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We identify a class of quantum states, each consisting of a microscopic and a macroscopic section,
that are effectively decoherence-free when each particle is locally passed through a quantum channel.
In particular, and in contrast to other macroscopic quantum states like the Greenberger-Horne-
Zeilinger state, the content of entanglement and other quantum correlations in the microscopic
to macroscopic partition of this class of states is independent of the number of particles in their
macroscopic sectors, when all the particles suffer passage through local amplitude and phase damping
channels. Decay of quantum correlations – entanglement as well as quantum discord – of this class
of states in the microscopic to macroscopic partition is also much lower in the case of all the local
quantum channels, as compared to the other macroscopic superposition states. The macroscopic
sections of the states are formed, in each case, by using a Dicke state and an orthogonal product
state, which are macroscopically distinct in terms of markedly different amounts of violation of Bell
inequality.

I. INTRODUCTION

Quantumness of a physical system plays an important
role in several quantum communication and computa-
tional tasks [1]. Such protocols include quantum tele-
portation [2], super-dense coding [3], quantum cryptog-
raphy [4], and deterministic quantum computation with
one qubit [5]. The advantages of these protocols over
their classical counterparts vitally depend on the amount
of quantum coherence present in the system. The phys-
ical system is almost always coupled to an environment,
which, in general, destroys quantum coherence. It is
therefore crucially important to control and preserve the
quantum character of physical systems in which quantum
information protocols are to be implemented. A variety
of experimental techniques have been developed in the
last decade to isolate a quantum system from its environ-
ment in ion traps [6], cold atoms [7] and other systems [8].
Improvements in computational tasks by using quantum
mechanics require the creation of quantum coherence in
suitable macroscopic quantum systems which can reason-
ably withstand decoherence due to environmental noise.
Demonstration of macroscopic quantum states in vari-
ous physical systems, like superconductors [9], nanoscale
magnets [10], laser cooled trapped ions [11], photons in a
microwave cavity [12], and C60 molecules [13] have been
proposed. Macroscopic quantum superposition in super-
conducting quantum interference devices (SQUID) [14]
has already been experimentally achieved (see also [15]).
It is important to identify systems which can retain their
quantum coherence even with an increase in the num-
ber of particles under decoherence. Such study has im-
portance also in fundamental questions like quantum to
classical transition [16], existence of quantum superposi-
tions at the macroscopic level [17], etc.

The effect of decoherence on systems of many qubits
have been studied by using different types of noise mod-
els. In particular, the effect of local depolarizing noise on
the multiqubit Greenberger-Horne-Zeilinger (GHZ) state
[18] has been investigated, and it has been found that the

state remains entangled up to 55% noise for any number
of qubits [19]. (See [20, 21] for further work in this di-
rection.) It has also been shown that encoding of logical
qubits into certain subspaces of larger number of physi-
cal qubits can lead to effectively decoherence-free qubits
against certain types of noise models [22].

In this paper, we identify a class of macroscopic quan-
tum states which is robust against a large spectrum
of physically reasonable local noise models –it is effec-
tively decoherence-free for certain local noisy channels,
and weathers decoherence better than other macroscopic
states for the remaining channels. The robustness of en-
tanglement [23] and other quantum correlations [24] of
the macroscopic state is considered in a partition of the
entire system into a macroscopic and a macroscopic part.
To study decoherence, we consider three kinds of noise
models: local phase damping, local amplitude damping,
and local depolarizing channels. We refer to the macro-
scopic states in the class as the Hm

CN
states, which have

k particles in its microscopic part and N in its macro-
scopic part. The macroscopic sector is built by using W
states [25–27], or more generally, Dicke states [28] with
m excitations, and by an orthogonal product state. The
macroscopic parts of the states are macroscopically dis-
tinct in terms of their drastically different amounts of
violation of Bell inequality [17, 21, 26, 29] (cf. [20]). We
show that for the Hm

CN
state, the entanglement as well as

quantum discord in the bipartition into microscopic and
macroscopic parts do not depend on the number of parti-
cles in the macroscopic sector, when all the particles are
sent individually through local phase damping or local
amplitude damping channels. The same behavior is not
true for the local depolarizing noise, although the Hm

CN

state withstands the noise better than other macroscopic
states.

We also find that the Hm
CN

state can sustain its quan-
tum correlations better than other macroscopic superpo-
sition states against the local noisy channels. In partic-
ular, the Hm

CN
state, e.g. for m = 1 and N = 6, can

withstand approximately 97% noise in both cases, un-
til when its entanglement in the micro : macro biparti-
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tion remains non-vanishing, while the values are 78% and
67.5% respectively for the corresponding GHZ state. We
also compare the effects of the local noise models on the
Hm

CN
state with those on other macroscopic states which

have unit entanglement in the micro : macro bipartition,
just like the Hm

CN
state. Such investigations can shed

light on our quest towards identifying appropriate mem-
ory devices involving a large number of qubits.
The paper is structured as follows. In Sec. II, we

introduce the local noise models, while the measures of
quantum correlation are defined in Sec. III. The class of
macroscopic states is introduced in Sec. IV. Their quan-
tum correlation properties under the local phase damping
channel (LPDC), the local amplitude damping channel
(LADC), and the local depolarizing channel (LDPC) are
discussed in Secs. IVB, IVC, and IVD respectively. The
effects of the same local channels on the GHZ state is re-
ported in Sec. V, where a comparison of the Hm

CN
state

with the GHZ state is also considered. We compare the
effects of the local noises on further macroscopic states
with the new class of states in Sec. VI. We conclude in
Sec. VII.

II. QUANTUM CHANNELS

In this section, we will discuss about the local deco-
herence models. In particular, we consider three types of
noisy environments, or equivalently consider that the sys-
tem passes through the corresponding quantum channels
[30], viz., (a) phase damping, (b) amplitude damping,
and (c) depolarizing channels. The entire system will be
considered to be a collection of qubits, in some initial
state, and we will consider the effect after each of the
qubits pass through one of the quantum channels.

A. Phase damping channel

Phase damping happens when e.g., a photon travels
through a waveguide, and scatters randomly. An initial
single qubit state ρ evolves under phase damping as

ρ 7→ ρ′ = (1− p)ρ+M1ρM1 +M2ρM2. (1)

where M1 =
√
p|0〉〈0| and M2 =

√
p|1〉〈1| with p being a

probability. Hence under this noise model, the final state
becomes

ρ′ =

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
,

where ρij , i, j = 0, 1, are the matrix elements of the ini-
tial state ρ. Here |0〉 and |1〉 are eigenstates of the Pauli
matrix σz , with eigenvalues −1 and 1 respectively. The
diagonal terms of the initial density matrix remain in-
variant under the phase damping channel while the off-
diagonal terms decay with probability (1− p).

B. Amplitude damping channel

The amplitude damping channel is a model for the de-
cay of an excited state of a (two-level) atom due to spon-
taneous emission of photons. Detection of the emitted
photon (“observation of the environment”), via a posi-
tive operator valued measurement, gives us information
about the initial preparation of the atom. After passing
through an amplitude damping channel, the initial qubit
state ρ is transformed to

ρ′ =

(
ρ00 + pρ11

√
(1− p)ρ01√

(1 − p)ρ01 (1 − p)ρ11

)
.

where p is the rate of decay. Unlike the phase damp-
ing channel, both diagonal and off-diagonal terms gets
affected by this channel.

C. Depolarizing channel

The errors which happen to an arbitrary pure qubit,
say |Ψ〉, when interacting with its environment, can be
categorized into bit flip error, which transforms |Ψ〉 into
σx|Ψ〉, phase flip error, which transforms |Ψ〉 into σz |Ψ〉,
and bit-and-phase-flip error. Here σx, σy, σz are the three
Pauli matrices. If an arbitrary qubit ρ is sent through a
depolarizing channel, the state remains unchanged with
probability (1 − p′) while the above three kinds of er-

ror occur with probability p′

3 each. Therefore, ρ, sent
through a depolarizing channel, transforms as

ρ 7→ ρ′ = (1 − p′)ρ+
p′

3
(σxρσx + σyρσy + σzρσz). (2)

By putting p′= 3p
4 , we obtain

|i〉〈j| 7→ p

2
Itr(|i〉〈j|) + (1− p)|i〉〈j|, (3)

where I is the identity operator on the qubit Hilbert
space. Here, 0 ≤ p′ ≤ 3

4 and 0 ≤ p ≤ 1. Note that

for p′= 3
4 , the qubit state in Eq. (2) will be proportional

to the identity matrix, I, while the same for the noisy
state obtained via Eq. (3) occurs at p = 1.

III. QUANTUM CORRELATIONS

It is important to understand the nature and content of
quantum correlations that a superposed state of a com-
posite system of a large number of particles can retain,
when the constituent particles are sent through noisy
channels. For such an investigation, we define two quan-
tum correlation measures – logarithmic negativity [31],
for quantifying entanglement, and quantum discord [32],
a quantum correlation measure that is independent of the
entanglement-separability paradigm.
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A. Logarithmic negativity

A computable measure of entanglement in a bipartite
state, ρAB, shared between A and B, is the logarithmic
negativity [31], defined as

EN (ρ) = log2(2N(ρ) + 1), (4)

where the “negativity”, N(ρ), is the sum of the absolute
values of the negative eigenvalues of the partially trans-
posed state, ρTA

AB where the partial transposition is taken
with respect to A [33].

B. Quantum discord

Quantum discord is a measure of quantum correlation
based on information-theoretic concepts and is indepen-
dent of entanglement. Such quantification is at least
partly induced by the discovery, over the last decade,
of several non-classical phenomena which can not be ex-
plained by using entanglement [5, 34, 35].
There are two equivalent ways to define the mutual in-

formation between two classical random variables. These
two classically equivalent definitions of mutual informa-
tion, after “quantization”, produce two inequivalent con-
cepts, the difference of which is termed as the quantum
discord [32].
Quantization of one of the classical definitions leads

to the “quantum mutual information”, which, for a bi-
partite quantum state, ρAB, is defined as [36] (see also
[37, 38])

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (5)

with ρA and ρB being the local density matrices of ρAB,
and where S(σ) = −tr (σ log2 σ) is the von Neumann
entropy of the quantum state σ.
Quantization of the other definition of classical mutual

information leads to the quantity

J(ρAB) = S(ρA)− S(ρA|B), (6)

where the “quantum conditional entropy”, S(ρA|B) ≡
SA|B, is defined as

S(ρA|B) = min
{ΠB

i
}

∑

i

piS(ρA|i), (7)

where the minimization is performed over all rank-1 mea-
surements, {ΠB

i }, performed on subsystem B. Here,
pi = trAB(IA ⊗ ΠB

i ρABIA ⊗ ΠB
i ) is the probability

for obtaining the outcome i, and the corresponding
post-measurement state for the subsystem A is ρA|i =
1
pi
trB(IA⊗ΠB

i ρABIA⊗ΠB
i ), where IA is the identity op-

erator on the Hilbert space of the quantum system that
is with A. The quantity J(ρAB) has been argued to be
the amount of classical correlations in ρAB.
In this paper, we calculate the logarithmic negativity

and the quantum discord of the decohered macroscopic

states in the micro : macro bipartition. For the case of
quantum discord, the measurements (to evaluate J) are
carried out in the micro part.

IV. MACROSCOPIC STATE UNDER

DECOHERENCE

In this section, we first introduce a class of macroscopic
quantum states. We then address two aspects of these
states: (1) we consider the effects of local decoherence on
these states and identify the state which is more robust
against local noise than the other states, and (2) we study
the scaling behavior of quantum correlations of this class
of states with the increase in number of particles against
noise.

A. A class of macroscopic quantum states

Let us define here a class of quantum states, each con-
sisting of a microscopic and a macroscopic part. We de-
note it by |Hm

CN
〉, and it is given by

|Hm
CN

〉 = 1√
2
[|0⊗k〉µ|Wm

N 〉M + |1⊗k〉µ|0⊗N〉M ], (8)

where

|Wm
N 〉 = 1√(

N
m

)
∑

|1⊗m0⊗N−m〉. (9)

The sum in the last equation denotes the equal superpo-
sition of all the

(
N
m

)
combinations of m |1〉’s and (N−m)

|0〉’s. Here
(
N
m

)
= N !

m!(N−m)! . The suffix µ denotes the mi-

croscopic part while the suffix M is for the macroscopic
sector of the state. We assume that 1 ≤ m < N . The
case m = 0 is uninteresting, as then the µ : M partition
is unentangled. The Hm

CN
state becomes a GHZ state for

m = N , which is considered separately in the succeeding
section. We will generally be interested in the cases where
1 ≤ k ≪ N , i.e., where the number of particles (qubits)
in the microscopic part is much smaller than that of the
macroscopic part. For k = 1 and m = 1, this reduces to
the HC state [21, 39].
For investigating the quantum coherence of this class

of quantum states, each qubit of the Hm
CN

state is sent
through a noisy quantum channel. We then investigate
the behavior of entanglement and quantum discord in the
microscopic to macroscopic bipartition.
The state |Hm

CN
〉 has unit entanglement in the µ : M

partition, and is of the form of the Schrödinger cat state,
i.e., |0̄〉µ|alive〉M + |1̄〉µ|dead〉M , where |0̄〉µ and |1̄〉M are
orthonormal states of the microscopic part, and |alive〉M
and |dead〉M are orthonormal states of the macroscopic
(cat) part. In the case of Hm

CN
, the “alive” and “dead”

parts are respectively modeled by |Wm
N 〉 and |0⊗N 〉, with

the latter being macroscopically distinct in terms of their
violation of Bell inequalities [21, 26].
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B. Hm

CN
state under local phase damping channel

Let us begin with the situation when each qubit of the
Hm

CN
state is sent through a phase damping channel. The

block of the local phase damped Hm
CN

state, after partial
transposition, which contributes in the calculation of log-
arithmic negativity, in the micro : macro bipartition, is
of the form

B
lpdc
Hm

CN

=
1

2




0 b . . . b
b 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
b 0 . . . 0




,

where b = 1
√

(Nm)
(1− p)k+m. This block has one negative

eigenvalue, given by

λ
lpdc
Hm

CN

= −1

2
(1− p)k+m. (10)

Therefore, the logarithmic negativity of the local phase
damped state is given by

E
lpdc
Hm

CN

(k,m) = log2[2|λlpdc
ρHm

CN

|+ 1]. (11)

An important point to note is that the entanglement
does not depend on the total number of particles, N .
That is, the effect on the Hm

CN
state after all N qubits of

the state are sent through phase damping channels, is in-
dependent of the size of the macroscopic part. As we will
see below, (Sec. IVC), this beautifully simple situation
persists for the local amplitude damping channel. The
case is richer for the local depolarization (Sec. IVD),
and the noise-affected state does depend on N , although
the scaling of quantum correlations is better than in the
noise-affected GHZ state. Coming back to local phase
damping, when m = 1, k = 1, we obtain

E
lpdc
Hm

CN

(1, 1) = log2(γ
2 + 1), (12)

with γ = 1− p. This value of entanglement is the maxi-
mum among all other states in this class, i.e., among all
Hm

CN
, as also observed in Fig. 1. Moreover, note that in

the noiseless case, the entanglement is unity for all Hm
CN

.

Instead of entanglement, if one considers quantum dis-
cord, in the micro : macro bipartition, we again find that
the H1

CN
state, with a single particle in the microscopic

section, is maximally robust under this kind of noise than
all the other states in this class (see Fig. 1). Moreover,
numerical simulation indicates that quantum discord for
this class of states is also independent of system-size of
macroscopic part up to first order of magnitude (see Fig.
2). It is also observed that the independency of quan-
tum discord on the number of parties in the macroscopic
sector remains valid for higher values of k.
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FIG. 1. (Color online) Entanglement and quantum discord
of the local phase damped Hm

CN
state. We plot the logarith-

mic negativity (in ebits) and quantum discord (in bits) on the
vertical axes versus the decoherence parameter p (dimension-
less) on the horizontal axes, for the Hm

CN
state, after each of

the qubits are affected by phase damping noise. The plot are
displayed for m = 1, 2, and 3. Note that for m = 1, the Hm

CN

state is the same as the HC state. All plots are for N = 6 and
for k = 1. Here, and in the rest of the paper, we mostly plot
the curves for the different quantities for a modest number
of particles in the macroscopic sector (which, in the current
case implies that we are dealing with a 27 × 27 matrix). This
is despite the fact that in many cases, we can consider big-
ger system sizes and even have analytical results for arbitrary
N . We however feel that the curves for the relatively modest
system sizes will give the reader a feeling of the situation in a
potential experimental realization of the phenomena consid-
ered.

C. Hm

CN
state under local amplitude damping

channel

Consider now the situation when all the qubits of the
Hm

CN
state are sent through amplitude damping chan-

nels. In this case, the block of the partially transposed
local amplitude damped Hm

CN
state, which gives negative

eigenvalues contributing to entanglement in the micro :
macro bipartition is an (

(
N
m

)
+1)× (

(
N
m

)
+1) matrix, and

is given by

Bladc
Hm

CN

=
1

2




pk + pm
(1−p)

m+k

2√
N̄

. . .
(1−p)

m+k

2√
N̄

(1−p)
m+k

2√
N̄

0 . . . 0

. . . . . .

. . . . . .

. . . . . .

(1−p)
m+k

2√
N̄

0 . . . 0




.

Here, N̄ =
(
N
m

)
. The negative eigenvalue of this matrix,

denoted by λladc
Hm

CN

, is given by

λladc
Hm

CN

=
1

4
(pk + pm −

√
(pk + pm)2 + 4(1− p)k+m),

(13)

and therefore the logarithmic negativity is

Eladc
Hm

CN

(k,m) = log2[2|min(0, λladc
Hm

CN

)|+ 1]. (14)
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FIG. 2. (Color online) Independence of quantum discord of
the local phase damped H1

CN
state on the number of particles

in the macroscopic sector. Quantum discord (in bits) for the
H1

CN
state (i.e., the HC state) for different values of N after

the state is local phase damped, is plotted on the vertical
axis, against the decoherence parameter p (dimensionless) on
the horizontal axis. Here, the microscopic part of the state
consists of a single particle (i.e., k = 1). This shows that
the quantum discord, like entanglement, is independent, up
to numerical accuracy, of size of the macroscopic sector. A
similar feature holds for higher values of k. The inset shows
the same figure blown up near p = 0.

It is clear from Eqs. (13) and (14) that the logarith-
mic negativity is independent of N , just as for the local
phase damping channel. Quantum discord, which is ob-
tained numerically, is also independent of system size, as
depicted in Fig. 3, for k = 1. The independency of quan-
tum discord on N holds true also for higher values of k.
For k = 1 and m = 1, the negative eigenvalue in Eq. (13)
reduces to

λladc
Hm

CN

(1, 1) =
1

4
(2p2 −

√
4p2 + 4(1− p)2). (15)

Just like for the local phase-damping channel, the state
H1

CN
can sustain more noise than any other states in this

class for both the quantum correlation measures. Note
here that quantum discord is non-zero for the entire range
of the noise parameter, except at p = 1. Both the quan-
tum correlations are plotted in Fig. 4 for different values
of m.

D. Hm

CN
state under local depolarizing channel

We now consider the effect of the local depolarizing
channel on the Hm

CN
state. Unlike phase and amplitude

damping channels, entanglement in this case does depend
on the total number of particles, N , in the macroscopic
part, and decreases with the increase ofN . We also probe
the behavior of entanglement with respect to m for fixed
total number of particles and also for a fixed number,
k, of parties in the microscopic part. As seen in Fig. 5
(left), the state with two excitations (i.e., m = 2), is more
robust against local depolarizing channels than the state
with one excitation (i.e., m = 1). Likewise, quantum
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FIG. 3. (Color online) Independence of quantum discord of
the local amplitude damped Hm

CN
state on the number of

particles in the macroscopic sector. All other considerations
are the same as in Fig. 2, except that we do not have the
inset here.
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FIG. 4. (Color online) Logarithmic negativity and quantum
discord against the noise parameter of amplitude damping
channel, for the local amplitude damped Hm

CN
state. All other

considerations are the same as in Fig. 1.

discord decreases with the increase of excitations (see Fig.
5 (right)).

E. A comparison of the local decohering channels

It is interesting to find the channel, from the ones con-
sidered in this paper, that is least destructive for the
Hm

CN
. For fixed N , m, and k, we compared their effects
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FIG. 5. (Color online) Logarithmic negativity and quantum
discord for the local depolarized Hm

CN
state against the noise

parameter of the depolarizing channel. All other considera-
tions are the same as in Fig. 1.
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FIG. 6. (Color online) How much quantum correlation is re-
tained against which noise? Logarithmic negativity and quan-
tum discord for different noisy channels in the micro : macro
bipartition for the H1

CN
state for k = 1. Here we have taken

N = 6. The vertical axes are in ebits for logarithmic neg-
ativity and in bits for quantum discord. The dimensionless
parameter p on the horizontal axes corresponds to the noise
parameter in the LPDC, the LADC, or the LDPC.

on entanglement and discord of the state. An example
of such comparison is presented in Fig. 6. It is observed
that for both the quantum correlation measures, the lo-
cal depolarizing channel is maximally destructive. The
local amplitude damping channel is much less destruc-
tive in both cases. The local phase damping channel has,
however a richer behavior. It is minimally destructive to
logarithmic negativity, while surprisingly being almost
maximally destructive to quantum discord.

V. GHZ STATE UNDER DECOHERENCE

Up to now, we have studied decoherence effects on the
Hm

CN
state for different models of decoherence. In this

section, we study effects of these noise models on the
well-known macroscopic state, the GHZ state. The GHZ
state, consisting of k parties in the microscopic part and
N in the macroscopic one, is given by

|GHZ〉N+k =
1√
2
(|0⊗k〉µ ⊗ |0⊗N 〉M

+ |1⊗k〉µ ⊗ |1⊗N〉M ). (16)

Just like the Hm
CN

state, the |GHZ〉N+k state also pos-
sesses one ebit of entanglement which is the same as its
quantum discord, in the microscopic to macroscopic bi-
partition. In this section, we will study the trends of
quantum correlations of the |GHZ〉N+k state, against the
three local noise models that we had considered for the
Hm

CN
state, and compare with those of the Hm

CN
state.

A. GHZ state under local phase damping channel

Let us begin by considering the effect of local phase
damping channels on the GHZ state. After each qubit of
the GHZ state is sent through a phase damping channel,

the resulting state can be written as

ρ
lpdc

GHZN+k

=
1

2

(
P

µ⊗k
0 ⊗ P0...0 + P

µ⊗k
1 ⊗ P1...1

+ (1− 2β)N+k(Pµ⊗k
0,1 ⊗ P0...0,1...1 + h.c.)

)
,

(17)

where β = p
2 , P

µ
0 = |0〉〈0|, P

µ
1 = |1〉〈1|, P

µ
0,1 =

γ|0〉〈1|, P0...0 = |0 . . . 0〉〈0 . . . 0|, P1...1 = |1 . . . 1〉〈1 . . . 1|,
P0...0,1...1 = |0 . . . 0〉〈1 . . . 1|. Here, γ = 1 − p. After

performing the partial transpose on the state ρ
lpdc

GHZN+k

with respect to micro : macro bipartition, the matrix

B
lpdc

GHZN+k

, whose eigenvalues contribute to the entan-

glement of the noisy GHZN+k state in the micro : macro
bipartition, is found to be of the form

B
lpdc

GHZN+k

=

(
0 (1−2β)N+k

2
(1−2β)N+k

2 0

)
,

and hence the entanglement is given by

E
lpdc

GHZN+k

= log2[(1 − p)N+k + 1]. (18)

It is clear from Eq. (18) that the entanglement of the
state depends on the number of the particles in the
macroscopic part. This is in sharp contrast to the sit-
uation in the case of the Hm

CN
state, where quantum cor-

relations do not depend on the number of particles in the
macroscopic part of the state. Note that the exponential
of the logarithmic negativity decreases as (1− p)k+m for
the Hm

CN
state (Eq. (11)), while as (1 − p)N+k for the

GHZ state (Eq. (18)). Since m < N , the entanglement
of the Hm

CN
state under a noisy environment, as mod-

eled by local dephasing channels, is more than that of
the GHZN+k state, for any N , m, and k. The entangle-
ments match for m = N . The Hm

CN
and GHZN+k states

are equal up to local unitary transformations for m = N .
But this does not imply equality of the entanglements
for all channels, as the local unitary transformations and
the local decohering channels may not commute. Note
also that it is certainly possible to consider the case when
1 ≤ m ≪ N , and in such cases, (1−p)k+m and (1−p)k+N

are very different.

B. GHZ state under local amplitude damping

channel

In this case, all the qubits of the GHZN+k state are
sent through amplitude damping channels. The block
of the total matrix, after partial transposition, which is
responsible for non-zero logarithmic negativity is

Bladc

GHZN+k

=
1

2

(
pkγN γ

N+k

2

γ
N+k

2 pNγk

)
.
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FIG. 7. (Color) Comparison of the entanglements of the lo-
cal amplitude damped Hm

CN
and GHZN+k states. We plot

here the projections of the difference between the logarith-
mic negativities (logarithmic negativity of the noisy Hm

CN

state minus that of the noisy GHZN+k state) of the local
amplitude damped Hm

CN
and GHZN+k states for k = 1 and

m = 1, 10, 20, 30, against the amplitude damping parameter,
p, and the number of qubits, N , in the macroscopic part.
The logarithmic negativities are measures in ebits, while N is
measured in qubits. p is a dimensionless parameter.

Correspondingly, the eigenvalue which can be negative
for some values of p, is given by

λladc

GHZN+k

=
1

4

(
pkγN + pNγk

−
√
(pkγN + pNγk)2 + 4γN+k(1− pN+k)

)
.

(19)

For fixed N , comparing Eqs. (13) and (19), we find that
under the local amplitude damping channel, the H1

CN

state has higher entanglement than the GHZN+k state
for all N > 2 and for k ≪ N . See Figs. 7 (top left panel)
and 8. Moreover, the “critical value” of the decohering
parameter, p, at which the decohered state becomes sep-
arable, is always greater for the H1

CN
state than that for

the GHZN+k state for all N > 2 and for k ≪ N (see also
Table I). For higher values of m, i.e. for m > 1, the Hm

CN

state has higher entanglement than the GHZ state, pro-
vided we choose sufficiently high N . See Figs. 7. Note
that unlike the case of the local phase damping channel,
the entanglements of the local amplitude damped HN

CN

and GHZN+k states do not match. However, the local
amplitude damped HN

CN
can have only a lower entangle-

ment than the local amplitude damped GHZN+k. This
is clearly seen from Eqs. (13) (for m = N) and (19) (see
also Fig. 7 for m = 1, 10, 20, 30).
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FIG. 8. (Color) A further comparison of the entanglements
of the local amplitude damped Hm

CN
and GHZN+k states. We

plot here the projections of the difference between the loga-
rithmic negativities (logarithmic negativity of the noisy Hm

CN

state minus that of the noisy GHZN+k state) of the local am-
plitude damped Hm

CN
and GHZN+k states for m = 1 and

N = 10, 15, 20, 30, against the amplitude damping parame-
ter, p, and the number of qubits, k, in the microscopic part.
The logarithmic negativities are measures in ebits, while k is
measured in qubits. p is a dimensionless parameter.

C. GHZ state under local depolarizing channel

Let us now study the effect of local depolarizing chan-
nels on the GHZN+k state. To calculate the entangle-
ment, in the micro : macro bipartition, we have to find
the negative eigenvalue of the matrix given by

B
ldpc

GHZN+k

=
1

2

(
a b
b a

)
,

where a = αkβN + βkαN , b = γN+k, γ = (1 − p) and

α = (1 − p
2 ) . The eigenvalue of B

ldpc

GHZN+k

, which is

negative for some values of p, is given by

λ
ldpc

GHZN+k

=
1

2
[αkβN + αNβk − γN+k]. (20)

The logarithmic negativity, then, is given by

E
ldpc

GHZN+k

= log2(2|min(0, λldpc

GHZN+k

)|+ 1). (21)

For six particles in the macroscopic sector and a single
particle in the microscopic one, a comparison of entan-
glement and discord between the |H1

CN
〉, |H2

CN
〉, |H3

CN
〉,

and the GHZ states, after they are affected by local depo-
larizing channels, is presented in Fig. 9. We find that the
|H1

CN
〉, |H2

CN
〉 and |H3

CN
〉 can sustain about 43%, 46%,

and 45% noises respectively, while the GHZ remains ro-
bust against up to 34% noise, for k = 1 and N = 6.
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FIG. 9. (Color online) The panels are the same as in Fig. 5,
except that there is an additional curve in each panel corre-
sponding to the GHZ state for k = 1, N = 6. See Table I for
numerical values.

When k = 2, the value of p at which logarithmic negativ-
ity vanishes is 0.445 for the |H1

CN
〉 state while it is 0.43

for the GHZ state. When k = 3 these values are 0.42
and 0.48 for the |H1

CN
〉 and GHZ states, respectively. A

comparison between the |H1
CN

〉 and GHZ states, after
they are affected by local depolarizing channels, is pre-
sented in Fig. 10 for different values of k. A comparison
with respect to robustness of entanglement and quantum
discord, between the different noise models, of the GHZ
state is presented in Fig. 11. The latter comparison re-
veals a picture that is quite different from that obtained
in a similar comparison in Fig. 6 for the Hm

CN
state. See

Figs. 6 and Fig. 11 for more details.

Table for critical values of decoherence parameter for
different states under different noisy channels.

Channel H1
CN

H2
CN

H3
CN

GHZ G HN−1

CN
HN

CN

LPDC 97.5 92 86 67.5 81 73 67.5
LADC 97 91 84 78 87 73.5 75
LDPC 43 46 45 33 43 39 33

TABLE I. Comparison of “critical values” of decoherence at
which the entanglement vanishes for different states under dif-
ferent noisy channels. The critical point has been taken at the
value of decoherence parameter where logarithmic negativity
becomes less or equal to 10−4. The values exhibited as per-
centages of the noise level that the corresponding state can
sustain before becoming separable. The states considered to
construct this Table consists of one qubit in its microscopic
sector and six qubits in its macroscopic sector. The first col-
umn shows the type of local noise acting on the state. The
second, third, fourth, fifth, sixth, seventh, and eighth columns
exhibit the critical values for the H1

CN
, H2

CN
, H3

CN
, GHZ, G,

HN−1

CN
, and HN

CN
states respectively. The G state appears in

Eq. (22). Note that the critical values for the GHZ and HN

CN

states are the same for the LPDC and LDPC, while they differ
for the LADC.

VI. OTHER MACROSCOPIC STATES

In this section, we will discuss the effects of noise on
quantum correlations of some further macroscopic states.
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FIG. 10. (Color online) H1
CN

(top panel) versus and GHZ
(bottom panel) after being affected by local depolarizing chan-
nels for different number of particles in the macroscopic sec-
tors. The vertical axes represent logarithmic negativity (in
ebits) in the micro : macro bipartition, the horizontal axes
correspond to the depolarizing parameter, p (dimensionless).
We choose N = 6. As is clear from the bottom panel, increase
of k for a fixed N leads to increase in logarithmic negativity
for the GHZ state. The insets reveal the situations where the
entanglements vanish. The axes of the insets represent the
same quantities as of the corresponding parent figures.
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FIG. 11. (Color online) The panels are the same as in Fig. 6,
except that all the curves correspond now to the noise-affected
GHZ states instead of the H1

CN
states. Comparing the panels

here with those of Fig. 6, we see that the noise-affected GHZ
states behave very differently from the corresponding noise-
affected H1

CN
states. This is especially true for the entangle-

ments of the local phase damped states and for the quantum
discords of the states after being affected by any type of noise.

We then compare their results with those of the Hm
CN

and
GHZN+k states.
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A. G state

Consider the state

|G〉µA1...AN
=

1√
2

(
|0〉µ|WN 〉A1...AN

+ |1〉µ|W̃ 〉A1...AN

)
,

(22)
introduced in [27], where

|W̃N 〉A1...AN
= σ⊗N

x |WN 〉A1...AN
, (23)

with σx = |0〉〈1|+ |1〉〈0|. This state is a cat-like state in

the sense, that the states |W 〉 and |W̃ 〉 are macroscopi-
cally distinct in terms of their σz-magnetizations, similar
to the case of the GHZ state. In the absence of noise,
this state also possesses maximum entanglement in the
micro : macro bipartition.
Let us begin by considering the effect of local phase

damping channels on the state |G〉µA1...AN
. In this case,

the block which gives the negative eigenvalues is given by
(N is assumed to be even)

B
lpdc
G =

1

2

(
0N

2
×N

2
BN

2
×N

2

BN

2
×N

2
0N

2
×N

2

)
,

where

BN

2
×N

2
=




γN−1 γN−1 . . γN−1. γN+1

γN−1 γN−1 . . γN+1 γN−1

. . . γN+1 . .

. . . . . .

. . . . . .

γN+1 γN−1 . . γN−1 γN−1




,

and 0N

2
×N

2
is an N

2 × N
2 matrix with all entries being 0.

The negative eigenvalues are

1

2N
γN−1(γ2 − 1) with multiplicity (N − 1),

1

2N
(γN−1 − γN+1) with multiplicity (N − 1),

and

1

2N
(−(N − 1)γN−1 − γN+1) with multiplicity 1.

From the eigenvalues, it is clear that the entanglement of
the G state in the micro : macro bipartition, after it is
affected by the local phase damping channels, depends on
the size of macroscopic sector (see Fig. 12). For N = 6,
the G state can sustain 81% local phase damping noise,
which is lower than that of the Hm

CN
for any N and for

m = 1, 2, 3 (see Table I).
We now consider the effect of local amplitude damping

channels on the state. The block which gives the negative
eigenvalues, after partially transposing the noisy state, is
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FIG. 12. (Color online) Entanglement of the noisy G state de-
pends on the number of particles in the macroscopic sector.
The logarithmic negativity (in ebits) of the noisy G state is
plotted on the vertical axes against the decohering parameter
p (dimensionless) on the horizontal axes, for different values
of N . The left panel is for the local phase damping chan-
nels while the right one is for the local amplitude damping
channels. We choose k = 1.

of dimension 2N × 2N , and is given by

Bladc
G =

1

2




l1 . . . l1 l2 . . . l2
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
l1 . . . l1 l2 . . . l2
l2 . . . l2 l3 l4 . . l4
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
l2 . . . l2 l4 l4 . . l3




,

where l1 = 1
N
pγN−1, l2 = 1

N
γ

N+1

2 , l3 = (N−1)
N

γ2pN−2,

and l4 = 1
N
γ2pN−2. The negative eigenvalues are

λladc
G,1 =

1

4
[(Nl1 + l3 + (N − 1)l4)

−
√
4N2l22 + (−Nl1 + l3 + (N − 1)l4)2], (24)

and

λladc
G,2 =

1

4
[a1 + c1 + (2N − 4)d1

−
√
2N(N − 1)b21 + (−a1 + c1 + (2N − 4)d1)2].

(25)

where a1 = pN−1γ, b1 = 2
N
γ

N−1

2 p, c1 = 2
N
p2γN−2, and

d1 = 1
N
p2γN−2. Fig. 12 clearly shows that the entan-

glement, as quantified by the logarithmic negativity, of
the G state decreases with the increase in the number of
particles in the macroscopic section, unlike in the case of
the Hm

CN
state, for both local phase and local amplitude

damping channels. A comparison of the logarithmic neg-
ativities and quantum discords for the G state under dif-
ferent local noisy channels is presented in Fig. 13 where
we additionally consider the local depolarizing channel.
For a fixed N , from the perspective of the robustness
of entanglement, the local amplitude damping channel is
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FIG. 13. (Color online) The panels here are the same as in
Fig. 6, except that the curves here pertain to the noisy G

states. For numerical values, see Table I.
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FIG. 14. (Color online) The plot here is the same as the left
panel in Fig. 9, except that the curve for the GHZ state is
replaced by that for the G state. The inset shows a magnified
view of the curves in an intermediate zone. The numerical
values of p at which the entanglements vanish, for the different
states, are given in Table I.

the best among the channels considered, while the local
depolarizing channel is the worst. The situation is rather
similar for quantum discord – local amplitude damping is
still the best, but the local phase damping is marginally
worse than local depolarizing. Note the qualitative sim-
ilarity of this situation with that for the Hm

CN
state (see

Fig. 6) and the dissimilarity with that for the GHZ state
(see Fig. 11). In Fig. 14, we compare the entanglement
of the local depolarized G state with those in the local de-
polarized Hm

CN
states. We find that the critical value for

the G state is rather similar to those of the Hm
CN

states.
See Table I for further details. Note that the plots of log-
arithmic negativity and quantum discord of the G state
are shown here for k = 1, N = 6 under the different noisy
channels. The corresponding analytic expressions of log-
arithmic negativity, for local phase damping and local
amplitude damping, for arbitrary N and k, are given in
the text. For the case of the local depolarizing channel,
the logarithmic negativity is calculated numerically. The
optimization for quantum discord is performed numeri-
cally in all the cases.
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FIG. 15. (Color online) The panels in this figure are the same
as in Fig. 12, except that here they are for the HN−1

CN
state.
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FIG. 16. (Color online) The panels in this figure are the same
as in Fig. 6, except that here they pertain to the HN−1

CN
state,

for N = 6 and k = 1.

B. HN−1

CN
state

Let us introduce another multiparticle state which is
quite similar to the H1

CN
state, with only the W 1

N re-

placed by WN−1
N , where WN−1

N is obtained from Eq. (9)
by putting m = N − 1. The state, therefore, is given by

|HN−1
CN

〉µA1...AN
=

1√
2
(|0〉µ|WN−1

N 〉A1...AN

+ |1〉µ|0 . . . 0〉A1...AN
). (26)

This state is a cat-like state in the same sense as theH1
CN

.

Moreover, the states |WN−1
N 〉 and |0 . . . 0〉 are macroscop-

ically different in terms of their σz-magnetizations.

The effects of local phase and amplitude damping
channels, for this case can be obtained by putting m =
N − 1 in Eqs. (11) and (14). (See Fig. 15.) Let us now
investigate the effect of the local depolarizing channels on
the state. The blocks which give the negative eigenvalues
are of dimension (N + 1)× (N + 1), and are

B1
H

N−1

CN

=
1

2




a b b . . . b
b c d . . . .d
b d c . . . d
. . . . . . d
. . . . . . .
. . . . . . .
. . . . . . .
b d d . . . c



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and

B2
H

N−1

CN

=
1

2




ã b̃ b̃ . . . b̃

b̃ c̃ d̃ . . . .d̃

b̃ d̃ c̃ . . . d̃

. . . . . . d̃

. . . . . . .

. . . . . . .

. . . . . . .

b̃ d̃ d̃ . . . c̃




,

respectively, where a = βαN + 1
N
α2βN−1, b = 1√

N
γNα,

c = α2βN−1 + 1
N
(βαN + (N − 1)β3αN−2), d =

1
N
βγ2αN−2, and ã = αβN + β2αN−1, b̃ = 1√

N
βγN , c̃ =

β2αN−1 + 1
N
(αβN + (N − 1)α3βN−2), d̃ = 1

N
βγ2αN−2.

The negative eigenvalues are

λ
ldpc

HN−1

CN
,1
=

1

2
(a+ c+ (N − 1)d

−
√
(4Nb2 + (−a+ c+ (N − 1)d)2)) (27)

and

λ
ldpc

H
N−1

CN
,2
=

1

4
(ã+ c̃+ (N − 1)d̃

−
√
(4Nb̃2 + (−ã+ c̃+ (N − 1)d̃)2)) (28)

respectively. The logarithmic negativity of the local de-
polarized state is therefore given by

E
ldpc

H
N−1

CN

= log2[2|(min(0, λldpc

H
N−1

CN
,1
)|

+2|min(0, λldpc

H
N−1

CN
,2
)|+ 1]. (29)

The comparison among local amplitude damping, local
phase damping, and local depolarizing channels, for the
case when k = 1 and N = 6, i.e. for the H5

C6
state,

is presented in Fig. 16. It is clear from the figure that
the effect of the local amplitude damping channel, on
the HN−1

CN
state is much less pronounced as compared

to local phase damping and local depolarizing channels.
For fixed noise models, the percentage of noise that the
individual states can sustain, before it becomes separable
in the microscopic to macroscopic partition, is given in
Table I.

VII. CONCLUSION

Studying quantum systems under environmental noise
is important from a variety of perspectives ranging from
fundamental concepts, like the quantum to classical tran-
sition, to robustness of quantum information processing
and computational tasks. We have studied a class of mul-
tipartite quantum states, which are quantum superposi-
tions in a composite system, consisting of a microscopic
and a macroscopic part. The microscopic part is assumed
to be formed by a few qubits, while the macroscopic one
is built by a large number of the same. We have inves-
tigated the effect of several paradigmatic models of local
environmental noise on the multiparty states, by calcu-
lating quantum correlations between their microscopic
and macroscopic sectors, after the states are affected by
the local noise. We have considered three different types
of local noisy channels, viz. the local phase damping,
the local amplitude damping, and the local depolarizing
channels. In studying the quantum correlations, we con-
sider both entanglement measures as well as information
theoretic quantum correlation measures.

We find that the quantum correlations of all the states
from the class considered here remain independent of the
size of the macroscopic sector under local phase damp-
ing and local amplitude damping channels. We identify
the state in this class which remains maximally robust
for a given local noise. Interestingly, we observe that
for all the quantum states in the class, entanglement
is almost equally robust against local amplitude damp-
ing and local phase damping noise, while being much
worse off against local depolarization. In contrast, quan-
tum discord is much more robust against local amplitude
damping than local depolarization or local phase damp-
ing noise. Finally, we find that the quantum correlations
in the proposed class of multiparty quantum states is
better preserved than that in the other macroscopic su-
perposition states against all the local noise models. The
findings may help us to identify a potential candidate for
quantum memory devices.
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