
state ρAB. The logarithmic negativity (LN) is defined as

EN (ρAB) = log2[2N(ρAB) + 1]. (10)

For two qubit states, LN is positive if and only if the
state is entangled [36].

B. Concurrence

For two-qubit states, concurrence is another useful en-
tanglement measure [37]. For a two-qubit mixed bipartite
state ρAB, it is defined as

C(ρAB) = max[0, λ1 − λ3 − λ3 − λ4], (11)

where λ1, λ2, λ3, λ4 are the square roots of the eigenval-
ues of ρAB ρ̃AB in decreasing order and ρ̃AB = [σy ⊗
σy)ρ∗AB(σy ⊗ σy], with the complex conjugation being
taken in the computational basis. The maximum is taken
to ensure that concurrence is zero for separable states.
The measure is non-zero for all entangled states.

C. Quantum Discord

Quantum discord [15, 16] is an information-theoretic
measure of quantum correlation. It is defined as

D(ρAB) = I(ρAB)− J(ρAB). (12)

Here I(ρAB) and J(ρAB) are equivalent in classical in-
formation theory, where they both represent the mutual
information between two random variables. In the quan-
tum world, the first term represents the total correlation
of the bipartite state ρAB, and is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB),

where S(ρ) = −tr[ρ log2 ρ] is the von Neumann entropy
of a quantum state ρ, and ρA and ρB are the reduced
density matrices of ρAB. The second term, J(ρAB) in
the definition of quantum discord can be argued as the
amount of classical correlation present in ρAB, and is
defined by

J(ρAB) = S(ρA)− S(ρA|B).

Here S(ρA|B) = min{Bi}

∑

i piS(ρ
A|i) is the conditional

entropy of ρAB, when the rank-1 projection-valued mea-
surement, {Bi}, is performed on the B-part of the sys-
tem, with ρA|i = trB [(I

A ⊗ Bi)ρ
AB(IA ⊗ Bi)], pi =

trAB[(I
A⊗Bi)ρ(I

A⊗Bi)], and with I
A being the identity

operator on the Hilbert space of A.

D. Quantum Work-Deficit

Another information-theoretic measure of quantum
correlation is the quantum work-deficit, which is defined
as the difference between the amount of work extractable
from a shared state by global and local quantum heat en-
gines [17]. It is possible to quantify the amount of work
that can be extracted from a bipartite state ρAB by global
operations as

IG(ρ
AB) = N − S(ρAB), (13)

where N is the logarithm (base 2) of the dimension of
the Hilbert space on which ρAB is defined. It can be
interpreted as the number of pure qubits that can be ex-
tracted from ρAB by global operations on the state, and
that consists of an arbitrary sequence of unitary and de-
phasing operations. Such operations are called “closed
global operations”. Let us now define “closed local oper-
ations and classical communication (CLOCC)”. It con-
sists of local unitaries, local dephasing, and sending the
dephased state from one party to other. The number of
pure qubits that can be extracted by CLOCC is given by,

IL(ρ
AB) = N − infΛǫCLOCC[S(ρ

′A)− S(ρ′
B
)], (14)

where S(ρ′
A
) = S(trB[Λ(ρ

AB)]) and S(ρ′
B
) =

S(trA[Λ(ρ
AB)]). The quantum work-deficit is defined as

WD(ρAB) = IG(ρ
AB)− IL(ρ

AB). (15)

In the next sections, our aim is to study the ergod-
icity of these quantum correlations in the anisotropic
Heisenberg models of different lattice geometries. The
lattices considered are the chain, the ladder, and the two-
dimensional square lattice. Periodic boundary conditions
is used in all cases.

VI. QUANTUM HEISENBERG XYZ SPIN

CHAIN WITH MAGNETIC FIELD

In this section, we investigate the statistical me-
chanical properties of quantum correlation measures in
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the one-dimensional quantum spin- 1
2

lattice described
by the Hamiltonian in Eq. (4). The isotropic anti-
ferromagnetic Heisenberg model in one-dimension pro-
vides an understanding of the spin-spin correlation
functions and suppression of long range magnetic or-
der in spin-liquids. Moreover, some materials like
Sr2CuO3 andSrCuO2 mimic the Heisenberg spin chain
[19]. Recently developed techniques make it possible to
realize this model in physical systems like photons [24],
trapped ions [25], and cavity QED [26]. Entanglement
in the ground and the thermal states of the Heisenberg
model have been studied [38].

A. Quantum correlations in equilibrium and

evolved states

For any system, that is in its canonical equilib-
rium state, all quantum correlations vanish when the
temperature goes to infinity. Measures that are de-
fined within the entanglement-separability paradigm typ-
ically vanish even for moderately high temperatures
while information-theoretic measures like quantum dis-
cord goes to zero asymptotically with the increase of
temperature. This feature is retained by the system
described by the Hamiltonian in Eq. (4), on an one-
dimensional lattice with periodic boundary conditions.
This shows that information-theoretic quantum correla-
tion measures are more robust to temperature when com-
pared to entanglement-separability measures. Moreover,
we observe that the entanglement of the nearest-neighbor
reduced state of the canonical equilibrium state behaves
differently with temperature in different ranges of γ and
δ. See Figs. 1(a) and 1(b). In particular, we find that
for fixed low values of the anisotropy, γ, the entangle-
ment saturates to a value with increasing β, and this
saturated value is more or less independent of δ, the rel-
ative strength of the zz-interaction. However, when γ is
relatively high, entanglement saturates to a low value for
small δ, while for high δ, it saturates to a higher value.
On the other hand, quantum discord saturates to a low
value with decreasing temperature for small δ as well as
for high δ, while it saturates to a high value for interme-
diate values of δ (see Figs. 1(c) and 1(d)). This behavior
of quantum discord is true for all values of γ. However,
with the increasing of the value of γ, the point where the
maximum value of quantum discord is obtained, shifts
to higher values of δ. We have performed calculations
also for concurrence and quantum work-deficit, and they
have qualitatively similar features as logarithmic nega-
tivity and quantum discord respectively.
Let us now discuss the time-dynamics of entanglement

and other quantum correlations in the nearest-neighbor
state. For the discussion, we choose γ = 0.8. However,
the behavior remains the same for other moderate val-
ues of γ. The entanglement measures collapse and revive
non-periodically with time, when δ is small. See Fig.
2(a), where we can view this feature for logarithmic neg-
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FIG. 1. (Color online) Behavior of quantum correlations in
the equilibrium state. We plot quantum correlation measures
of nearest-neighbor reduced states of the canonical equilib-
rium states, for a system of 12 quantum spin- 1

2
particles ar-

ranged as a ring and described by the Hamiltonian H with
respect to Jβ, and the relative strength of the zz-interaction,
δ, for different values of γ. The top plots are for logarithmic
negativity and the bottom ones are for quantum discord. The
left plots are for γ = 0.2 while the right one are for γ = 0.8.
Quantum discord is measured in bits. All other axes in the
figures correspond to dimensionless parameters.

ativity. For intermediate values of δ, revival of entangle-
ment occurs less frequently (Fig. 2(b)). For very high δ,
the model is “Ising-like”, and the entanglement as well as
other quantum correlation measures collapse and revive
periodically with time. The non-periodic collapse and
revival behavior persists up to moderate values of δ for
the information-theoretic quantum correlation measures
like quantum discord. See Figs. 2(c) and 2(d).

B. Statistical mechanical properties of quantum

correlation measures

We now examine the ergodicity properties of the quan-
tum correlation measures. From Figs. 1 and 2, by analyz-
ing the behavior of the entanglements of the equilibrium
and evolved states, we find that entanglement measures
are ergodic for all values of δ, γ(6= 0), and a. We have
analyzed this for logarithmic negativity as well as for con-
currence. Hence, the ergodicity score is vanishing for all
system parameters for all such measures.
Quantum discord and quantum work-deficit, both

information-theoretic measures, also remain ergodic,
when δ ≥ γ. However, for δ < γ these measures ex-
hibit nonergodicity for a large range of the magnetic field.
In Fig. 3, we plot ηD with respect to the δ and the
field strength, a, for γ = 0.8, where we assume that the
time-evolution starts off from the canonical equilibrium
state for the Hamiltonian in Eq. (4) at t = 0 and for
temperature given by Jα = 20. To plot ηD, we choose
Jβ = 20 for the equilibrium state, in the calculation of
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FIG. 2. (Color online) Quantum correlations of the time-evolved states. The system under consideration is the same as in
Fig. 1, but for 8 spins. The evolution is assumed to begin in the equilibrium state at t = 0 and at an exemplary value of the
temperature given by Jα = 20. Logarithmic negativity (top plots) and quantum discord (bottom plots) of the nearest-neighbor
reduced states of the time-evolved states, are plotted against the initial magnetic field, a, and Jt

~
, for different values of δ. Here

we choose γ = 0.8. The left plots are for δ = 0.2 and the right ones are for δ = 0.8. All axes correspond to dimensionless
quantities except those for quantum discord, which is measured in bits.

Qcan(T, h(t = ∞)), since we find that the quantum dis-
cord of the equilibrium state is a monotonically increas-
ing function with respect to Jβ and saturates for a Jβ
much below Jβ = 20.

The trends, with respect to δ, of ergodicity scores of
quantum discord and quantum work-deficit for different
γ, are depicted in Fig. 4. For a fixed anisotropy γ, there
always exists a certain value of δ, for which quantum dis-
cord changes from being nonergodic to being ergodic. We
denote that critical value of δ as δγc , remembering that
it pertains to quantum discord, and that there is a sim-
ilar critical δ, at a possible different value, for quantum
work-deficit. We observe that the δγc increases with the
increase in γ, and in Fig. 4, δγ=0.4

c < δγ=0.6
c < δγ=0.8

c for
both quantum discord and quantum work-deficit.

The general behavior, of the quantum correlation mea-
sures in this system, that is emerging, is as follows.
Entanglement measures exhibit ergodic behavior in all
relevant parameter domains. The picture is richer for
information-theoretic quantum correlation measures, and
in particular, for a given anisotropy γ and a given mea-
sure, there is a critical δ = δγc at which the system transits
from nonergodic to ergodic behavior for that measure.

VII. QUANTUM HEISENBERG XYZ SPIN

LADDER WITH MAGNETIC FIELD

It is interesting to study whether the two quantum
correlation paradigms showing opposing statistical me-
chanical behavior persists in higher-dimensional systems.
To find this, we first consider the spins in a ladder ar-
rangement, which is made up of two Heisenberg XYZ
spin- 1

2
chains, coupled by the same interactions along

the rungs [39]. There is the time-dependent z-field at all
sites. Periodic boundary condition is assumed along the
rails. Such systems can be found in solid state materi-
als like Sr2CuO3 and Sr14Cu24O41 [19]. Recently it was
found that the entanglement spectrum [40] of the ground
state of this model is related to the energy spectrum of
its two single Heisenberg chain [41].

In this model, the quantum correlation measures of
the evolved and equilibrium states behave in a similar
fashion as for the XYZ chain. In particular, entangle-
ment of the nearest-neighbor states remain ergodic in this
case. And there exists a critical δ, above which the time-
averaged value of the information-theoretic correlation
measures, quantum discord and quantum work-deficit, of
the nearest-neighbor reduced states of the evolved states
match with the same measure of the equilibrium state,
for some β, in a given magnetic field and a given γ (see
Fig. 6 for the states along the rails). Quantum discord of
the long-time equilibrium state does not remain a mono-
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FIG. 3. (Color online) Ergodicity score for quantum discord.
The ergodicity score for quantum discord of the anisotropic
Heisenberg XYZ chain (with a magnetic field) of 8 spins, ar-
ranged in a ring, is plotted against δ and the applied initial
magnetic field a, for a fixed γ = 0.8. The initial state of the
time-evolution is the t = 0 canonical equilibrium state at a
temperature given by Jα = 20. The ergodicity score is mea-
sured in bits. All other physical parameters used in the figure
are dimensionless.
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FIG. 4. (Color online). Comparing ergodicity scores for quan-
tum discord and quantum work-deficit. The ergodicity score
for quantum discord (left) and quantum work-deficit (right) of
the nearest-neighbor reduced state of the time-evolved states
of the anisotropic Heisenberg XYZ chain (with a magnetic
field) of 12 spins, arranged in a ring, is plotted against δ,
for different values of γ and a for fixed initial magnetic field
a = 0.6. Here we choose Jα = 20 for the t = 0 canonical
equilibrium state from which the evolution starts off. The
depicted curves are for γ = 0.4 (red circles), γ = 0.6 (pink
triangles), and γ = 0.8 (green squares). The ergodicity score
for quantum discord is measured in bits, while that for quan-
tum work-deficit is measured in qubits. All other quantities
used in the figure are dimensionless.

tonically increasing function with β like in the 1D model.
See Fig. 5. To calculate ηD, we choose Jβ = 60, at which
the maximum value of Qcan(T, h(t = ∞)) is attained, for
all values of δ. δγc increases with the increase in γ, while
it is independent of the choice of the initial applied mag-
netic field for a fixed γ. These qualitative features of
quantum discord remain the same, when a rung of the
ladder is considered. A similar feature is observed for
quantum work-deficit of the rung and rail states. See
Fig. 6(b) in this respect. We therefore again find that

the strength of the zz-interaction, as quantified by δ, can
be adjusted in such a way that the nonergodic nature of
the information-theoretic measures, that persists in this
system for low δ, gets washed off, and we obtain ergodic
behavior for high δ.

VIII. 2D QUANTUM HEISENBERG XYZ

MODEL WITH MAGNETIC FIELD

The two-dimensional Heisenberg model describes im-
portant systems, including materials like SrCu2(BO3)2
and CaV4O9 [42]. Experimental studies of the Heisen-
berg model in 2D lattices have been proposed e.g., in
trapped ions [43] and optical lattices [44].
We consider a quantum Heisenberg XYZ spin model

on a square lattice with antiferromagnetic interactions
between the nearest-neighbor spins. Periodic boundary
condition is assumed and hence, geometrically, the sys-
tem forms a spin-arrangement on a torus. The time-
dependent magnetic field is assumed to be active at all
sites. Like in the ladder and 1D models, we again find
that the entanglement measures are ergodic for all val-
ues of γ, δ, and the initial magnetic field a. Interest-
ingly, unlike in the 1D and ladder systems, the transi-
tion from nonergodicity to ergodicity of the information-
theoretic measures, occurs for relatively low values of the
zz-interaction strength, i.e., for low values of δ (Fig. 7).
For example, when γ and h are 0.6, in the ladder and
1D systems, both quantum discord and quantum work-
deficit remain nonergodic till δ ≈ 0.8, while they both
become ergodic in 2D at δ ≈ 0.16. These observations
lead us to infer that information-theoretic measures are
more sensitive to the dimension of the lattice, than the
entanglement measures, with respect to their statistical
mechanical properties.

IX. DISCUSSION

Quantum Heisenberg models have created lot of in-
terest due to their rich physical properties and the pos-
sibility of realizing such systems in artificial materials
as well as in inorganic compounds. However, investi-
gations into the dynamics of such models, for example,
under the influence of time-dependent magnetic fields,
are limited by the fact that the system cannot be diago-
nalized analytically. Here, we have studied the behavior
of quantum correlations, both from the entanglement-
separability paradigm and the information-theoretic one,
of the equilibrium state as well as the evolved state of the
quantum Heisenberg anisotropic XYZ model, by numeri-
cal simulations. In particular, we found that although
entanglement measures are ergodic irrespective of the
system parameters, information-theoretic measures ex-
hibit a rich picture, with respect to their statistical me-
chanical properties. Specifically, we find that the zz-
interaction strength has a cross-over value, for a given
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FIG. 5. (Color online) Behavior of quantum correlations in the equilibrium state. We plot quantum correlation measures of
nearest-neighbor reduced states of the canonical equilibrium states, for a system of 8 quantum spin- 1

2
particles arranged as a

ladder and described by the Hamiltonian H with respect to Jβ, and the relative strength of the zz-interaction, δ, for different
values of γ. The top plots are for logarithmic negativity and the bottom ones are for quantum discord. The left plots are for
γ = 0.2 while the right one are for γ = 0.8. Quantum discord is measured in bits. All other axes in the figures correspond to
dimensionless parameters.
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FIG. 6. (Color online). Ergodicity curves in the Heisenberg
XYZ ladder. The ergodicity scores of quantum discord (left)
and quantum work-deficit (right) of a nearest-neighbor re-
duced state, along a rail, of the time-evolved state, in the
ladder, of 8 spins is plotted with respect to the relative
strength of the zz-interactions. The transition points, where
the system moves from nonergodic to ergodic behavior of
the information-theoretic measures are qualitatively similar to
those in one-dimension, for a fixed γ. The depicted plots are
for γ = 0.4 (red circles), γ = 0.6 (pink triangles) and γ = 0.8
(green squares). For the evolved state, a = 0.6, Jα = 20. The
units are the same as in Fig. 4.

xy-anisotropy and a given information-theoretic quan-
tum correlation measure, that indicates a transition from
nonergodic to ergodic behavior for that measure. The
qualitative features of the measures in the entanglement-
separability paradigm and the information-theoretic one
are the same in the one-dimensional, ladder, and two-
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ηWD

δ

FIG. 7. (Color online). Ergodicity scores in the 2D Heisen-
berg XYZ model. The ergodicity scores of quantum dis-
cord (left) and quantum work-deficit (right) in the nearest-
neighbor reduced state of the time-evolved state, with re-
spect to the strength of the zz-interaction for the anisotropic
Heisenberg XYZ model on a 2D square lattice, consisting of
12 spins in a torus. The plots are for γ = 0.6 (pink trian-
gles) and γ = 0.8 (green squares). For the time-evolved state,
a = 0.6, Jα = 20. The units are the same as in Fig. 4.

dimensional square lattices. However, in the square lat-
tice, the information-theoretic measures are more sensi-
tive to the change of the zz-interaction strength than in
other dimensions. Such dimension-dependent change of
ergodic behavior is absent for entanglement measures.
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