
ar
X

iv
:1

30
6.

06
69

v1
  [

qu
an

t-
ph

] 
 4

 J
un

 2
01

3

Shared Purity of Multipartite Quantum States

Anindya Biswas, Aditi Sen(De), and Ujjwal Sen
Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India

Fidelity plays an important role in measuring distances between pairs of quantum states, of single
as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity,
shared purity, for arbitrary pure or mixed quantum states of shared systems of an arbitrary number of
parties in arbitrary dimensions. We find that it is different from quantum correlations. However, we
prove that a maximal shared purity between two parties excludes any shared purity of these parties
with a third party, thus ensuring its quantum nature. Moreover, we show that all generalized GHZ
states are monogamous, while all generalized W states are non-monogamous with respect to this
measure. We apply the quantity to investigate the quantum XY spin models, and observe that it
can faithfully detect the quantum phase transition present in these models. We perform a finite-size
scaling analysis and find the scaling exponent for this quantity.

I. INTRODUCTION

In the last two decades, various quantum informa-
tion protocols like quantum teleportation [1], super dense
coding [2], and entanglement-based quantum cryptog-
raphy [3] were discovered in which quantum mechanics
is used to achieve higher efficiencies than their classi-
cal counterparts. Most of these protocols use entangle-
ment [4] as the resource. However, notable exceptions ex-
ist. In particular, there exists orthogonal product states
which are not perfectly distinguishable by measurements
based on local operations and classical communication [5]
(cf. [6]). In deterministic quantum computation with one
qubit [7], one achieves nonclassical efficiencies by em-
ploying shared quantum states with no entanglement. A
protocol for secure deterministic communication without
entanglement was also proposed and experimentally re-
alized [8, 9].

In a bid to understand such phenomena, mea-
sures of quantum correlation that are independent
of the entanglement-separability paradigm have been
proposed [10]. Such measures, generally referred to
as information-theoretic quantum correlation measures,
have been able to provide important successes in un-
derstanding these phenomena. However, there is still a
lot of ground that remains to be covered, and moreover,
there are intriguing controversies that have been gener-
ated [10]. This has led us to believe that it is important
to identify concepts of quantum shared states that are
independent of quantum correlations.

In prospecting for possible physical quantities that
lead to nonclassical phenomena by using shared states
of quantum systems, we note that the maximal advan-
tage in most quantum information protocols is achieved
for pure shared states. Pure quantum states, which in
general play an important role in quantum mechanics,
have vanishing entropy, implying that the full informa-
tion of the system is available, so that there always exists
a measurement strategy for which the system leads to an
outcome with unit probability.

For a quantum state of a single system, the fidelity
of that state to a pure state, after maximization over

all pure states, is the purity of that state. It gives the
maximal Born probability that can be obtained in any
outcome of any unit-rank quantum measurement on the
given state. In case this quantum system (pure or mixed)
consists of two or more subsystems, and the maximiza-
tion is still performed over all pure states of the en-
tire system, the maximal fidelity can be referred to as
the “global fidelity”. Similarly, we introduce a “local
fidelity”, that measures the maximal Born probability
which can be obtained in any product state outcome of
any unit-rank measurement on the given state. Specif-
ically, the maximization has now to be performed over
a suitably chosen set of pure product states. Depending
on the set of product states in the maximization, there
is a hierarchy of such local fidelities. “Shared purity”
is the difference between the global and a local fidelity.
Despite its similarity in form with information-theoretic
quantum correlation measures like quantum discord [11]
and quantum work deficit [12], in that the latter are also
differences between two state functions, we will show that
shared purity quantifies a property of shared quantum
systems that is different from entanglement as well as
information-theoretic measures. After introducing the
measure, we discuss its properties and in particular show
that for pure states, it reduces to geometric measures
of entanglement [13, 14]. However, for mixed states, it
is different from any quantum correlation measure. We
provide analytical closed forms of shared purity for sev-
eral classes of multiparty mixed quantum states. We then
address the question of monogamy for this measure and
prove that the quantity is qualitatively monogamous in
that a maximal shared purity between two parties ex-
cludes any shared purity of these parties with a third
one. It is to be noted that classical correlations are not
monogamous, even qualitatively, and hence the monog-
amous nature of shared purity ensures the quantumness
of the property. We further show that according to the
shared purity, W-class [15, 16] states are (relatively) more
non-monogamous than the Greenberger-Horne-Zeilinger-
class (GHZ-class) states [16, 17], among three qubit pure
states.
Moreover, we apply the measure to quantify proper-

ties of the quantum anisotropic XY spin model. It has
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been shown that bipartite as well as multipartite entan-
glement measures can detect the quantum phase transi-
tion present in this model [18, 19]. We show that shared
purity is also a faithful detector for identifying the phase
transition. We obtain the finite-size scaling in this model
for shared purity, and find it to be different from that
for the entanglement measure called concurrence [20, 21],
and for the information-theoretic quantum correlation
measure called quantum discord [11].
The paper is organized as follows. In Sec. II, we de-

fine shared purity and discuss some of its properties. In
Sec. III, we evaluate the shared purity for various classes
of mixed states. In Sec. IV, we address the question of
monogamy for shared purity. We apply the measure to
the anisotropic XY model and detect the quantum phase
transition in this system in Sec. V. Finally, we present a
discussion in Sec. VI.

II. SHARED PURITY: DEFINITION &

PROPERTIES

The fidelity is a very useful concept in quantum in-
formation, or more generally, in quantum mechanics. It
quantifies the closeness of two quantum states, when at
least of them is pure. It can be directly connected to
the geometric distances in quantum mechanics like the
Fubini-Study metric [22] or the Bures metric [23]. We
define the “global fidelity” of an N -party arbitrary (pure
or mixed) quantum state, ρ1...N , on H = Cd1 ⊗ . . .⊗CdN ,
as

FG = max
{|φ〉1...N∈H}

1...N 〈φ|ρ1...N |φ〉1...N , (1)

where the maximization is performed over all elements
(pure states) of H. The global fidelity quantifies the
minimum distance of an arbitrary multipartite (pure
or mixed) state from pure quantum states, i.e. from
states with vanishing global entropy. It measures
the lack of disorder present in the system. In case
of pure states, the minimum is attained by itself
and therefore it is unity for all pure states in arbi-
trary dimensions. It is also possible to obtain FG in
closed form for arbitrary mixed states. In particular,
we have the following theorem for arbitrary mixed states.

Theorem 1. For an arbitrary mixed state ρ1...N ,

FG is the largest eigenvalue in the spectrum of the state.
Proof: Let us write ρ1...N in spectral decomposi-

tion as ρ1...N =
∑

i

λi|ei〉〈ei|, where {|ei〉} forms an

orthonormal basis spanning H. On the other hand,
given a basis {|ei〉}, any pure state can be written as

|φ〉1...N =
∑

i

ai|ei〉, where ai are complex numbers, with

∑

i

|ai|2 = 1. Therefore, FG = max
ai

∑

i

|ai|2λi. Let λr

be the largest eigenvalue in the spectral decomposition.

Assuming ar = 1 and ai,i6=r = 0, we get FG ≥ λr.

But, FG ≤ max
ai

∑

i

|ai|2λr = λr , since λi ≤ λr ∀i and
∑

i

|ai|2 = 1. Therefore FG = λr , and we have the

theorem. �

A class of pure states of multiparty systems that are
drastically different, in terms of their quantum informa-
tion hierarchy, from other pure states is the class of pure
product states. It is therefore interesting to find out how
much of the global fidelity can already be attained by
using such “local” states. Correspondingly, we define the
“local fidelity”, of the N -party quantum state ρ1...N as

FL = max
{|φ〉1...N∈S}

1...N 〈φ|ρ1...N |φ〉1...N , (2)

where the maximization is carried out over a certain
set S, of pure product states. Depending on the set of
product states, over which the optimization is carried
out, there can be a hierarchy of local fidelities. There
are two extreme cases that we mention explicitly. One
is when the maximization is carried out over the set
consisting of the fully separable states, i.e., states of the
form |φ(1)〉1 ⊗ . . .⊗ |φ(N)〉N . This is the class for which
the entropies of each party vanish. We call this set as
SL, and for simplicity, denote the local fidelity by FL

when the optimization is performed over SL. An impor-
tant class of multiparty states is the one consisting of
genuinely multiparty entangled states, which are states
that are entangled across every bipartition. The local
fidelity optimized over the set, Sn−gen, of states which
are not genuinely multiparty entangled will be denoted
by Fn−gen

L . We now show that Fn−gen
L can be analyti-

cally related to Schmidt coefficients in case of pure states.

Theorem 2. For an arbitrary pure N -party state

|ψ〉1...N , Fn−gen
L is the square of the maximal Schmidt

coefficient among all bipartitions.
Proof: For the pure state |ψ〉1...N , Fn−gen

L re-

duces to FL = max
{|φ〉1...N∈Sn−gen}

|〈φ|ψ〉|2 = 1 − E ,
where E is the generalized geometric measure [14]
(c.f. [13]). As was shown in Refs. [14, 24],
E(|ψ〉) = 1−max{λ2A:B|A ∪ B = {1, . . . , N},A∩B = ∅},
where λA:B is the maximal Schmidt coefficient in the
A : B bipartition. Hence, the theorem. �

The definitions of the global and local fidelities im-
ply that the local fidelity can never surpass in value the
global one. There is therefore a part of the global fidelity
that may not be accounted for by the shared state’s lack
of disorder as seen by its local parties. This portion of
the global fidelity is therefore present due to the fact that
the state is shared, and can be quantified by the differ-
ence between the global and local fidelities. We call the
quantity as the “shared purity”. Depending on the set of
product states over which the optimization is carried out
in defining the local fidelity, there can be a hierarchy of
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shared purities. For example, if the set consists of states
which are not genuinely multiparty entangled, then the
corresponding shared purity can be called the “genuine
shared purity”. We denote it by Sn−gen

P :

Sn−gen
P = FG − Fn−gen

L . (3)

On the other hand, if the optimization in the local fidelity
is carried out over the set, SL, of fully separable states,
we denote the corresponding shared purity by SP :

SP = FG − FL. (4)

Let us now discuss some properties of shared purity.

Property 1. The shared purity vanishes for pure
product states of the form |ψ1〉 ⊗ . . .⊗ |ψN 〉.

Property 2. For an arbitrary N -party pure state
|ψ〉1...N in arbitrary dimensions, the shared purity is a
geometric measure of entanglement.
Proof: For arbitrary pure states, FG = 1. Now, the
local purity is given by max

{|φ〉1...N∈S}
|1...N 〈φ|ψ〉1...N |2,

where |φ〉1...N belongs to a suitably chosen set, S, of
pure product states. It is known that the quantities
1 − max

{|φ〉1...N∈S}
|1...N〈φ|ψ〉1...N |2 are entanglement mono-

tones [13, 14, 24]. In particular, if S = SL, the quantity
is called the geometric measure of entanglement [13],
and if S = Sn−gen, it is called the generalized geometric
measure [14, 24]. �.
As we will see in the next section, in the case of mixed
states, the shared purity cannot be identified with
any entanglement measure, or indeed any quantum
correlation.

Property 3. The shared purity is invariant under
local unitary operations.

Theorem 3: For an arbitrary bipartite (pure or
mixed) state, on Cd1 ⊗Cd2 , the minimum value attained
by FL is λr/d, where d = min{d1, d2}, and λr is the
largest eigenvalue in the spectrum of ρ.
Proof: We have

FL(ρ) = max
{|φ〉∈SL}

〈φ|ρ|φ〉

= max
{|φ〉∈SL}

∑

i

λi|〈φ|ei〉|2, (5)

where
∑

i pi|ei〉〈ei| is a spectral decomposition of the bi-
partite quantum state ρ. Therefore,

FL(ρ) ≥ max
{|φ〉∈SL}

λr|〈φ|er〉|2. (6)

The property follows from the fact that FL ≥ 1
d
for any

pure state in Cd1 ⊗ Cd2 . �

Corollary 3.1. For an arbitrary bipartite (pure

or mixed) state, on Cd1 ⊗ Cd2 , the maximum value
attained by SP is λr(1 − 1/d), where d = min{d1, d2},
and λr is the largest eigenvalue in spectrum of ρ.
Proof: This follows from Theorems 1 and 3 and the
fact that sup(f + g) ≤ sup f + sup g, for two bounded
real-valued functions f and g, defined on the same
domain of definition. �

Since λr ≤ 1, we have that for an arbitrary bipar-
tite (pure or mixed) state, on Cd1 ⊗ Cd2 , the maximum
value attained by SP is 1 − 1/d, where d = min{d1, d2}.
Moreover, this maximal value is attained by a maximally
entangled state.

III. MIXED STATES

In this section, we will consider the shared purity for
nonpure states, and in particular reach the conclusion
that shared purity is different from any quantum cor-
relation measures. It will be shown to be different from
any measure of quantum correlation of the entanglement-
separability paradigm [4], like entanglement of forma-
tion [20], relative entropy of entanglement [25], logarith-
mic negativity [26], etc., and also from any such measure
of the information-theoretic paradigm [10], like quantum
discord [11], quantum work-deficit [12], etc.

We begin by proving the following result for classically
correlated states.

Property 4. For classically correlated states, the
global and local fidelities are equal.
Proof: In general, the classically correlated state is
given by

ρ1...N =
∑

i1,...,iN

pi1...iN |i1〉〈i1| ⊗ . . .⊗ |iN 〉〈iN |

where {|ij〉}dj

ij=1, for j = 1, . . . , N , forms a mutually

orthonormal set of vectors. By using Theorem 1,
we get that FG is the largest eigenvalue, say pi1...iN ,
corresponding to the spectral vector, |i1〉 ⊗ . . . ⊗ |iN 〉.
Hence the maximum in the global fidelity is attained in
a completely product state. Hence, all local fidelities
can also be attained in the same state, yielding the same
value as the global one. �

Property 5. For a state of the form ρ1 ⊗ . . . ⊗ ρN on
C

d1 ⊗ . . .⊗ C
dN , shared purity vanishes.

Below, we will find that shared purity can be nonzero
for separable states. However, it can also be vanishing
for entangled states. These twin facts imply that shared
purity is conceptually different from quantum correlation
measures, even the information-theoretic ones.
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A. Bipartite and multipartite mixed states: some

examples

We will now investigate the behavior of shared purity
for paradigmatic classes of mixed states.

1. Admixtures of a Bell state with a pure product state

Consider the state

ρent = p|00〉〈00|+ (1− p)|ψ−〉〈ψ−|,

where |ψ−〉 = 1√
2
(|01〉 − |10〉) and 0 ≤ p ≤ 1. |0〉 and

|1〉 form the computational basis of a single qubit. The
state is entangled for any value of p < 1. Since the state is
already written in its spectral decomposition, FG is equal
to the coefficient of the largest spectral component, i.e.
FG = max{p, 1− p}.
Now, we present some of the steps involved in the cal-

culation of FL. The states |φA〉 and |φB〉, of the product
states |φA〉⊗ |φB〉 over which FL is maximized, are given
by

|φA〉 = eiφ1 cos
θ1
2
|0〉+ eiφ

′

1 sin
θ1
2
|1〉,

|φB〉 = eiφ2 cos
θ2
2
|0〉+ eiφ

′

2 sin
θ2
2
|1〉.

Therefore,

FL = max
θ1,θ2

{

p cos2
θ1
2
cos2

θ2
2

+
1− p

2
sin2

(

θ1 + θ2
2

)}

,

after we have already maximized FL over the set of vari-
ables {φ1, φ

′

1, φ2, φ
′

2} by setting cos(φ
′

1 +φ2 −φ1 −φ
′

2) =
−1. Optimizing FL with respect to {θ1, θ2} leads us to
the following three conditions – cos θ1

2 = 0 or cos θ2
2 = 0

or sin θ1−θ2
2 = 0. Each of the first two conditions extrem-

izes FL to 1−p
2 while the third gives

FL =
(1− p)2

2− 3p
, p ≤ 1

2
,

= p, p ≥ 1

2
.

Therefore the third condition i.e. sin θ1−θ2
2 = 0 maxi-

mizes FL. Therefore, when p ≥ 1

2
, FL, like FG, is also

identically equal to p making SP = 0. For 0 ≤ p <
1

2
,

FL =
(1− p)2

2− 3p
and in this region FG = 1 − p and there-

fore, SP =
(1− p)(1− 2p)

2− 3p
. So, finally we have that for

the state ρent, the shared purity is given by

SP =
(1− p)(1− 2p)

2− 3p
, 0 ≤ p <

1

2
,

= 0,
1

2
≤ p ≤ 1. (7)

Clearly, the shared purity vanishes for mixed entangled
states. Below we will find however that it may be non-
vanishing for separable states. We exhibit a plot of the
shared purity of the state ρent in Fig. 1.
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FIG. 1. (Color online) Shared purity (SP ) with respect to the
parameter p, for the state ρent. The most interesting region,
perhaps, is 1

2
≤ p < 1, where the shared purity vanishes,

although the state has a nonzero entanglement there. Both
axes are dimensionless.

2. Bell mixtures

Consider next, the mixture of two Bell states, given by

ρBell = p|ψ−〉〈ψ−|+ (1− p)|ψ+〉〈ψ+|,
where |ψ+〉 = 1√

2
(|01〉+ |10〉) and 0 ≤ p ≤ 1. Note that

the state is entangled for all values of p except p = 1/2.
Since the state is already in its spectral decomposition,
FG is equal to max{p, 1− p}. FL is evaluated using the
same procedure as given in the preceding example. FL is

equal to
1

2
for any value of p. Therefore,

SP = p− 1

2
for p ≥ 1

2
,

=
1

2
− p for p <

1

2
. (8)

Just like any quantum correlation measure, shared purity,
in this case, is also a mirror reflection with respect to
the p = 1/2 line. This is a result of the local unitary
invariance of shared purity (Property 3). Fig. 2 depicts
the behavior of the shared purity for this state. Further
Bell mixtures are considered in succeeding examples.

3. Admixtures of pure states with noise

The mixture of an arbitrary pure state with white noise
is given by

ρgen = p|ψ〉〈ψ|+ (1− p)
1

2
I ⊗ 1

2
I,



5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

S
P

p

FIG. 2. (Color online) Shared purity (SP ), as a function of
the probability parameter p, for the Bell mixture ρBell. SP is
vanishing only at p = 1/2. Both axes are dimensionless.

where |ψ〉 = cos θ|00〉 + sin θ|11〉 with 0 ≤ θ ≤ π/4,
0 ≤ p ≤ 1, and I denotes the identity operator on
the qubit Hilbert space. Using Theorem 1, we ob-

tain FG =
3p+ 1

4
, while FL = pf(θ) +

1− p

4
, where

f(θ) = max{cos2 θ, sin2 θ}. Therefore, the shared purity
in this case is given by

SP = p(1− f(θ)). (9)

Fig. 3 depicts the behavior of SP with respect to θ and
the mixing parameter p. The state reduces to the Werner
state [27] when θ = π

4 , and the shared purity, then, re-
duces to p

2 , which is non-zero for the entire range of p
except p = 0. Note that the Werner state is entangled
for p > 1/3, while quantum discord and quantum work-
deficit are non-vanishing for p > 0. Hence, similar to
the information-theoretic quantum correlation measures
like quantum discord and quantum work deficit, shared
purity can be positive for separable states.

4. Multipartite mixed states

Let us now consider an N -party Greenberger-Horne-

Zeilinger state [17], mixed with white noise, in
(

Cd
)⊗N

.
The state is given by

ρGHZN
= p|ψ〉〈ψ|+ (1− p)

(

1

d
Id ⊗ . . .⊗ 1

d
Id

)

,

where

|ψ〉 = 1√
d
(|01 . . . 0N 〉+ . . .+ |(d− 1)1 . . . (d− 1)N〉),

and 0 ≤ p ≤ 1. Here, Id denotes the identity operator on
C

d, and {|ij〉}d−1
i=0 for j = 1, . . . , N forms an orthonormal

basis in the Hilbert space of the jth particle. In this case,
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FIG. 3. (Color online) Shared purity (SP ), as a function of
the probability parameter p and the pure state parameter θ
for the shared quantum state ρgen. θ is measured in radians.
Other axes are dimensionless.

FG = p+
1− p

dN
, and FL is given by

FL =

(

p

d
+

1− p

dN

)

. (10)

Therefore, the shared purity is given by

SP = p

(

1− 1

d

)

. (11)

Note that the shared purity never vanishes except at p =
0.

IV. MONOGAMY PROPERTIES OF SHARED

PURITY

Certain, and certainly not all, properties of shared
quantum systems are known to be monogamic in nature
[3, 28–31]. Consider a multiparty quantum system in a
state ρ1...N , and a certain two-party physical quantity
Q. This quantity will be monogamic if a high amount of
Q(ρ12) implies that neither the party 1 nor the party 2
will be able to share a substantial amount of Q with any
other party. Here, ρ12 = tr3...Nρ1...N . However, sharing
of classical correlations of a multiparty quantum system
does not have any such restriction. We begin with the
following result which shows that shared purity is indeed
a quantum property of shared systems.

Theorem 4. If two quantum systems, irrespective
of their dimensions, have the maximal amount of shared
purity, they cannot share any purity with any third
quantum system.
Proof: Consider a three-party system ρ123 in
Cd1 ⊗ Cd2 ⊗ Cd3 , such that ρ12 = tr3ρ123 has
SP = 1 − 1/d, where d = min{d1, d2}. Note that
Corollary 3.1 implies that 1− 1/d is the maximal shared
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purity possible in Cd1 ⊗ Cd2 , and that it is attained by
a pure state (any maximally entangled state). We now
show that there are no mixed states that also attains
that maximal value. Let us assume that ρ12 is nonpure,
so that its maximal spectral eigenvalue λr is strictly
less than unity. Then, by Theorem 3, the shared purity
for ρ12 is ≤ λr(1 − 1/d), which is strictly less than
1 − 1/d. This is a contradiction, implying that ρ12 is
pure. However, if ρ12 is pure, ρ123 must be of the form
ρ12 ⊗ ρ3. Correspondingly, the state of 1 and 3 will be
of the form ρ1 ⊗ ρ3, so that by Property 5, its shared
purity must vanish. Similarly, the shared purity between
2 and 3 must also vanish. �

Physical quantities of shared systems for which The-
orem 4 holds may be termed as “qualitatively monoga-
mous”, and shared purity is one of them. In order to
make this statement more quantitative, the relation [28–
31]

Q(ρ12) +Q(ρ13) ≤ Q1:23(ρ123) (12)

is usually considered, whereQ1:23(ρ123) denotes the value
of Q of the state ρ123 in the 1:23 partition. A quantum
state ρ123 is said to be monogamous with respect to the
bipartite physical quantity Q, if the relation in (12) is
satisfied. Let us therefore consider the relation

SP (ρ12) + SP (ρ13) ≤ S1:23
P (ρ123), (13)

and find the states for which this relation is satisfied and
whether there are violations of it.
Let us first consider the generalized GHZ state, given

by

|ψ〉GGHZ = cos θ|000〉+ eiφ sin θ|111〉,

where θ ∈ [0, π] and φ ∈ [0, 2π). The two-party reduced
density matrices are

ρG1j = cos2 θ|00〉〈00|1j + sin2 θ|11〉〈11|1j,

where j ∈ {2, 3}. Since the state is classically cor-
related, SP (ρ

G
1j) = 0 ∀j, as shown in Sec. III. Now

since |ψ〉GGHZ is a pure state, F 1:23
G = 1, while F 1:23

L =
max{cos2 θ, sin2 θ}. Therefore,

S1:23
P (|ψ〉GGHZ ) = 1−max{cos2 θ, sin2 θ}. (14)

Hence, the monogamy condition, viz. Eq. (13), is always
satisfied for the generalized GHZ states.
Next, let us consider the generalized W state, given by

|ψ〉GW = sin θ1 cos θ2|001〉+ sin θ1 sin θ2e
iφ1 |010〉+

+cos θ1e
iφ2 |100〉.

In this case, F 1:23
L = max{sin2 θ, cos2 θ}, and therefore

S1:23
P = min{sin2 θ, cos2 θ}. On the other hand,

FG(ρ
W
12 ) = max{sin2 θ cos2 φ, 1 − sin2 θ cos2 φ}

FG(ρ
W
13 ) = max{sin2 θ sin2 φ, 1− sin2 θ sin2 φ}. (15)

The local fidelities of the local density matrices, ρW1j , of

the state |ψ〉GW , where j ∈ {2, 3}, are maximized numeri-
cally, by generating 2× 104 random states. We find that
the generalized W states are always polygamous with re-
spect to shared purity. In Fig. 4, we plot the “shared
purity monogamy score”, defined as [30]

δSP
= SP (ρ1:23)− (SP (ρ12) + SP (ρ13)) (16)

as a function of θ1 and θ2. Considering only generalized
GHZ and generalizedW states, the monogamy properties
of shared purity are very similar to those of quantum
discord [29, 30]. The same is, however, not true for bigger
classes of states, as we will now find.
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FIG. 4. (Color online) Monogamy score for shared purity of
the generalized W states. δSP

, plotted on the vertical axis,
is positive for all θ1 and θ2, implying that the generalized
W states are always non-monogamous. The monogamy score
is a dimensionless quantity, while θ1 and θ2 are measured in
radians. For every choice of (θ1, θ2), the values of φ1 and φ2

are chosen randomly.

Let us now consider the GHZ-class [16] and the W-
class states [16]. These disjoint sets, when taken together,
encompass the complete set of three-qubit pure states.
The normalized GHZ-class states can be represented by

|ψ〉ABC =
√
K
(

cos δ|000〉+ eiφ sin δ|ξA〉|ξB〉|ξC〉
)

,

where

|ξA〉 = cos θ1|0〉+ sin θ1|1〉,
|ξB〉 = cos θ2|0〉+ sin θ2|1〉,
|ξC〉 = cos θ3|0〉+ sin θ3|1〉,

and K = (1 + 2 cos δ sin δ cos θ1 cos θ2 cos θ3 cosφ)
−1 ∈

(1/2,∞) is a normalization factor. The ranges for the
five parameters are δ ∈ (0, π/4], θ1, θ2, θ3 ∈ (0, π/2]
and φ ∈ [0, 2π). The monogamy relation, in Eq. (13),
is checked numerically by randomly choosing 104 states
from the GHZ-class states. We find that 54.36% states
are non-monogamous. Next, we consider the normalized
W-class states, given by

|ψ〉ABC = a|001〉+ b|010〉+ c|100〉+ d|000〉
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where

a = sinφ1 sinφ2 sinφ3,

b = cosφ1 sinφ2 sinφ3,

c = cosφ2 sinφ3,

d = cosφ3,

with φ1, φ2 ∈ (0, π/2) and φ3 ∈ (0, π/2]. We find that
82.61% of the 104 randomly chosen states from the W-
class turn out to be non-monogamous. In case of quan-
tum discord, when the measurement is performed on the
second party, all W-class states are non-monogamous
[29]. We now consider the monogamy relation for the
square of shared purity (cf. [31]), i.e., we introduce the
score

δ
(2)
SP

= S2
P (ρ1:23)− (S2

P (ρ12) + S2
P (ρ13)). (17)

In this case, 37.66% of the randomly chosen states
from the GHZ-class remain non-monogamous, while
among the W-class states, 62.39% continue to be non-
monogamous.

V. APPLICATION: DETECTING CRITICALITY

IN QUANTUM SPIN MODELS BY SHARED

PURITY

In this section, we show that shared purity can be
applied to detect cooperative phenomena in quantum
many-body systems. We will find that the scaling ex-
ponents of shared purity near critical points are differ-
ent from those of quantum correlation measures. More
specifically, we study the scaling behavior of the shared
purity in the one-dimensional anisotropic quantum XY
models [32]. Such models can be simulated using ultra-
cold gases in a controlled way in the laboratories (see
[18, 33]), and is also known to describe Hamiltonians of
materials [34]. We therefore consider a system ofN quan-
tum spin-1/2 particles, arranged on a ring, and described
by the anisotropic quantum XY model. The Hamiltonian
corresponding to which is given by

HXY =
J

2

(

N
∑

i=1

(1 + γ)σx
i σ

x
i+1 + (1− γ)σy

i σ
y
i+1

)

+h

N
∑

i=1

σz
i ,

(18)
where J is the coupling constant for the nearest neighbor
interaction, γ ∈ (0, 1] is the anisotropy parameter, σ’s
are the Pauli spin matrices, and h represents the exter-
nal transverse magnetic field applied across the system.
Periodic boundary condition is assumed here, so that
~σN+1 ≡ ~σ1. γ = 1 corresponds to the transverse Ising
model. The above Hamiltonian can be diagonalized by
applying Jordan-Wigner, Fourier, and Bogoliubov trans-
formations [32] successively. At zero temperature, it un-
dergoes a quantum phase transition driven by the trans-
verse magnetic field. Such transitions have been detected
by using different order parameters [32, 35], including

quantum correlation measures like concurrence [21], ge-
ometric measures [13, 14, 24], and quantum discord [36].
We now investigate the behavior of the shared

purity of the nearest neighbor density matrix of the
ground state near the known quantum critical point

at λ =
h

J
= 1 [32]. The nearest neighbor two-body

density matrix corresponding to the ground state of the
XY Hamiltonian, Eq. (18), represented by ρAB, can be
written [32] in terms of the classical two-site correlations
and the average magnetization in the direction of the
external magnetic field i.e. the z-direction. The density
matrix, ρAB, in the thermodynamic limit of N → ∞, is
given by

ρAB =











α+ +
Mz

2
0 0 β

−

0 α
−

β+ 0
0 β+ α

−
0

β
−

0 0 α+ −
Mz

2











where α± =
1

4
(1 ± Tzz), β± =

Txx ± Tyy
4

with

Tij = tr(σi ⊗ σjρAB) and Mz = tr(σzρA). The
correlations and transverse magnetization, for the
zero-temperature state, are given by [32]

T xx(h̃) = G(−1, h̃),

T yy(h̃) = G(1, h̃), (19)

T zz(h̃) = [Mz(h̃)]2 −G(1, h̃)G(−1, h̃),

where G(R, h̃) (for R = ±1) are

G(R, h̃) =
1

π

∫ π

0

dφ
1

Λ(h̃)

× (γ sin(φR) sinφ− cosφ(cosφ− h̃))

(20)

and

Mz(h̃)) = − 1

π

∫ π

0

dφ
(cosφ− h̃)

Λ(h̃)
.

(21)

Here

Λ(x) =
{

γ2 sin2 φ + [x− cosφ]2
}

1

2 , (22)

and

h̃ =
h

J
. (23)

Note that h̃ is a dimensionless variable. FG corresponds
to the maximum eigenvalue of the density matrix
ρAB. FL is obtained by numerical maximization of the
density matrix ρAB with respect to the product states
in C2 ⊗ C2. We plot the derivative of SP with respect
to λ, i.e. dSP

dλ
, against λ, in Fig. 5, for different values

of the anisotropy parameter γ. The divergence of the
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derivative at λ = λc ≡ 1 clearly signals the quantum
phase transition in this model, indicating that shared
purity can be used as a physical quantity to detect
quantum phase transitions.

Finite-size scaling. We now perform a finite-size scal-
ing analysis for the shared purity near the critical point.
Such scaling analysis will lead us to obtain the scaling
exponents of shared purity in this model. Another im-
portance of such analysis is that it helps us to understand
the viability of detecting the critical point in finite-sized
systems, which can be built by using ultracold gas sys-
tems. We have calculated the shared purity of nearest
neighbor spins for finite chains consisting of N spins,
with N = 55, 65, 75, 85, 95, 105, 115, 125. By performing
the scaling analysis, we find that the point of divergence
approaches λ = λc as N−1.4 i.e.

λ = λc + kN−1.4 (24)

where k is a dimensionless constant. We plot the deriva-
tive of shared purity with respect to λ for a finite number
of spins along with the scaling in Fig. 6.
It is to be noted here that the finite-size scaling expo-

nent obtained for shared purity is different from those for
other quantum correlation measures. In particular, for
the entanglement measure called concurrence, finite-size
analysis led to an approach to the point of divergence as
N−1.87 [21], while for the information-theoretic quantum
correlation measure called quantum discord, the same
gives the point of divergence as N−1.28 [37].
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FIG. 5. (Color online) Shared purity detects quantum phase

transition. The derivative of SP , i.e.
dSP

dλ
, is plotted against

λ for the one-dimensional anisotropic quantum XY model in
the thermodynamic limit. We have chosen three different
anisotropy values, viz. γ = 0.5, 0.8, 1.0. Both axes repre-
sent dimensionless parameters.
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FIG. 6. (Color online) Finite-size scaling analysis for shared
purity. The derivative of SP with respect to λ is plotted
against λ for the one-dimensional anisotropic quantum XY
model for finite numbers of particles, for γ = 0.8. The be-
havior is similar for other anisotropy values. The inset shows
the scaling analysis for finite N , which is a log-log plot be-
tween log10 N (the horizontal axis) and log10(λc − λN

c ) (on

the vertical axis), where λN
c is the value of λ at which dSP

dλ

attains a minimum, for a system of N spins. All axes are
dimensionless. The base 10 of the logarithm is not displayed
in the inset for simplicity.

VI. DISCUSSION

Entanglement, and in recent years, information-
theoretic quantum correlations, have been one of the
most important pillars in the grand edifice of quantum in-
formation of shared quantum systems. There have, how-
ever, been indications that this may not be the entire
picture, and that there may be important resources that
are employed by nonclassical phenomena in the domain
of shared quantum systems. We have conceptualized and
provided a measure of shared quantum systems, which
we have called shared purity, and which we have shown
to be independent of quantum correlations, qualitatively
and quantitatively. The concept is based on the maxi-
mal fidelity of the shared quantum state to certain sets
of pure quantum states. The measure is defined for an
arbitrary state (pure or mixed) of an arbitrary number of
parties in arbitrary dimensions. For pure shared states,
the shared purity reduces to the geometric measures of
entanglement. However, for mixed states, the measure is
shown to exhibit a drastically different behavior from any
measures of quantum correlation. The measure is a dif-
ference between two quantities, which we have called the
global and local fidelities. The global fidelity is shown to
be expressible in closed analytic form. The local fidelity
is also calculated analytically for several paradigmatic
classes of mixed shared quantum states. Efficient numer-
ical procedures are possible in other cases.
We have shown that the measure is qualitatively

monogamous, in that a maximal amount of shared purity
between two quantum systems rules out the existence of
any shared purity with these systems of any third party.
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This is very unlike classical correlations, and ensures the
quantum nature of the quantity. Like many other mea-
sures of entanglement and information-theoretic quan-
tum correlations, shared purity can be both monogamous
and non-monogamous, when quantitatively probed. We
have performed this quantitative analysis for all three-
qubit pure states. In particular, we have found that all
generalized W states violate the monogamy relation for
shared purity while all generalized Greenberger-Horne-

Zeilinger states satisfy the same.
Finally, we have applied the shared purity to analyze

the quantum anisotropic XY spin model and have found
that it can faithfully signal the quantum phase transition
present in this model. Moreover, we have performed a
finite-size scaling analysis, and have obtained the scaling
exponent of shared purity in this model. Interestingly,
the scaling exponent is different from those of concur-
rence, an entanglement measure, and quantum discord,
an information-theoretic quantum correlation.
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