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Impact of global warming on daily rainfall is examined using atmospheric variables from five General
Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over
Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data
at grid points over the catchment for a continuous time period 1971–2000 (current climate) are used to
calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric
variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change – Special Report
on Emission Scenarios) A2 emission scenario for the same period are used to validate the results.
Following this, future downscaled rainfall projections are constructed and examined for two 20 year time
slices viz. 2055 (i.e. 2046–2065) and 2090 (i.e. 2081–2100). The model results show reasonable skill in
simulating the rainfall over the study region for the current climate. The downscaled rainfall projections
indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2%
decrease by 2055 and 5% decrease by 2090 in monsoon (JJAS) rainfall compared to the current climate
(1971–2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-
monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in
2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for
2055 and 2090, respectively.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

The climate of India is dominated by monsoon and about
75–90% of the annual rainfall is received during four monsoon
months, June–September. The Indian monsoon is one of the most
dominant circulation systems and plays an important role in the
general circulation of the atmosphere through the transport of heat
and moisture from the tropics. More importantly, monsoon has
great importance for the agrarian economy of India (Gadgil et al.,
1999; Gadgil and Gadgil, 2006). Therefore, it is essential to
understand the nature of climate change over regional India and
its influence on different sectors like agriculture, human health,
water resources, forestry, etc.

Several recent studies have focused on the possible influence of
climate change on the Asian summer monsoon (Meehl and
Arblaster, 2003; May, 2002; Solomon et al., 2007; Turner et al.,
2007; Ashrit et al., 2003). Using a doubled CO2 experiment data
of the HadCM3 coupled model, Turner et al. (2007) observed
013 Published by Elsevier B.V. All
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3.5% increase in the mean summer (JJAS) rainfall over the Indian
land surface in the future. These increases mainly confined over
north India, the southern peninsula and the Bay of Bengal. Using
a transient green-house warming integration with the ECHAM4/
OPYC3 CGCM, Hu et al. (2000) noted intensification of the Asian
summer monsoon beyond 2030. Ashrit et al. (2003) used a CNRM
ocean–atmosphere coupled model driven by changes in
concentrations of greenhouse gases and sulphate aerosols and
reported increased rainfall over northwest and far south regions
during the second half of the 21st century. Krishna Kumar et al.
(2011) examined the changes in the summer monsoon over India
corresponding to the IPCC-SRES A1B emission scenarios. Three
simulations from a 17-member Perturbed Physics Ensemble
generated using Hadley Center Coupled Model (HadCM3) for the
QUMP project, were used to drive PRECIS (Providing REgional
Climates for Impact Studies). The results suggested 9–16% increase
in the summer monsoon precipitation over India in 2080s
compared to 1961–1990 period under global warming conditions.
The fourth assessment report of the IPCC (2007) suggests no
significant change in the Indian monsoon rainfall until about
2050s and about 8–10% increase towards the end of 21st Century.
Also, projected future increase in the monsoon rainfall appears to
be caused by an increase in the total moisture content in the
rights reserved.
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atmosphere rather than an increase in the strength of monsoon cir-
culation (IPCC, 2007; Stephenson et al., 2001). The report also sug-
gests of an increase in the variability of monsoon rainfall from the
current levels in the future; possibility of the stretching of mon-
soon season with an increase in the rainfall during May and Octo-
ber. However, the large inter-model differences in the simulation
of Indian summer monsoon by the current GCMs and their low skill
in representing the present-day Indian summer monsoon climate
lead to lesser confidence in these projections. Meehl et al. (2007)
examined June, July and August mean rainfall projections over
the Indian region for 2080–2099 using the GCM rainfall projections
for A1B emissions scenario and found that the inter-model spread
of projections (noise) was larger than the mean rainfall increase
(signal). Similarly, Meehl et al. (2008) reported a shift in seasonal-
ity (increasing the pre-monsoon at the expense of rainfall during
summer if the effects of increasing black carbon and other aerosol
forcings are considered. Hence there still remains considerable
uncertainty among GCMs in mean projections of Indian monsoon
rainfall.

Majority of the studies mentioned above deal with the assess-
ment of climate change over India in the continental context, and
as such provide very limited information on a local scale. More-
over, as GCMs provide only limited representation of topographical
features, for example, the Himalayas in the north and Western
Ghats along the west coast of India (Krishna Kumar et al., 2011);
they fail to capture the dominant regional distribution of the mon-
soon rainfall patterns. Therefore, in order to understand the extent
to which water balances in specific catchments will be affected in
changed climate conditions, it is important to study the plausible
changes in the frequency and magnitude of rainfall with a major
focus on the regional distribution over localised catchments.

A diverse range of statistical and dynamical downscaling tech-
niques have been developed and proposed in the literature to
transfer the GCM output from coarse spatial scales to local or re-
gional scales. In majority of statistical downscaling approaches, re-
sponses (precipitation/temperature) are either directly related to
predictors (coarse scale atmospheric and local scale time-lagged
variables), or to a discrete or continuous state, which is modelled
as a function of the atmospheric and local scale predictors (Hewit-
son and Crane, 1996; Wilby and Wigley, 1997; Hughes et al., 1999;
Charles et al., 2004; Stehli9k and Bárdossy, 2002; Mehrotra and
Sharma, 2005; Vrac and Naveau, 2007).

Till date we have come across only one study that deals with
downscaling of rainfall to a catchment scale (Anandhi et al.,
2008) across the Indian subcontinent. In this study, a Support Vec-
tor Machine (SVM) based model was used to downscale monthly
rainfall over the Malaprabha catchment using the simulations from
the third generation Canadian General Circulation Model (CGCM3)
for SRES emission scenarios A1B, A2, B1 and COMMIT for the period
1971–2100. They reported substantial increase in annual rainfall in
the future for almost all the scenarios considered.

This study attempts to examine the implications of climate
change on the occurrence and distribution of daily rainfall over
Malaprabha river catchment, India, which is considered to be a cli-
matically sensitive region (Anandhi et al., 2008). A proper assess-
ment of probable future rainfall and its temporal and spatial
variability is necessary to study the impact of climate change on
hydrology, water resources management, agriculture and floods
over the study region. It may be noted that the statistical down-
scaling of multi-site daily rainfall using outputs of multiple GCMs
is the first of its kind in India and therefore provides information
useful to the researchers and professionals working in the water
and agriculture sector.

The remainder of this paper is structured as follows. Section 2
presents an overview of downscaling model used in this study to
translate information from GCM to local scale. Section 3 provides
a description of the study region, data used and atmospheric pre-
dictor variables considered in the study. Section 4 presents the re-
sults and Section 5 provides a summary of the results and
conclusions drawn from the study.

2. Downscaling model

The daily multi-site rainfall downscaling model (MMM-KDE)
as described in Mehrotra and Sharma (2010) is used in this
study. The MMM-KDE model has been used recently in many
multisite daily rainfall generation as well as downscaling appli-
cations (for example, Mehrotra and Sharma, 2007b, 2010; Frost
et al., 2011).

The model operates in two steps, first the simulation of rainfall
occurrences (wet or dry days; a wet day is defined as a day with
rainfall P0.3 mm) and simulation of rainfall amounts on the wet
days, thereafter. In the following discussions rainfall occurrence
at a location k and time t is defined as Rot(k) and at the pth time
step before the current as Rot�p(k). The following describe in brief
the rainfall occurrence and amount models, and the procedure that
is used to incorporate the spatial dependence in the occurrence
and amount simulations (Mehrotra and Sharma, 2010).

2.1. Rainfall occurrence downscaling model – MMM

The general structure of a rainfall occurrence downscaling
model could be expressed as RotðkÞjZtðkÞ, where Zt(k) represents
a vector of conditioning variables at a location k and at time t
and can include previous time steps states (wet or dry) of rainfall
to assign daily or short term persistence (Markovian dependence),
atmospheric predictors to include influence of changing climate
conditions and other variables to represent specific rainfall char-
acteristics. If Zt(k) contains Rot�1(k) only then the model reduces
to a simple Markov order one model whereas inclusion of vari-
ables representing higher time scale persistence also, would re-
duce it to a rainfall generator of Mehrotra and Sharma (2007b).
Addition of atmospheric variables in the conditioning vector
forms the Modified Markov Model (MMM) of Mehrotra and Shar-
ma (2010).

Ignoring the site notations, the parameters of a stochastic model
expressing the order one Markovian dependence are defined by
PðRot jRot�1Þ with Zt consisting of Rot�1 only. Inclusion of additional
continuous predictors Xt in the conditioning vector Zt modifies the
order one conditional dependence as PðRot jRot�1;XtÞ. Expanding
the conditional expression and rearranging the terms leads to the
following:

PðRot ¼ 1jRot�1 ¼ i;XtÞ

¼ PðRot ¼ 1;Rot�1 ¼ iÞ
PðRot�1 ¼ iÞ � f ðXtjRot ¼ 1;Rot�1 ¼ iÞ

f ðXt jRot�1 ¼ iÞ ð1Þ

The first expression on the right of (1) defines the transition prob-
abilities PðRot jRot�1Þ of a first order Markov model (representing or-
der one dependence) whereas the second expression signifies the
effect of inclusion of predictor set Xt in the conditioning vector Zt.
As Xt usually consists of atmospheric variables and may also include
the number of wet days in pre-specified aggregation time periods
(as explained later), the second expression can be approximated
as a multivariate normal which, when expanded, leads to the
following simplification for PðRotjRot�1;XtÞ:

PðRot ¼ 1jRot�1 ¼ i;XtÞ ¼ P1;i

� f ðXtjRot ¼ 1;Rot�1 ¼ iÞ
½f ðXt jRot ¼ 1;Rot�1 ¼ iÞP1;i� þ ½f ðXt Rot ¼ 0;Rot�1 ¼ ij ÞP0;i�

ð2aÞ
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where p1i is the baseline transition probability of the first order
Markov model defined by PðRot ¼ 1jRot�1 ¼ iÞ with p0i being equal
to 1 � p1i, l1,i represents the mean vector E(Xt|Rot = 1, Rot�1 = i)
and V1,i is the corresponding variance–covariance matrix. Similarly,
l0,i and V0,i represent, respectively, the mean vector and the
variance–covariance matrix of X when (Rt�1 = i) and (Rt = 0) and
det() represents the determinant operation.

Under specific instances where the assumption of a multivari-
ate normal may not hold true, appropriate data transformation or
use of appropriate distributions such as one described in Mehrotra
and Sharma (2010) may be adopted.

In the present application, the vector X consists of variables rep-
resenting aggregated wetness over the recent past and the selected
atmospheric variables. Parameters of the MMM are estimated on a
daily basis. The aggregated wetness over the recent past, Xrt, is for-
mulated as (following Harrold et al., 2003; Sharma and O’Neill,
2002; Mehrotra and Sharma, 2010):

Xrt 2 Xrj1 ;t ;Xrj2 ;t ; . . . ;Xrjm ;t
� �

; Xrji ;t ¼
1
ji

Xji

l¼1

Rot�l ð3Þ

where m is the number of such predictors, Rot�l is the rainfall occur-
rence on the preceding lth day and Xrji ;t describes how wet it has
been over the preceding ji days. The MMM is applied at each site
in isolation and spatially correlated random numbers are used to
reproduce the observed spatial dependence across the stations as
discussed later.

2.2. Downscaling of rainfall amounts – KDE

The rainfall amount downscaling model is based on the kernel
density estimation (KDE) procedure (Mehrotra and Sharma,
2007a,b, 2010). The model simulates rainfall amount for each day
and at each location that the MMM occurrence downscaling model
simulates as wet. The model is formulated to reproduce the tempo-
ral structure of the observed rainfall record in the simulations. On a
given day, the model simulates rainfall at individual stations con-
ditional on selected atmospheric variables as well as the previous
day’s rainfall. The observed spatial dependence across the stations
is maintained by making use of spatially correlated random num-
bers. The use of rainfall amounts on the previous day as a condi-
tioning variable imparts a Markov order one dependence to the
downscaled series.

Similar to rainfall occurrences, the rainfall amount at time t and
at station (k) is expressed as Rt(k) and the associated conditioning
vector as Xt(k). Dropping the site notation, k, the conditional kernel
multivariate probability density for day t, f ðRt jXtÞ for each site is
defined as:

f ðRt jXtÞ ¼
XN

i¼1

1

ð2pk2S0Þ1=2 wi exp �ðRt � biÞ2

2k2S0

 !
ð4Þ

where k is a measure of spread of density around each data point,
known as a kernel bandwidth, bi is the conditional mean associated
with each kernel, expressed as, bi ¼ Ri � ½SXR�T ½SXX ��1f½Xt � Xi�wg and
S0 is the measure of spread of the conditional density, estimated in
terms of covariances of R and X series as, S0 ¼ SRR � ST
XRS�1

XX SXR.The
covariance of [Rt, Xt] is written as:

Cov ½Rt;Xt � ¼
SRR ST

XR

SXR SXX

" #
ð5Þ

In Eq. (4), wi is the weight associated with each kernel and rep-
resents the contribution of the kernel in forming the conditional
probability density:

wi ¼
exp � 1

2k2 f½Xt � Xi�wgT ½SXX ��1f½Xt � Xi�wg
� �

PN
j¼1 exp � 1

2k2 f½Xt � Xj�wgT ½SXX ��1f½Xt � Xj�wg
� � ð6Þ

The relative influence of each predictor in the conditional prob-
ability density is incorporated through w that represents a diago-
nal matrix of influence weights (Mehrotra and Sharma, 2007a).
These influence weights can be calculated at the parameter estima-
tion stage for each day using the observations of the moving win-
dow and multiple linear regression as described in Mehrotra and
Sharma (2007b).

If the underlying probability density is Gaussian, the Gaussian
reference bandwidth (Scott, 1992) may provide a reasonable esti-
mate of the conditional probability density. However, the assump-
tion of Gaussian distribution may not be appropriate for variables
having skewed distributions, such as rainfall amounts. For these
cases, varying the bandwidth with data points provides better esti-
mate of the probability density more specifically at the lower
boundary of the distribution. The local bandwidth, kgt

for each
observation of Xt and Rt and at the tth data point of a given g series
is written as:

kgt ¼
f ðgtÞ

2
ffiffiffiffi
p
p

f 00ðgtÞ
2

 !1=ðqþ4Þ

Nð�1=ðqþ4ÞÞ ð7Þ

where f ðgtÞ and f 00ðgtÞ respectively, are density and the second
derivative of the density at data point t of the assumed distribution
of g series, q is number of predictor variables and N is total number
of observations. Assuming series g to be Gamma distributed, further
simplification of (7) leads to the following:

kgt ¼
1

2
ffiffiffiffi
p
p

f ðgtÞ k2 � 2kðg�1Þ
gt
þ ðg�1Þðg�2Þ

g2
t

h i2

0
B@

1
CA

1=ðqþ4Þ

Nð�1=ðqþ4ÞÞ ð8Þ

where k and g, respectively, are scale and shape parameters of the
Gamma distribution. The derivation of Eq. (8) is discussed in
Mehrotra and Sharma (2007b).

2.3. Modelling spatial dependences in rainfall occurrence and amounts

As discussed in the previous sections, stochastic downscaling of
rainfall occurrences or amounts is carried out individually at each
location. The spatial dependence in the downscaled simulations
over many point locations is incorporated by using uniform ran-
dom variates that are independent in time, but exhibit appropriate
observed spatial dependence across the multiple point locations



Fig. 1. Location of the Malaprabha river catchment in Karnataka, India. Raingauge station locations are shown in numbers with details provided in Table 1.
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considered. For the case of S stations, let ut be a vector of uniform
[0,1] variates of length S at time step t. Our aim here is to define the
vector ut (� utð1Þ;utð2Þ; . . . utðnsÞ) in such a way that for locations k
and l, corr[ut(k), ut+1(l)] = 0 (or, random numbers are independent
across time), but corr[ut(k), ut(l)] – 0 (or, random numbers are
correlated across space). As a result, there is spatial dependence
between individual elements of the vector ut, this dependence is
used to reproduce the observed spatial dependence across stations
in the downscaled rainfall. More details on this rationale are
available in Wilks (1998) and Mehrotra et al. (2006).
3. Datasets, study area and variables

This section presents the details on the data, study area and the
selection of atmospheric variables.

3.1. Study area

The Malaprabha sub-basin lies in the extreme western part of
the Krishna basin. It extends between 74�130 and 75�100E
Table 1
Details of raingauge stations used in the study.

Index number Station name Station code Elevation (m)

1 Bailhongal TQ Off 30201 698
2 Belwadi 30204 690
3 MK Hubli 30207 658
4 Desur 30304 750
5 Zadshapur 30308 654
6 Asoga 30702 670.5
7 Bidi 30703 664
8 Gunji 30706 686
9 Jamagaon 30707 692

10 Khanapur 30710 668
11 Soundatti SF 31003 658.8
longitudes and 15�280 and 15�550N latitude in Belgaum district of
Karnataka (Fig. 1). Malaprabha river originates from the Chorla
Ghats (a section of the western Ghats) about 35 km south-west
of Belgaum district in Karnataka, at an elevation of 792 m. The total
catchment area is 2564 km2. Malaprabha is one of the major
tributaries of river Krishna (India) and the main source of water
for irrigation in Belgaum, Dharwad, Bagalkot and Bijapur districts
in Karnataka state. The Malaprabha catchment terrain is flat to
gently undulating except for a few hillocks and valleys. The
northern boundary is the common ridge between Malaprabha
and Ghataprabha river catchments and the eastern ridge is
separated between Malaprabha, Krishna and Tungabhadra river
catchments. The southern and western boundaries are the
common ridge between the Malaprabha and catchments of west
flowing rivers.
3.2. Rainfall

For this study, a 30-year continuous record (from 1971 to 2000)
of daily rainfall at 11 stations is used (Table 1). The climate of the
Latitude (�North) Longitude (�East) Average annual rainfall (mm)

15.82447 74.86911 628
15.71575 74.917 459
15.71783 74.70297 809
15.74128 74.50242 1242
15.76375 74.49056 1174
15.62544 74.48325 1736
15.56539 74.65558 957
15.53772 74.49189 1476
15.55314 74.38194 3285
15.63717 74.51075 1877
15.75393 75.132 534



Table 2
Identified atmospheric predictorsa on seasonal basis for occurrence and amount
downscaling models.

Season Rainfall occurrences Rainfall amounts

JFMAM (January–
May)

N–S gradient of MSLP N–S gradient of GPH at
700 h Pa

TD at 700 h Pa MSLP
N–S gradient of GPH at
700 h Pa

E–W gradient of SPH at
850 h Pa

TD at 850 h Pa N–S gradient of SPH at
500 h Pa

JJAS (June–
September)

N–S gradient of MSLP U-wind at 850 h Pa

E–W gradient of MSLP E–W gradient of MSLP
TD at 500 h Pa EPT at 850 h Pa
TD at 700 h Pa V-wind at 850 h Pa

OND (October–
December)

TD at 500 h Pa N–S gradient of SPH at
500 h Pa

TD at 850 h Pa SPH at 500 h Pa
MSLP
N–S gradient of TD at
850 h Pa

a TD: temperature depression (difference of air and dew-point temperatures),
MSLP: mean sea level pressure; GPH: geopotential height; EPT: equivalent potential
temperature; SPH: specific humidity.

Table 3
Observed and model simulated means and standard deviations of average number of
wet days in a year and average annual rainfall over the study area for the current
climate.

Conditioning variables Number of wet
days

Rainfall in mm

Mean Standard
deviation

Mean Standard
deviation

Observed 81 14 1289 415
Atmospheric variables only 83 10 1285 309
Atmospheric variables and

previous 90 days wetness
state

82 11 1282 325

Atmospheric variables and
previous 180 days wetness
state

83 12 1283 319

Atmospheric variables and
previous 270 days wetness
state

83 12 1289 326

Atmospheric variables and
previous 365 days wetness
state

84 13 1308 333
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region is dominated by the monsoon and major part of the annual
rainfall is received during four monsoon months, June–September.
Recognising this and the fact that divergent rainfall generation
mechanisms may prevalent during different parts of the year, more
specifically in a changing climate, three seasons namely pre-mon-
soon (January–May, JFMAM), monsoon (June–September, JJAS) and
post-monsoon (October–December, OND) are considered in this
study. The study region shows considerable variation in spatial dis-
tribution of annual rainfall with upstream reaches (which is a part
of the Western Ghats) recording more than 3000 mm, to around
400 mm near the Malaprabha reservoir. It receives an average an-
nual rainfall of 1051 mm and the annual averages of maximum and
minimum temperatures are 32 �C and 18 �C, respectively.

3.3. Large scale observed atmospheric variables

The required observed atmospheric variables at nine grid points
over the study area are extracted from the National Center for
Environmental Prediction (NCEP) reanalysis data provided by the
NOAA-CIRES Climate Diagnostics Centre, Boulder, Colorado, USA,
from their web site at http://www.cdc.noaa.gov/. These variables
are available on 2.5� latitude � 2.5� longitude grids on a daily basis
for the same period as the rainfall record (Fig. 1). As an observed
rainfall value represents the total rainfall over a 24-h period ending
at 0900 h (local time) in the morning, the available atmospheric
measurements on the preceding day are considered as representa-
tive of today’s rainfall.

3.4. Large scale GCM variables

The World Climate Research Programme’s Coupled Model Inter-
comparison Project phase 3 (CMIP3) multimodel dataset contains
results from more than 20 major global climate models developed
around the world (Meehl et al., 2007). This information has been
widely utilised for climate research and prediction. Although GCMs
are capable of reproducing the many important aspects of the cur-
rent climate at regional and continental scales including the
changes in the patterns of different climate variables over time,
their predictive skill varies considerably from model to model
and over regions of interest. Thus, climate scientists often use mul-
ti-model information as a method for dealing with inter-model
variability in future projections (Fordham et al., 2012; Pierce et
al., 2009).

The limited data availability of the required daily atmospheric
variables at the CMIP3 archive controlled the selection of five
GCMs for the present study. These include: (a) Bjerknes Centre
for Climate Research (BCCR), Univ. of Bergen, Norway, BCCR-
BCM2.0; (b) Meteorological Research Institute (MRI), Japan, MRI-
CGCM2; (c) Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Australia, CSIRO-mk3.5; (d) Max Planck
Institute for Meteorology (MPI), Germany, MPI-ECHAM5; and (e)
Institute Pierre Simon Laplace (IPSL), France, IPSL-CM4.

GCM datasets of atmospheric variables for the baseline period
(covering a 30-year period between 1971 and 2000 and represent-
ing the current climate) and the future climates by 2055 (2046–
2065) and 2090 (2081–2100) periods are considered in the analy-
sis. Again, the selection of future time slices is limited by the data
availability for these time periods. These variables are extracted
from a single continuous (transient) run (corresponding to A2 SRES
emission scenarios) for the grid nodes over the study region. The
A2 scenario is at the higher end of the SRES emissions scenarios
(but not the highest), and this is preferred because a low emissions
scenario potentially provides less information from an impacts and
adaptation point of view. In addition, the current trajectory of
emissions (1990 to present) corresponds to a relatively high emis-
sions scenario similar to A2. As an observed rainfall value repre-
sents the total rainfall over a 24-h period ending at 0900 h (local
time) in the morning, similar to the reanalysis data, the available
atmospheric measurements on the preceding day are considered
as representative of today’s rainfall.

Since the resolution of GCMs varies, output of each GCM is
interpolated back onto the nine NCEP grids (2.5� latitude by 2.5�
longitude). For defining a grid averaged value and north–south
and east–west gradients, all nine grid point values are used to
smoothen out the bias and spatial shifts, if any, at an individual
grid point values.

3.5. Adjustment of GCM data

Limitations and assumptions in the modelling of the energy and
moisture cycles and, the simulation of clouds in GCMs contribute
significant uncertainties in GCM outputs (Solomon et al., 2007). Be-
cause of these limitations, a GCM may not simulate climate vari-
ables accurately and there is a difference between the

http://www.cdc.noaa.gov/


Fig. 2. Observed and model simulated monthly wet days, rainfall amounts and per
wet day rainfall in a month for the current climate (1971–2000) over the study area.
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observations and simulations, known as bias and this limits the di-
rect application of GCM simulations in downscaling and hydrolog-
ical modelling studies.

An examination of the means and standard deviations of cur-
rent climate GCM and corresponding reanalysis atmospheric fields
(1971–2000) at daily, monthly, seasonal and annual time scales
suggest subtle differences in these characteristics. This requires
some scaling correction to be carried out on the GCM data before
use in the downscaling application. The GCM overall climatological
mean bias over the future period includes GCM systematic bias (as
observed for the current climate) and the climate change shift
(from the current to the future). We aim to correct the former
one in the bias correction approach under the assumption that
the bias is stationary i.e. does not change with time and does not
affect the overall climate dynamics.

We adjust the GCM data for the baseline (1971–2000) and fu-
ture climate periods (2046–2065 and 2081–2100) by adopting a
nested bias correction (NBC) procedure (Johnson and Sharma,
2012). In the approach, the GCM series (current and future cli-
mates) is corrected for biases in the mean, standard deviation
and LAG 1 auto-correlation at daily, monthly, seasonal and annual
time scales simultaneously by ensuring that systematic biases in
the GCM atmospheric fields are removed before their use for
downscaling while the mean shift from current to future climate
is maintained.

Sharma et al. (in press) and Johnson and Sharma (2011) have
shown that the use of NBC for bias correction of atmospheric vari-
ables helps reproducing the observed low frequency variability in
the rainfall simulations, and offers a better representation than
the use of alternative bias formulations such as quantile correction.
When the intent is to simulate the ‘‘sustained extremes’’ that are of
considerable importance in water resources planning and design,
the use of such an approach leads to improved results. Daily means
and standard deviations for the standardization procedure are esti-
mated by considering a moving window of 31 days centred on the
current day.

3.6. Identification of significant predictors

Atmospheric circulation and moisture strongly influence the
monsoon climate. Sea level pressure (SLP), geo-potential height,
air temperature, wind speed and other variables have been used
to define atmospheric circulation (e.g. Harpham and Wilby, 2005;
Buishand et al., 2004; Charles et al., 1999). A warmer climate is ex-
pected to accelerate evaporation and release more moisture in the
atmosphere, leading to higher rainfall rates and greater intervals
between rain events (Trenberth et al., 2003). Different forms of
atmospheric moisture have been used by the researchers in the
past (Crane and Hewitson, 1998; Cavazos, 1999; Charles et al.,
1999; Easterling, 1999; Harpham and Wilby, 2005; Buishand
et al., 2004; Evans et al., 2004). It may be noted that the absolute
form of moisture such as relative humidity does not really carry
the ‘true climate signal’ as a warmer climate can hold more mois-
ture and therefore additional information about temperature is
needed to know the amount of moisture that can precipitate in a
warmer climate. Following this, Charles et al. (1999) suggest using
difference of air and dew point temperatures whereas Evans et al.
(2004) advocate using equivalent potential temperature as one of
the predictors. On the basis of the results of earlier downscaling
studies, we pick a large set of atmospheric predictors comprising
of circulation and moisture variables at various levels and their
horizontal and vertical gradients, as the potential predictors. A
nonparametric stepwise predictor identification analysis is carried
out at daily time scale to identify sets of significant atmospheric
predictors for each season and for occurrence and amounts models.
A partial correlation analysis is carried out at each time step to
analyse the predictive capability of the additional variable being
included. As some of these predictors might be highly correlated
among themselves, at each stage of predictor identification exer-
cise, a screening is carried out to see whether identified predictor
at current stage is highly correlated with predictors picked up at
previous stages (predictors having absolute linear correlation high-
er than 0.85 are ignored). To account for the short term persistence
in the rainfall downscaling process, previous day rainfall is in-



Table 4
Observed and model simulated seasonal and annual means and standard deviations of wet days and rainfall totals over the study area for current climate (1971–2000).

Data set/season Wet days Rainfall amount

Pre-monsoon Monsoon Post-monsoon Annual Pre-monsoon Monsoon Post-monsoon Annual

Means
Observed 6.3 65.6 9.2 81.1 72.1 1093.1 123.7 1288.8
Reanalysis 6.9 66.2 10.9 84.0 80.9 1090.0 137.4 1308.3
BCCR 7.1 66.0 10.8 84.0 85.0 1043.5 137.2 1265.7
MRI 7.1 66.9 10.7 84.7 83.0 1042.6 134.3 1259.9
CSIRO 6.9 65.9 10.7 83.5 80.6 1053.9 135.9 1270.3
MPI 7.2 66.3 10.9 84.3 85.3 1062.0 139.3 1286.7
IPSL 6.9 66.3 10.7 83.9 81.3 1010.7 135.8 1227.8

Standard deviations
Observed 2.4 6.6 3.3 7.7 29.2 280.3 58.7 289.1
Reanalysis 2.3 7.7 3.1 9.0 32.1 240.9 49.2 249.4
BCCR 2.3 7.3 3.3 8.7 35.1 226.1 52.2 238.2
MRI 2.3 6.1 3.2 8.2 32.9 205.0 49.3 219.2
CSIRO 2.4 7.5 3.6 9.9 35.1 240.5 55.5 263.4
MPI 2.5 7.6 3.8 9.8 37.6 235.1 57.6 254.8
IPSL 2.2 7.5 2.8 9.2 31.8 219.2 44.9 235.6
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cluded as a pre-identified predictor in the conditioning vector for
each season before carrying out the predictor identification
exercise. For rainfall occurrences, one additional pre-identified
predictor, namely, previous 365 days area averaged wetness state
is also included. Table 2 provides a list of atmospheric predictors
identified as significant for occurrence and amount processes for
all the seasons.
4. Application of downscaling model and discussion of results

For the rainfall occurrence downscaling model (MMM), we
consider individual at-site Markov order one models conditional
on pre-identified atmospheric variables (common across all sta-
tions) and previous 365 days (at individual station) wetness state.
The 365 days wetness state predictor is identified based on a
sensitivity analysis. The analysis is performed using current cli-
mate data and varying the aggregated wetness state from 90 days
to 365 days with 30 days interval. As shown in Table 3, the
365 days aggregated wetness state predictor is found to provide
better representation of the observed standard deviation of annual
number of wet days and rainfall amount in the current climate
simulations. Thus, the short term persistence in the downscaled
rainfall is maintained through order one Markovian structure,
while long-term persistence is introduced through previous
365 days wetness state and nested bias corrected atmospheric
variables. Nonzero precipitation amounts are downscaled
conditional on atmospheric variables and previous day’s rainfall,
for each day and station, defined as wet by the MMM occurrence
downscaling model. The inter-station spatial correlations in
downscaled occurrence and amounts are induced through spatially
correlated random numbers as discussed in Section 3.2.

The model is calibrated using observed rainfall and reanalysis
data for the time period (1971–2000) and is evaluated using the
GCM data for the same time period. The calibrated model is run
for two 20 years time windows (2046–2065 and 2080–2100) to ob-
tain rainfall predictions around 2055 and 2090, respectively.

4.1. Results

A range of spatial and temporal characteristics of observed and
model simulated rainfall on daily, monthly, seasonal and annual
basis are calculated, compared and evaluated to assess the
performance of downscaling model for the current climate and,
to examine the impact of changed climate on rainfall in the future.
The statistics of downscaled rainfall time series are derived from
100 realisations and the median value is used to compare the
results. Results of spatial correlations, average number of wet days
and rainfall amounts are presented for all stations whereas for
some statistics catchment area averaged values are presented.
The year to year distributional behaviour of the observed and
simulated series of rainfall occurrence and amounts is analysed
at individual locations and, presented and discussed at two
representative stations.

First, results of model calibration and verification for the cur-
rent climate are presented and discussed. This is followed by the
presentation and discussion of changes in few important rainfall
statistics in years 2055 and 2090.
4.2. Model results for the current climate

4.2.1. Average rainfall statistics
For downscaling applications planned for use in agriculture, res-

ervoir operation and flood management strategies, accurate simu-
lation of the number of wet days and rainfall amounts assume
significance. Fig. 2 presents the plots of area averaged observed
and model simulated median values of number of wet days (top
plot) and rainfall amounts (middle plot) and, amount per wet
day (bottom plot) in each month for model calibration (using
reanalysis data) and evaluation (using GCM data) phases. As can
be seen from these plots, the model provides a good fit to the
monthly number of wet days and rainfall amount for calibration
and evaluation phases for all months. A slight underestimation of
rainfall amounts for July month by the IPSL model is noted. The
amount per wet day is over simulated by all the models during
December and pre-monsoon period and under simulated during
monsoon period.

Similar to Fig. 2, Table 4 presents the seasonal and annual
means and standard deviations of observed and model simulated
number of wet days and rainfall amounts averaged over the study
area. In general, reanalysis and GCM data based simulations over-
simulate the mean number of wet days and rainfall amount during
pre-monsoon and post-monsoon seasons and under-simulate the
standard deviation of rainfall amount during monsoon season.
However, these differences are minor and overall performance of
the downscaling model for calibration and evaluation phases at
monthly, seasonal and annual level is deemed satisfactory.

Scatter plots of observed and model simulated median values of
annual number of wet days, annual rainfall and amount per wet
day at individual stations are presented in Fig. 3. In these plots, ob-
served statistics is plotted on the horizontal while simulated one is



Fig. 3. Observed and model simulated annual wet days, rainfall amounts and per
wet day rainfall in a year for the current climate (1971–2000) over the study area.
Symbols on the graphs indicate stations.
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shown on the vertical axis. Filled circles on these plots represent
stations with colors used to differentiate amongst the GCM data
sets used to derive these statistics. In general, all GCMs simulate
similar annual number of wet days and rainfall amounts (top and
middle plots) at all stations with IPSL and MRI models slightly un-
der simulating rainfall at a few locations. These differences are
more pronounced in the bottom plot where scatter plot of amount
per wet day is shown. The stations with noticeable differences are
located in the upper forested region of the catchment which is a
part of the Western Ghats. Although, the model grid resolution,
proximity to the coast, land use and representation of topography
in the model might have some bearing on the results, the exact rea-
son behind such differences is quite complex and requires further
investigation.

4.2.2. Distribution of average annual wet days and rainfall amounts
Proper simulation of year-to-year distribution of annual num-

ber of wet days and rainfall amount in the downscaled series is
important for efficient design and management of water resource
projects. Fig. 4 compares the distribution plots of number of wet
days in a year and annual rainfall amounts of the observed and
downscaled rainfall series for two representative stations (Bailhon-
gal and Asoga with index number 1 and 6 of Table 1, respectively).
The top row shows the distribution of annual number of wet days,
middle annual rainfall while the bottom row presents the distribu-
tion of average rainfall amount per wet day in a year. In general,
the performance of the downscaling model in reproducing the
year-to-year distribution of observed (black) number of wet days
in a year and annual rainfall amounts using reanalysis (red) and
GCMs data (other colors) at both stations is satisfactory (first two
rows). The year-to-year distribution of amount per wet day is sim-
ulated reasonably well by the model using reanalysis data at both
stations while GCM data derived results show under simulation of
this statistic for low exceedance probabilities at Asoga stations
(bottom row). These differences are more pronounced for IPSL
and MRI data derived results. It may be noted that Asoga is located
in the upper forested part of the catchment while Bailhongal is lo-
cated in the lower region with flat topography (Fig. 1). It appears
that GCMs have limitations in simulating the climate in the Wes-
tern Ghats region. Similar results are obtained for other stations
as well and are not presented here for the space limitation.

4.2.3. Number of wet and dry spells and daily maximum rainfall
Continuous wet and dry spells, and daily rainfall peaks form the

basis of reservoir design and operation, flood estimation and agri-
cultural studies. Therefore, proper simulation of these rainfall char-
acteristics is of significance in catchment studies. Table 5 presents
the statistics of observed and models simulated average number of
wet and dry spells of varying durations, associated rainfall in wet
spells and number of days with heavy rainfall (3rd percentile daily
rainfall). Wet and dry spells of shorter durations are, in general,
oversimulated while rainfall amount in longer duration wet spells
is under simulated by all the models. Other statistics including
number of days with heavy rainfall are reasonably well simulated
by all the models.

Similar to Table 5, the first column of Fig. 5 compares the ob-
served and model simulated maximum daily rainfall while the sec-
ond and third columns present the average occurrences of wet
spells of 5–7 days and >7 days in a year and associated average
rainfall in these wet spells at all stations. Finally, the last column
presents the average occurrences of dry spells of 9–18 and
>18 days in a year. In these plots observed statistics is shown on
the horizontal while simulated one is shown on the vertical axis
and symbols are shown for individual stations. For a perfect match,
all symbols should align along the diagonal dotted line. The down-
scaled simulations from all the GCMs largely reproduce these rain-
fall attributes at all stations albeit some scatter for average number
of wet and dry spells. In general, the wet spells of 5–7 days and dry
spells of greater than 18 days are over simulated at all stations by
all the models. Average rainfall in the wet spells is reasonably well
simulated with the exception of under simulation at Jamagaon sta-
tion (index number 9) which receives substantial amount of an-
nual rainfall (Table 1) and is located in the upper region of the



Fig. 4. Year to year distribution of observed and model simulated (median values) annual wet days and rainfall totals for current climate (1971–2000) at two representative
stations, Asoga (30702) and Bailhongal (30201).

92 R. Mehrotra et al. / Journal of Hydrology 488 (2013) 84–100
catchment which is a part of the Western Ghats (Table 1 and
Fig. 1).
4.2.4. Spatial dependence of rainfall
A log-odds ratio provides a measure of evaluation of the spatial

dependence of binary rainfall across stations (Edwards, 1963).
Table 5
Observed and models simulated extreme rainfall characteristics for current climate (1971

Statistics/model Observed Reanaly

No of dry spells of 2–9 days (nos.) 11.3 13.7
No dry spells of 10–18 days (nos.) 2.5 2.6
No of dry spells of >18 days (nos.) 2.2 2.6
No of wet spells of 2–4 days (nos.) 7.5 9.0
No of wet spells of 5–7 days (nos.) 1.7 2.1
No of wet spells of >7 days (nos.) 2.2 2.2
Average rainfall in wet spells of 2–4 days (mm) 28.7 27.8
Average rainfall in wet spells of 5–7 days (mm) 69.1 68.3
Average rainfall in wet spells of >7 days (mm) 309 275
No of days with heavy rainfall (nos.) 24.7 25.4
Similarly, cross correlation provides a measure of spatial depen-
dence of continuous time series such as aggregated number of
wet days or rainfall amounts at a station pair. Accurate reproduc-
tion of spatial correlation of rainfall is often necessary to evaluate
the hydrological or agricultural behaviour of a region and can
influence significantly the discharge of a river and the formation
–2000).

sis BCCR MRI CSIRO MPI IPSL

14.0 13.8 13.6 13.6 13.9
2.7 2.6 2.7 2.6 2.6
2.6 2.6 2.5 2.6 2.6
9.3 9.1 9.0 9.0 9.2
2.2 2.2 2.1 2.1 2.1
2.1 2.2 2.2 2.3 2.2
28.0 28.1 27.8 28.2 28.3
67.6 67.4 67.6 68.4 67.0
259 248 268 260 246
24.6 24.4 24.7 25.0 23.8
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Fig. 5. Scatter plots of observed and model simulated daily maximum rainfall amount, average number of dry and wet spells of different durations in a year and average
rainfall amounts in wet spells for current (1971–2000) climate for all stations. Symbols on the graphs indicate stations.
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of floods. The first column of Fig. 6 presents the scatter plots of ob-
served and model simulated daily log-odds ratios while the second
column compares the cross correlations of aggregated annual wet
days at all stations for the current climate. Similarly, the scatter
plots of daily and annual rainfall amounts are shown in columns
3 and 4 of Fig. 6, respectively. Each point on these plots indicates
the log-odds ratio/cross correlation evaluated for a pair of rainga-
uge stations with observed statistic plotted on the horizontal and
simulated one on the vertical axis. The model accurately repro-
duces the daily dependence between the stations, however, shows
a large scatter for the spatial dependence at annual level. It appears
that the current structure of spatial dependence adopted in the
downscaling model is insufficient to capture the observed higher
time scale spatial dependence in the simulations and requires
some refinements. This limitation can influence the results of the
studies where aggregated rainfall is used.

4.3. Model results for years 2055 and 2090

The changes in rainfall in the future climates are compared
against the current climate GCM median estimate. This is adopted
to cancel the biases introduced in some statistics as a result of
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Fig. 6. Observed and modelled log-odds ratios and cross correlations of wet days and rainfall amounts for current climate.
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model structure limitations. These results also include a model
weighted average estimate. As all the models provide a reasonable
estimate of the important observed statistics for the current cli-
mate, a simple model weighting procedure is adopted. The proce-
dure evaluates the models on the basis of their performance in
reproducing the observed number of wet days, rainfall amount
and amount per wet day in a season in the current climate and as-
signs a weight on the basis of magnitude of sum of squared differ-



Fig. 7. Projected changes in monthly wet days, rainfall totals and amount per wet
day in 2055 (2046–2065). Fig. 8. Projected changes in monthly wet days, rainfall totals and amount per wet

day in 2090 (2081–2100).
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ences in these statistics. On the basis of this criterion, the models
BCCR, CSIRO, IPSL, MPI and MRI are assigned weights as 0.15,
0.25, 0.231, 0.14 and 0.22, respectively.

4.3.1. Area averaged rainfall statistics
Figs. 7 and 8 present the changes in monthly wet days and rain-

fall amounts in years 2055 and 2090 whereas the percent changes
in seasonal and annual number of wet days and rainfall totals are
presented in Table 6. By 2055, simulations from all GCMs project
no appreciable changes in rainfall in all seasons. Please note that,
for non-monsoon seasons (JFMAM and OND) slight variation in
number of wet days or rainfall amount may show up as a large per-
centage change. The projected changes in rainfall are quite consis-
tent across the GCMs for monsoon season. The CSIRO model
projects a reduction in number of wet days and rainfall amount
in all seasons and months whereas projections from MPI indicate
some decreases in pre-monsoon season (first row, Fig. 7 and Table
6). The increases in the number of wet days and rainfall amount
during pre-monsoon season by the IPSL model (first and second
plots, Fig. 7), although appear large, accounts for differences of less
than a day and 2 mm, respectively. Other models project small in-
creases in number of wet days and rainfall amount during non-
monsoon seasons. There is no appreciable change in the amount
per wet day with all the models projecting heavy rainy days during
June (bottom plot, Fig. 7). The models weighted average indicates
no appreciable changes in the number of wet days and rainfall
amount in year 2055. By 2090, CSIRO predicts appreciable drying
in all months with about 15% decrease in monsoon rainfall and
wet days (Fig. 8 and Table 6). No changes in seasonal shifts are no-
ticed, however, a weak tendency of the monsoon extending to
October is observed (Fig. 8). Considering model averaged statistics,



Table 6
Projected percent changes in seasonal and annual number of wet days and rainfall totals in comparison to GCM current climate.

Wet days Rainfall totals

JFMAM JJAS OND Annual JFMAM JJAS OND Annual

Year 2055
BCCR 12 1 19 4 12 2 23 5
MRI 29 �2 10 2 29 �3 12 1
CSIRO �16 �6 �9 �8 �15 �5 �11 �6
MPI �16 �1 �3 �2 �17 1 �5 �1
IPSL 1 �3 �3 �3 0 �1 �3 �1
Weighted average 2 �3 1 �2 2 �2 2 �1

Year 2090
BCCR �9 �1 �6 �2 �10 7 �6 5
MRI 43 �2 36 7 45 �2 40 6
CSIRO �15 �14 �7 �13 �16 �16 �8 �15
MPI �14 �3 8 �2 �16 �6 8 �5
IPSL 17 �3 19 1 16 �2 22 2
Weighted average 6 �5 11 �2 6 �5 12 �2

Table 7
Projected percent changes in extreme rainfall characteristics in comparison to GCM current climate.

Statistics/model BCCR MRI CSIRO MPI IPSL Weighted average

Year 2055
Number of dry spells of 2–9 days 6 13 �2 �3 �1 3
Number dry spells of 10–18 days �2 4 �1 �4 5 1
Number of dry spells of >18 days �8 �8 1 3 0 �2
Number of wet spells of 2–4 days 4 12 �3 �2 0 2
Number of wet spells of 5–7 days 2 3 �8 �2 1 �1
Number of wet spells of >7 days 4 �6 �8 �5 �6 �5
Average rainfall in wet spells of 2–4 days 2 2 3 1 3 3
Average rainfall in wet spells of 5–7 days 3 3 6 3 7 5
Average rainfall in wet spells of >7 days 2 �4 0 4 �1 0
Number of days with heavy rainfall 6 1 �6 �1 �1 �1

Year 2090
Number of dry spells of 2–9 days �1 22 �2 0 8 6
Number dry spells of 10–18 days 0 2 6 �4 6 3
Number of dry spells of >18 days �4 �11 1 4 3 �1
Number of wet spells of 2–4 days �4 20 �3 1 9 5
Number of wet spells of 5–7 days �9 12 �10 �1 8 0
Number of wet spells of >7 days 0 �3 �19 �7 �6 �8
Average rainfall in wet spells of 2–4 days 5 5 5 2 5 4
Average rainfall in wet spells of 5–7 days 11 8 7 2 8 7
Average rainfall in wet spells of >7 days 10 �6 �11 �7 �6 �5
Number of days with heavy rainfall 4 7 �15 �6 2 �2
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no appreciable changes at annual level in year 2090 are noted with
minor increases in the number of wet days and rainfall amount
during pre- and post-monsoon seasons. Similar to year 2055, the
amount per wet day is projected to increase by about 10% during
June.

Percent changes in average number of wet and dry spells of
varying durations, associated rainfall in wet spells and number of
days with heavy rainfall (3rd percentile of daily rainfall) in years
2055 and 2090 are also evaluated and reported in Table 7. Some
variations from model to model are noted with averages indicating
no appreciable changes in these statistics. Occurrences of shorter
duration wet spells (up to 7 days) may increase in future with asso-
ciated increase in rainfall amount. Wet spells of longer durations
may decrease in future. However, these changes are not significant.
Number of days with heavy rainfall does not show any appreciable
changes.

The rainfall changes discussed here are derived using averages
over the study area. It would be of interest to examine whether
there are spatial variations in rainfall patterns or frequency of
rainfall extremes is changing in the future. These aspects are exam-
ined in the following sub-section.

4.3.2. Changes at individual stations
Figs. 9 and 10 present the percent changes in annual number of

wet days, annual rainfall amount and per wet day rainfall in a year
at individual station in years 2055 and 2090. In these plots changes
at individual station locations are marked as circles with hollow
indicating a decrease and filled one suggesting an increase in the
statistic shown. A reference circle size for a 10% change is also in-
cluded. No appreciable changes in rainfall across stations and
GCMs are noted. CSIRO downscaled simulations project a spatially
consistent decrease of around 7% in year 2055 and 15% in year
2090 at all stations. BCCR and MRI project nominal increases in an-
nual number of wet days and rainfall amount at majority of
stations.

We also examined the changes in year-to-year distribution of
annual wet days, rainfall and maximum daily rainfall and noted
no major changes (results not included). It may be noted here that
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Fig. 9. Changes in annual wet days and rainfall totals at individual stations in 2055 (2046–2065) in comparison to the current climate. Hollow circles indicate a decrease
while filled one an increase.
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Fig. 10. Changes in annual wet days and rainfall totals at individual stations in 2090 (2081–2100) in comparison to the current climate. Hollow circles indicate a decrease
while filled one an increase.
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the results drawn hare are based on single ensemble of five GCMs
and addition or omission of one or more GCM and ensembles may
change the predictions.
5. Summary and conclusions

This paper has demonstrated the applicability of a stochastic
downscaling framework for simulation of multi-site rainfall in
future climate settings. The coarse spatial resolution of GCMs
(�300 km) provides only a limited representation of the realistic
topographical features like the Western Ghats (along the west
coast of India) in the model structure and consequently fails to
reproduce their predominant influence on the regional rainfall pat-
terns (Krishna Kumar et al., 2011). The downscaling approaches,
similar to the one used in the study, allow to consider these
influences on the simulated rainfall.

Downscaling models like MMM-KDE used in this application,
are capable of simulating rainfall at a network of stations whilst
maintaining the spatial dependence attributes and therefore best
suited for use in catchment management practice, where the nat-
ure of spatial variations in rainfall has important influences on
the streamflows and flooding. Also, important temporal attributes
of rainfall like distribution of wet and dry spells, number of wet
days and rainfall amounts at individual stations have significant
impacts in crop simulation studies and drought management
applications. Such spatio-temporal rainfall attributes assume even
more importance when the downscaling procedure is applied for
investigating possible changes that might be experienced by
hydrological, agricultural and ecological systems in future
climates.

The comparison of standard rainfall attributes such as the num-
ber of wet days, average rainfall amounts, maximum daily rainfall
amount, wet and dry spells and other diagnostics indicate that
downscaled results of MMM-KDE model agree fairly well with
the observed record for the current climate. Rainfall simulations
over the study region for years 2055 and 2090 using projections
of five different GCMs indicate CSIRO to be a fairly dry model in
comparison to the other GCMs used in the study. Combined results
of all GCMs indicate slight decrease in monsoon rainfall over the
study region however, it is not statistically significant. Addition-
ally, the results of investigations carried out on extreme related
statistics and spatial rainfall distribution indicate no significant
changes in these rainfall attributes.

While none of the downscaling studies mentioned in the intro-
duction have focused over the study area, an interpretation of their
results over the study region may provide some insight into the
likely changes that are expected in a warmer climate. Krishna Ku-
mar et al. (2011) examined the changes in the summer monsoon
over India corresponding to the IPCC-SRES A1B emission scenarios
using three simulations from Hadley Center Coupled Model and
projected �20% to +20% changes in the monsoon rainfall by the
year 2080 over the study region across the three simulations. Sim-
ilarly, results of Turner and Slingo (2009) indicated �1 to +1 mm/
day changes in the mean rainfall in the future over the study re-
gion. Rajendran and Kitoh (2008) used a global super high-resolu-
tion GCM with a spatial grid size of about 20 km over India. Their
results suggested a decrease of 2 mm/day in the monsoon rainfall
over the catchment by 2080. The outcomes of these studies are
largely dependent on the selection of a GCM and scenario and
show no conclusive pattern of the likely changes in the rainfall in
the future over the study area.

A significant issue in downscaling applications relates to the
incorporation of uncertainty in the climate projections as simu-
lated by different GCMs. This uncertainty is typically included by
considering an ensemble of models, with an important example
being the Coupled Model Intercomparison Project phase 3 (CMIP3)
of GCMs (Meehl et al., 2007). Even very recently, many studies
have only used a single GCM output (Austin et al., 2010; Mehrotra
and Sharma, 2010; Holman et al., 2009; Mileham et al., 2009;
Toews and Allen, 2009; van Roosmalen et al., 2009). Findings of a
recent study suggest that the greatest source of the uncertainty
in the downscaled results comes from the differences in the
climate projections (Crosbie et al., 2011). The use of climate projec-
tions from multiple GCMs in the study has enabled to incorporate
the uncertainty in the downscaled rainfall results that arises
through the use of single GCM. Although, the selection of GCMs
is influenced by the availability of atmospheric variables at daily
time scale at the CMEP3 archive, the selected five GCMs are
expected to explain a major part of the variability across GCMs.
In a recent study, Ojha et al. (in press) assessed the performance
of 17 GCMs using the CMIP3 data and assigned a ranking to these
models on the basis of their ability in reproducing the monthly and
annual rainfall statistics over India. On the basis of this ranking cri-
terion, the models used in the study are ranked as 2, 5, 6, 10 and
13. Although, not a robust measure, these rankings cover a broad
range and suggest that the models used in the study roughly cover
the GCMs uncertainty spectrum.
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