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Introduction

Impact-assessment studies related to climate change have under-
lined the sensitivity of water resources to climatic variations.
Climatic changes are expected to cause increase in temperatures
and changes in precipitation patterns and other climatic variables
across the globe (Houghton et al. 1990). The tremendous impor-
tance of water in both society and nature underscores the necessity
of understanding the impacts of changes in global climate over
water resources at local regional scales.

General circulation models (GCMs) constitute important tools
for assessing plausible impacts of climate change over a range
of human and natural systems. Although GCMs perform relatively
well at continental and large regional scales, their ability to simulate
climate at finer spatial scales is still limited. Simulations at these
finer scales are of considerable interest to hydrologists for assessing
the possible impacts of climate change on water supply and related
attributes. This has led to the development of a suite of statistical
and dynamical downscaling methods that use coarse-scale GCM
atmospheric simulations and yield estimates of variables at finer
scales of interest (Anandhi et al. 2008; Sharma et al. 2011).

However, uncertainties associated with the formulation of GCMs
lead to predictions that are biased when compared with observa-
tions. Specifically, GCM results show a large degree of uncertainty
for key hydrologic variables such as precipitation, evapotranspira-
tion, and runoff (Xu 1999). The models tend to incorrectly estimate
rainfall occurrences and rainfall intensities at finer spatial and tem-
poral scales. The interannual variability observed in precipitation
patterns is affected by regional and global teleconnections, and
the extent of this variability is nonuniform over different parts of
the globe (Johnson and Sharma 2012). The GCMs tend to imper-
fectly model the effects of these teleconnections. Their inability to
represent interannual variability in precipitation patterns results in
poor simulations and biased estimates. Weather conditions in India
are greatly influenced by the El Niño Southern Oscillation (ENSO)
that cause widespread floods and droughts (Maity et al. 2007;
Maity and Nagesh Kumar 2008; Dhanya and Nagesh Kumar 2009).
The frequency, intensity, and impacts of such extreme events vary
dramatically with geographical location over the Indian subconti-
nent. Addressing the interannual variability in precipitation patterns
becomes an important concern over India. Thus, even though of
prime importance for hydrologic studies, reliable prediction of fu-
ture hydrologic variables from GCMs is very challenging.

Nested bias correction (NBC) (Johnson and Sharma 2011,
2012) is a recently developed, relatively simple approach that com-
pensates for some of the shortcomings of GCM-predicted rainfall
values, corrects for systematic bias at multiple timescales, and can
be used to predict rainfall over different regions. In the present pa-
per, the NBC approach is adopted to produce more reliable GCM
predictions of droughts and wet events over India.

The main objectives of this paper are twofold: first, to highlight
the utility of the NBC approach to correct the biases in the GCMs’
rainfall outputs, and second, to predict the frequency of severe
drought and wet conditions for a future climate scenario over India
using the Standardized Precipitation Index (SPI).

The remainder of this paper is organized as follows: in the “Back-
ground” section, details are provided for some of the earlier work
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related to analysis and prediction of droughts and floods, the need for
bias correction in GCM outputs, and the methodology adopted. In
the “Methodology” section, an application of the methodology, fol-
lowed by the discussion of study results in the “Results and
Discussion” section. Finally, the study conclusions are presented.

Background

In this section, some of the work related to bias-correction tech-
niques for GCM simulations and use of the SPI to characterize
drought and wet conditions are reviewed. This is followed by a
description of the methodology adopted in this paper.

Correction for Bias in GCM outputs

Significant systematic biases between modeled GCM outputs and
observations require statistical correction of GCM-derived varia-
bles. Statistical bias-correction techniques allow the use of GCM
outputs directly in hydrologic studies, while accepting that there
are limitations in GCMs. When combined with spatial disaggrega-
tion, bias-correction techniques can provide model inputs at a range
of scales suitable for hydrologic studies (Johnson and Sharma
2012; Mehrotra and Sharma 2010).

In a previous study, statistical bias correction was applied for
correcting climate-model output to produce internally consistent
fields that have the same statistical intensity distribution as obser-
vations (Piani et al. 2010). The study concluded that spatial distri-
butions of time-based statistics of daily precipitation from climate
models are significantly and consistently improved by a solely
intensity-based statistical bias-correction method. In another study,
several bias-correction methods were estimated for ensemble
streamflow volume forecasts (Hashino et al. 2007). Specifically,
an event-based bias-correction method, a regression method, and
a quantile-mapping method were used for correcting the bias in
historical weather data. It was observed that bias-correction meth-
ods achieved better skill by reducing the unconditional bias and
increasing the potential skill of probabilistic forecasts. Three simple
statistical downscaling approaches were compared in a study for a
future climate scenario (Wood et al. 2004). The bias in monthly
model data was corrected using quantile-mapping method. The
authors of that study observed that bias correction yielded consis-
tently plausible streamflow simulations, whether or not dynamical
downscaling was used. Dynamic downscaling of model results
without bias correction generated results that showed greater
hydrologic sensitivity to climate change.

The bias-correction approaches mentioned so far mainly focus
on either monthly or daily statistics. However, these approaches
allowed for bias correction to be implemented at one timescale
only. Further, even the bias-corrected results frequently failed to
capture the interannual variability that is prevalent in observations.
A previously published paper proposed the NBC methodology that
preserves the interannual variability by applying bias correction
simultaneously at two timescales (monthly and annually) (Johnson
and Sharma 2012). Subsequently, a comparative study of two
scaling and four bias-correction approaches including NBC was
performed, and concluded that NBC corrects for the interannual
variability to a greater extent than the other methods (Johnson
and Sharma 2011). This interannual variability in hydrologic
variables across India plays a strong role in identifying extreme
events at long timescales (greater than 1 year). The NBC on atmos-
pheric variables was applied as a postprocessor of GCM-simulated
atmospheric variables before applying a stochastic downscaling to
simulate rainfall in a future climate over the Malaprabha catchment
in India (Mehrotra et al. 2011). Therefore, NBC was identified as a

suitable bias-correction approach when using GCM precipitation
outputs for SPI calculations in this study. The need for SPI assess-
ment is discussed in the next subsection.

Standard Precipitation Index

Even though several indexes are available for drought characteri-
zation (Mishra and Singh 2010), the SPI, developed byMcKee et al.
(1993, 1995), was adopted in this study because of its flexibility,
simplicity, and its ability to classify both wet and dry conditions.
The SPI classification is sample dependent and involves transfor-
mation of the precipitation time series into a standardized normal
distribution (z distribution).

Numerous studies have adopted SPI for drought classification.
For example, Bussay et al. (1999) and Szalai and Szinell (2000)
assessed the utility of the SPI for prediction of droughts in Hungary.
They concluded that the SPI can be used for describing different
types of drought events. Hughes and Saunders (2002) performed
drought-related studies for the European region. They compared
the characteristics of SPI computed over different timescales of
3–24 months with the Palmer Drought Severity Index (PDSI) and
found a close resemblance between the values corresponding to
12-month SPI and PDSI. Ntale and Gan (2003) analyzed the prop-
erties of three drought indexes for East Africa and found that
SPI was more appropriate for drought monitoring. Seiler et al.
(2002) used SPI as a tool to monitor wetter than normal conditions
and assessed the potential of SPI for monitoring flood risks in
Argentina. The SPI was successfully used to explain the develop-
ment of conditions leading to some of the major flood events in the
region. Seven meteorological indexes were compared by Morid
et al. (2006)—SPI being one amongst them—and it was concluded
that SPI can be effectively used to analyze both dry and wet events.
Linear and nonlinear trends of droughts and wetness were observed
in Europe using SPI by Bordi et al. (2009). The advantages and
disadvantages of using SPI were discussed by Hayes et al. (1999).
Guttman (1999) performed a detailed study of SPI and found that
the value of SPI strongly depends on the probability-distribution
model used to define the time series of precipitation.

SPI has been popular in India as well. Ghosh and Mujumdar
(2007) examined the severity of future droughts for a meteorologi-
cal subdivision of India using SPI as a drought indicator and the
results from different GCM simulations. Bhuiyan et al. (2006)
monitored drought dynamics in the Aravalli region of India using
several indexes and showed that SPI is efficient in quantifying the
precipitation deficit. Because of its relative simplicity and effective-
ness in assessing both abnormally dry and wet conditions, SPI is
used in the present study as an indicator to analyze severe drought
and wet conditions across India.

Methodology

In this study, SPI calculation initially requires prior selection of
GCM, data processing of GCM precipitation-rate output, and iden-
tifying the probability distribution of the observed rainfall data.
Data processing includes GCM data interpolation to a common
grid, grid-cell averaging, and bias correction. The steps involved
in data processing are explained in the subsequent sections.

Data Processing

Interpolation to a Common Grid
Different GCMs use grid cells of different sizes and nonuniform
placement. For the grid-based analysis and bias-correction method
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described here, it is required that the GCM outputs and monthly
gridded rainfall data at 1° grid spacing from the India Meteorologi-
cal Department (IMD) (Rajeevan et al. 2006) be interpolated on a
common grid. As the IMD rainfall data have been compared with
all 17 GCMs, a grid size of 1° × 1° has been adopted as the refer-
ence. A total of 357 grid points were identified across India for
which interpolated rainfall data, strongly constrained by observa-
tions from a dense network, were available. The GCM outputs
were interpolated at these grid points using weighted mean of
the four nearest values, with weights being assigned based on
inverse-square distance relationship (Johnson and Sharma 2009).

Grid-Cell Averaging
The interpolated GCM variables show large fluctuations in space
that confound relationships with predictor variables (Wilby and
Wigley 2000). To remove spurious spatial fluctuations, spatial
smoothing was adopted wherein each grid-cell value is replaced
by the average of the nine nearest grid-cell values.

Bias Correction
The goal of the present study was to look at longer term extreme
events as strong seasonality in rainfall does not readily permit
smaller timescale drought computations. Even though the drought
indicator used for the present study, SPI, actually assumes
independence in monthly estimates, the data are aggregated for
larger time windows. While constructing the cumulative values
over larger time windows, it was felt necessary to account for
variability in monthly and annual values. Heuristically, because
monthly data were used, the first two moments at the monthly scale
are obvious choices. As drought timescales examined here were
greater than 1 year, annual mean and variance were also obvious
choices.

Further, the precipitation patterns over India are very much
affected by regional and global teleconnections; however, the influ-
ence of these teleconnections is not properly represented in the
GCM outputs. By bias correcting for annual lag-1 correlation,
an improvement in interannual variability was demonstrated previ-
ously (Johnson and Sharma 2012). This correction is important
for ensuring that drought and flood periods are modeled properly.
Therefore, bias correction for lag-1 correlation was also imple-
mented here. When compared with other existing techniques for
bias correction, NBC is the only available method that allows cor-
recting for bias in mean, standard deviation, and lag-1 correlation of
GCM precipitation data at monthly and annual scales in a simple
manner. Thus, for the present analysis, NBC was adopted as a bias-
correction technique. However, monthly bias-correction (MBC)
approach is one of the simplest techniques available for bias cor-
rection. Therefore, both MBC and NBC were used to correct for the
biases in the grid cell–averaged GCM outputs. The MBC corrects
the mean and standard deviation of the GCM-generated rainfall
data to match the observations. The underlying assumption of
MBC is that the distribution of GCM-generated rainfall data is suf-
ficiently similar to that of the observations such that the GCM rain-
fall only needs to be shifted and scaled to match the observations.

In the first step for MBC, raw monthly time series of a GCM-
generated rainfall data (yi;k) are standardized to create y 0

i;k for each
month (i) in year (k) by removing the model monthly mean (μmod;i)
and standard deviation (σmod;i) for that month (i) as shown in
Eq. (1):

y 0
i;k ¼

yi;k − μmod;i

σmod;i
ð1Þ

The second step is to impose the observed mean (μobs;i) and
standard deviation (σobs;i) to create a transformed time series zi;k
at the monthly level as follows:

zi;k ¼ y 0
i;kσobs;i þ μobs;i ð2Þ

For the validation period, monthly mean and standard deviation
values of the calibration period are used, with Eqs. (1) and (2) re-
maining the same.

The NBC is based on the assumption of linear autoregressive
model. The choice of statistics that deserve correction depends
on the application at hand. To meet the goals of this study for
characterizing extreme events at timescales greater than 1 year,
NBC was designed to correct for biases in means, variances, and
lag-1 autocorrelations, along with replicating the interannual
variability that is often ignored by other bias-correction techniques.
The steps involved for NBC are presented in the following
section.

Similar to MBC, in the first step, raw monthly time series of a
GCM-generated rainfall data (yi;k) are standardized to create y 0

i;k for
each month (i) in year (k) by removing the model monthly mean
(μmod;i) and standard deviation (σmod;i) for that month (i) as shown
in Eq. (3):

y 0
i;k ¼

yi;k − μmod;i

σmod;i
ð3Þ

In the second step, monthly lag-1 autocorrelations (ρmod;i),
which are present in the model results from the standardized time
series, are removed and instead the observed monthly lag-1 auto-
correlations (ρobs;i) are applied to create y 00

i;k as shown in Eq. (4).
Monthly lag-1 autocorrelations are defined as the correlation of the
time series of the values from month (i) with the time series of
month (i − 1):

y 00
i;k ¼ ρobs;iy 00

i−1;k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρobs;i2

q  
y 0
i;k − ρmod;iy 0

i−1;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρmod;i

2
q !

ð4Þ

The third step is to rescale with the observed means (μobs;i) and
standard deviations (σobs;i) to create the nested time series y 000

i;k at the
monthly level:

y 000
i;k ¼ y 00

i;k × σobs;i þ μobs;i ð5Þ

In the fourth step, the monthly transformed values (y 000
i;k) are ag-

gregated to the annual scale (zk). The monthly process is repeated
for the annual time step, with the difference that there is no further
need of calculating the model parameters separately for each
month. The annual time series (zk) is modified by standardizing
the mean (μmod) and standard deviation (σmod) of the annual time
series, such that for year k

z 0k ¼
zk − μmod

σmod
ð6Þ

The fifth step is to remove any modeled annual lag-1 autocor-
relations (ρmod) and apply the observed annual lag-1 autocorrela-
tions (ρobs). Yearly lag-1 autocorrelations are calculated as the
correlation between the variable in one year and the next as follows:

z 00k ¼ ρobsz 00k−1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρobs2

q �
z 0k − ρmodz 0k−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ρmod
2

p �
ð7Þ

The last step is to create the final annual time series by rescaling
with the observed annual means (μobs) and standard deviations
(σobs) as follows:
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z 000j ¼ z 00j × σobs þ μobs ð8Þ

The time series obtained in Eq. (8) are used to correct the
monthly GCM time series (yi;k). The final bias-corrected value
is calculated using the following expression:

Yi;k ¼
z 000k
zk

× y 000
i;k ð9Þ

For validation and the future study period, the observed and
modeled statistics for the calibration period are used to adjust
the model results, assuming that the biases in the model for the
calibration period remain the same in the validation and future
period as well (Johnson and Sharma 2012). To be specific, the
validation and future bias-correction steps with Eqs. (3), (4), (6),
and (7) use the monthly and annual statistics from the GCM data
for the climate-calibration period. Thus, monthly and annual
means, standard deviations, and lag-1 correlations serve as the
calibration parameters. Parameters in Eq. (9) are kept unchanged
for the validation and future period.

Distribution Fitted for Observed Rainfall Data

The SPI value is dependent on the probability distribution and the
model used to characterize the time series of precipitation. In the
present study, the assumption that a gamma distribution would
provide the best representation to the observed rainfall data was
tested by computing the monthly Kolmogorov–Smirnov (K–S) sta-
tistics for each grid cell for three timescales (12, 24, and 60 months)
using gamma, lognormal, and normal distributions (Hughes and
Saunders 2002). The test statistic is formulated as follows:

Dn ¼ max jFnðxÞ − FðxÞj ð10Þ

where FnðxÞ = empirical cumulative probability, estimated as
FnðxiÞ ¼ i=n for the ith smallest data value; FðxÞ = theoretical
cumulative probability distribution estimated at x. The Dn is
compared with tabulated values appropriate to the sample size
and the assumed distribution, under the null hypothesis that the data
are drawn from the theoretical distribution. The null hypothesis is
rejected at a given level of significance, if Dn exceeds the critical
value (Hughes and Saunders 2002). The results of the K–S test for
this study confirm that gamma distribution approximates the best
empirical distribution of the observed rainfall at a majority of grid
points over India.

Computation of SPI

After processing GCM rainfall data and identifying a suitable
probability-distribution function for the observed rainfall data,

Table 2. List of GCMs Considered in the Study

Serial number Model used Organization

1 BCCR_BCM2_0 Bjerknes Centre for Climate Research, Bergen, Norway
2 CSIRO 3.5 Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
3 GFDL 2.0 Geophysical Fluid Dynamic Laboratory, Princeton, NJ, USA
4 GFDL 2.1 Geophysical Fluid Dynamic Laboratory, Princeton, NJ, USA
5 GISS Goddard Institute for Space Studies, New York, NY, USA
6 INGV- ECHAM 4 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
7 INMCM 3 Institute of Numerical Mathematics, Moscow, Russia
8 IPSL_CM4 Institut Pierre Simon Laplace, Paris, France
9 MIROC3 Centre for Climate System Research, Tokyo, Japan
10 MPI-ECHAM5 Max Planck Institute for Meteorology, Hamburg, Germany
11 MRI-CGCM2 Meteorological Research Institute, Tsukuba, Japan
12 NCAR_CCSM3 Community Earth System Models, NCAR, Boulder, Colorado, USA
13 NCAR-PCMI Parallel Climate Models, NCAR, Boulder, Colorado, USA
14 UKMO-hadcm3 UK Met Office, Exeter, UK
15 UKMO-hadgem1 UK Met Office, Exeter, UK
16 CSIRO 3.0 Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
17 CNRM_CM3 Canadian Climate Centre, Gatineau, Canada

Fig. 1. Grid map of the study area

Table 1. Event Classification Based on SPI Value

SPI value Category Probability (%)

≥2.00 Extremely wet 2.3
1.50–1.99 Severely wet 4.4
1.00–1.49 Moderately wet 9.2
0–0.99 Mildly wet 34.1
0 to −0.99 Mild drought 34.1
−1.00 to −1.49 Moderate drought 9.2
−1.50 to −1.99 Severe drought 4.4
−2 or less Extreme drought 2.3
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the SPI values at each grid point for the time series of different
timescales are calculated using the procedure described previously
(McKee et al. 1993). The steps involved in SPI calculation are as
follows:
• First, fit a gamma distribution to the time series of precipitation

values for each timescale of interest (12, 24, and 48 months,
etc.) without overlapping the data segments. Then compute
the parameters of the gamma distribution.

• The second step is to compute the value of cumulative distribu-
tion function (CDF) ½GðxÞ� corresponding to each value of
precipitation ðxÞ.

• Finally, the value of the standard normal deviate corresponding
to the value of CDF ½GðxÞ� is calculated, which is the SPI value
for the precipitation ðxÞ.
On the basis of the value, dry and wet events are identified.

Table 1 presents the categories of events corresponding to SPI
values (McKee et al. 1993).

The parameters of the gamma distribution are estimated
based on the observed precipitation data for three different

timescales, namely, 12, 24, and 60 months. Shorter durations were
not considered as they will lead to too many zero precipitation
values in the data set for analysis. Using these parameters, the
bias-corrected future precipitation values obtained from different
GCMs are used to calculate 12-month SPI (SPI-12), 24-month
SPI (SPI-24), and 60-month SPI (SPI-60) values.

Application

Data Selection

Precipitation outputs from different GCMs are highly uncertain
and so are the results of the impact studies performed using these
outputs. It has been found that the mean of an ensemble prediction
has, on an average, a smaller error than the mean error of any of the
individual forecasts (Tang et al. 2008). However, in most regional
hydrologic assessments, due to time and resource constraints, the
number of GCMs used for impact studies is limited. In the present

Fig. 2. Modeled rainfall data for BCCR_BCM2_0 versus the observed IMD rainfall data statistics of monthly and annual precipitation rate for raw
GCM outputs and the MBC and NBC model outputs across India for the period between 1976 and 1999: (a) monthly mean; (b) annual mean;
(c) monthly standard deviation; (d) annual standard deviation; (e) monthly lag-1 correlation; (f) annual lag-1 correlation
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study, monthly precipitation outputs of 17 GCMs (Table 2), a
subset of the 23 available GCMs [used as part of the Intergovern-
mental Panel on Climate Change assessment report (Meehl et al.
2007) for which time series of precipitation are readily available]
was used. The sequence number associated with each model iden-
tifier in Table 2 is further used to refer to them in the results to follow.

The precipitation outputs for 20C3M (representing current
climate) and Special Report on Emissions Scenarios (SRES) A2
(representing future climate) were obtained from the World Climate
Research Programme’s Coupled Model Intercomparison Project
Phase 3 multimodel data set.

Daily gridded rainfall data at 1° grid spacing from the IMD
(Rajeevan et al. 2006) were used as surrogate for observed data.
This data set is based on 1,803 stations over India with a minimum
of 90% data availability during the period 1951–2003. Using the
data from these stations, the grid-point analysis of rainfall was
carried out by the IMD using Shepard’s directional interpolation
method over the Indian subcontinent and finally daily rainfall val-
ues were obtained for different grid points. Overall, 357 grid points
were identified for which daily rainfall data were available. The
daily data set was aggregated to monthly data and used for the
present study.

Study Region

The methodology has been applied across India (latitude from 6.5°
to 37.5° N and longitude from 66.5° to 101.5° E) covering 357 grid
points at a resolution of 1° × 1°. Fig. 1 shows the study region along
with the grid points for which interpolated rainfall data are avail-
able. The shape, size, location, latitudinal extent, and contrasting
relief features of India bring great climatic diversity across different
regions of India. Aberrations in the total volume and pattern of
rains from the Southwest monsoon are observed in different parts
of the country. The ENSO also plays an important role in the rain-
fall patterns across India.

Performance Assessment

Different GCM outputs are available for the 20C3M scenario (cur-
rent climate) over a wide period. The period between 1951 and
1999 was identified as a common period for which precipitation
output were available from all the 17 GCMs and IMD-gridded rain-
fall data. Calibration and validation were performed for both MBC
and NBC GCM data. The data set for the current period was di-
vided into two parts, namely the calibration period (1951–1975)
and the validation period (1976–1999). The GCMs were ranked
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Fig. 3. RMSE for NBC and raw GCM data compared with the observed IMD rainfall data for the validation period (1976–1999) from 17 GCMs as
listed in Table 2: (a) RMSE for monthly mean; (b) RMSE for annual mean; (c) RMSE for monthly standard deviation; (d) RMSE for annual standard
deviation; (e) RMSE for monthly lag-1 correlation; (f) RMSE for annual lag-1 correlation
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based on their performance during the validation period, which was
assessed using the following six statistics, i.e., monthly and annual
values of mean, standard deviation, and lag-1 correlation. Five best
models were identified based on improvement in root-mean-square
error (RMSE) and further used for SPI calculation. The K–S test
was used to identify the suitable probability-distribution function
for the observed IMD rainfall data, in this case gamma distribution.
For the present study, 24 years of data were available for the

validation period. It has been previously suggested that a minimum
of 30–40 years of time series data should be available for reliable
prediction of SPI (McKee et al. 1993). Hence, the parameters re-
quired for estimation of SPI, that is, the parameters of gamma dis-
tribution, are estimated based on 49 years of observed precipitation
data (1951–1999).

Results and Discussion

Implications of NBC

A comparative study was performed for the validation period
(1976–1999) between NBC and MBC. Fig. 2 presents these results
for the BCCR_BCM2_0 GCM rainfall. Each individual point in the
graphs represents the respective monthly and annual statistic for

Table 3. Ranking of GCMs Based on RMSE

GCM

Monthly Statistics Annual Statistics

Average
ranking

Overall
rankingMean

Standard
deviation

Lag-1
correlation Mean

Standard
deviation

Lag-1
correlation

BCCR_BCM2_0 1 2 3 6 1 3 2.67 1
CSIRO3.5 3 10 17 2 9 14 9.16 8
GFDL 2.0 7 11 9 3 7 17 9 7
GFDL2.1 17 17 12 14 17 2 13.16 14
GISS 15 14 15 12 12 1 11.5 12
INGV ECHAM4 10 3 14 11 3 13 9 7
INMCM 3.0 16 15 13 16 15 12 14.5 15
IPSL_CM4 4 8 10 4 8 10 7.3 5
MIROC3 12 7 16 13 13 15 12.67 13
MPI_ECHAM5 11 16 4 10 16 5 10.33 10
MRI_CGCM2 8 13 8 9 14 9 10.16 9
NCAR-PCMI 13 6 7 15 6 8 9.16 8
NCAR_CCSM3 5 1 1 1 2 16 4.33 2
UKMO-hadcm3 9 12 6 8 11 4 8.33 6
UKMO-hadgem1 14 9 11 17 10 7 11.33 11
CSIRO 3.0 2 5 5 5 4 6 4.5 3
CNRM-CM3 6 4 2 7 5 11 5.83 4

Fig. 4. Mean of average annual rainfall for NBC five GCMs rainfall
data versus average annual rainfall from the observed IMD rainfall data
for the calibration period (1951–1975)

Fig. 5. Mean of average annual rainfall for NBC and raw five GCMs
rainfall data versus average annual rainfall from the observed IMD rain-
fall data for the validation period (1976–1999)

Fig. 6. Percentage change in average annual rainfall across India for
mid-2075
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each grid cell (i.e., each location in which the bias correction has
been applied). Both NBC and MBC perform well while correcting
for the annual and monthly mean and standard deviation. However,
in the case of monthly and annual lag-1 correlation, NBC shows
more improvement. The RMSE values obtained in the case of
NBC for monthly and annual lag-1 correlation are 0.254 and
0.19, which are smaller compared with the RMSE values of
0.302 and 0.305 obtained in the case of MBC.

Fig. 3 presents the RMSE values for monthly and annual mean,
standard deviation, and lag-1 correlation as observed for the vali-
dation period (1976–1999) for the raw and NBC rainfall from all
the 17 GCMs. The RMSEs show significant improvement in the
monthly and annual means for the NBC data from the 17 GCMs
when compared with raw GCM rainfall data. Improvement in
RMSE is demonstrated in case of other statistics as well. However,
monthly lag-1 correlation does not show as good an improvement
as the other statistics. Because of the ability of NBC to correct for
bias in the data at multiple timescales and also improve lag-1 au-
tocorrelation, it was adopted for the present study. The GCMs were

ranked based on the RMSE for all the six statistics shown in Table 3.
Average ranking was obtained by averaging the six ranks. Finally,
based on the value of average ranking, the overall ranking was ob-
tained. The model with the least average ranking was ranked 1 and
similarly other models were also ranked. It is not possible to de-
termine a priori which statistic is most relevant for analyzing ex-
treme events. For robustness, rankings over multiple statistics were
adopted here. In spite of bias correction, the future projections from
different GCMs revealed substantial inter-GCM variability. The in-
itial pool of 17 GCMs was further screened to obtain more reliable
predictions of SPI. The top five performing models were selected
and used for further analysis of severe droughts and wet events in
future to demonstrate the methodology. This number would vary
based on the resources available to conduct such an analysis.

The performances of the best five selected GCMs in predicting
average annual rainfall for the calibration and validation periods
were analyzed. The mean of the average annual rainfall predicted
from all the five GCMs using NBC and raw GCM data was
compared with the average annual rainfall from the observed

Fig. 7. Percentage change in average rainfall across India for mid-2075: (a) monsoon period; (b) nonmonsoon period

Table 4. Percentage of Grid Points That Agree for a Particular Distribution

Month

Timescale: 12 months Timescale: 24 months Timescale: 60 months

Normal Lognormal Gamma Normal Lognormal Gamma Normal Lognormal Gamma

January 95 95 96 95 96 96 92 92 92
February 95 94 95 94 95 94 93 93 93
March 95 95 95 92 93 93 93 93 93
April 95 95 95 94 94 94 93 93 93
May 94 95 96 94 95 94 92 92 91
June 93 94 94 92 93 93 92 92 92
July 93 94 94 96 96 96 89 89 89
August 95 95 96 95 96 96 92 93 93
September 96 96 96 98 99 98 91 92 92
October 97 97 97 95 95 95 91 92 92
November 95 95 95 96 97 97 92 93 93
December 95 95 96 96 97 97 92 93 93
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IMD rainfall data. Figs. 4 and 5 show the plots for the calibration
(1951–1975) and validation (1976–1999) periods, respectively. In
case of NBC GCM data, R2 of 0.99 was obtained for the calibration
period and 0.97 for the validation period. It can be observed from
Fig. 5 that the raw GCM rainfall data exhibit large bias for the
validation period 1975–1999, as the uncorrected GCM-generated
values deviate to a great extent from the best fit line, and an R2

value of only 0.2321 could be obtained, thereby highlighting the
need for bias correction in GCM rainfall outputs.

Most GCMs show large uncertainties in the projected regional
climate changes for near-future results up to 2030, mostly due to
differences between the results of the climate models rather than the
different emission scenarios (Hennessy et al. 2008). In the present
study, future period from 2051 to 2099 was chosen because GCM
outputs for this period are likely more strongly affected by emission
scenarios rather than model uncertainties. The average annual rain-
fall was estimated using the best five performing models for future
period (2051–2099) and was reported here, for convenience, as the
average annual rainfall for 2075. The percentage change in average
annual rainfall at all grid points when compared with average
annual rainfall from the observed IMD data is shown in Fig. 6.

An increase in annual rainfall is observed across many parts of
India. A greater increase is observed for many regions of northwest
and central northwest parts of India. The northeastern part of India
does not show appreciable change in rainfall. Further, to investigate
the changes in monsoon patterns, percentage changes in average
rainfall for the monsoon (June–October) and nonmonsoon periods
(November–May) for the year 2075 were calculated and are pre-
sented in Fig. 7.

The percentage change in rainfall for monsoon period is quite
similar to that obtained for average annual rainfall. However, for the

Fig. 8. SPI value for NBC, MBC, and raw GCM data for BCCR_BCM2_0 compared with the observed IMD rainfall data for the current period
(1951–1999): (a) 5th percentile, 12-month SPI; (b) 95th percentile, 12-month SPI; (c) 5th percentile, 24-month SPI; (d) 95th percentile, 24-month
SPI; (e) 5th percentile, 60-month SPI; (f) 95th percentile, 60-month SPI

Table 5. RMSE Values of Raw GCM-, MBC-, and NBC GCM–Prediction
Error for SPI Values

Statistic Raw GCM MBC NBC

5th Percentile: 12-month SPI 2.11 0.40 0.36
5th Percentile: 24-month SPI 2.95 0.52 0.41
5th Percentile: 60-month SPI 4.88 0.66 0.55
95th Percentile: 12-month SPI 2.49 0.29 0.20
95th Percentile: 24-month SPI 3.46 0.42 0.25
95th Percentile: 60-month SPI 5.10 0.61 0.45
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Fig. 9. Frequency plots for severe drought and wet events for NBC data around mid-2075: (a) frequency of severe drought event, SPI-12;
(b) frequency of severe wet event, SPI-12; (c) frequency of severe drought event, SPI-24; (d) frequency of severe wet event, SPI-12; (e) frequency
of severe drought event, SPI-60; (f) frequency of severe wet event, SPI-60
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Fig. 10. Comparison of frequency values for severe drought and wet events for NBC and MBC data around mid-2075: (a) SPI-12, severe drought
event; (b) SPI-12, severe wet event; (c) SPI-24, severe drought event; (d) SPI-24, severe wet event; (e) SPI-60, severe drought event; (f) SPI-60, severe
wet event
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nonmonsoon period the extent of increase in rainfall amount is high
for some of the coastal regions of India and certain regions of west
central part of India.

Probability Distribution for the Observed IMD Rainfall
Data

The K–S test was performed to identify the suitable probability-
distribution function for the observed IMD rainfall data for time-
scales of 12, 24, and 60 months at all the 357 grid points. Rejection
of the null hypothesis at 5% significance level was considered.
Lognormal and gamma distribution fitted the time series data of
different timescales for most grid points. Gamma distribution
slightly outperformed for a timescale of 12 months, whereas for
data of 24- and 60-month timescales both distributions fit almost
equally well. Because gamma distribution was originally suggested
for calculation of SPI previously (McKee et al. 1993), the same was
adopted for the present study. Table 4 shows the percentage fit
out of 357 grid points for all the three distributions for the three
timescales.

Modeling of Current and Future Severe Droughts and
Wet Events

Drought frequency was modeled for the current period (1951–
1999) across India for raw and bias-corrected GCM data. Fig. 8
shows the 5th and 95th percentile plots for SPI values for time-
scales of 12, 24, and 60 months for all the 357 grid points. The
5th and 95th percentile SPI values have been identified as severe
droughts and wet events, respectively. The NBC and MBC provide
better estimates of severe droughts and wet events when compared
with the SPI values from raw GCM data series. The SPI values for
raw GCM data deviate to a great extent from the best fit line
in Fig. 8.

The RMSE values for raw, MBC, and NBC GCM data series are
shown in Table 5. The RMSE values have significantly reduced for
both the bias-corrected series. Both NBC data and MBC data show
significant improvement in RMSE values compared with the raw
GCM data series. However, RMSE values for NBC are better than
those for MBC. The NBC data were further used for assessing the
severe droughts and wet events in future. The top performing mod-
els were checked separately for their performance for a future
period for predicting the 5th and 95th percentile SPI values. The
NCAR_CCSM3 was not able to predict SPI values very success-
fully when compared with the other four models. Thus, even after
bias correction and selection of a best subset of models, further
processing was necessary to screen poorly performing models. It
is suspected that the inability of NCAR_CCSM3 to correctly model
annual lag-1 autocorrelation might be one of the reasons for this
poorer performance. The remaining four models were further used
for analysis.

The 5th and 95th percentile SPI values obtained from the time
series of observed IMD rainfall for the three timescales were de-
fined as the threshold values at each grid cell for severe drought and
wet events (Burke and Brown 2008). The median frequency of se-
vere drought and wet events was estimated based on future projec-
tions of the four GCMs. Fig. 9 shows the median frequency of
severe droughts and wet events centered around 2075 for 12,
24, and 60 months for the NBC data.

The frequency plots for drought events show increase in 1-year
drought frequency for many parts of the country, while a great in-
crease in drought events for some of the regions of central north-
east, west central, and peninsular India is observed. Interestingly,
the frequency of wet events increases across the northwest region of

India. This region is considered to be drought prone for most of the
year as it receives a very small amount of monsoon rainfall. An
increase in the frequency of wet events was also observed for
coastal regions of India as well as for most parts of northern India.
Many parts of northern India show frequency of wet events at
approximately 60–70%. A comparison of distribution of frequency
values is shown in Fig. 10 for frequency values predicted using
MBC and NBC for the year 2075.

The frequency of severe drought events predicted by both MBC
and NBC is similar, with NBC value being slightly on the lower
side. The frequency for severe drought events is approximately
6–7% meaning that in a particular year 6–7% of the whole country
is likely to be suffering from drought. Frequency of severe wet
events predicted by NBC is greater than that predicted by MBC.
The frequency of severe wet events in one particular year is 12%.
The frequency for severe wet events increased for 2- and 5-year
time windows to 20 and 25%, respectively.

Conclusions

The NBC approach was used to correct for the biases in GCM-
derived rainfall for SRES A2. The NBC performed better than
the simple monthly means correction, which has often been used
in climate change–impact assessments. To a great extent, NBC
compensates for the known weaknesses in GCM outputs and cor-
rects for mean, variance, and lag-1 correlation. Overall, a 10–30%
increase in annual rainfall was projected for 2075. For the nonmon-
soon period, some parts of coastal regions of India and west central
part of India showed greater increase in rainfall. Severe droughts
and wet events were predicted across India using SPI. The SPI was
calculated using the bias-corrected rainfall data for three different
timescales. The 5th and 95th percentile values were extracted to
denote the severe drought and wet events across India. An increase
in frequency of severe droughts and wet events was observed across
most parts of India for the future period. The severe drought-event
frequency will likely be high for central northeast, west central, and
peninsular regions of India. The northwest region of India showed
an increase in the frequency of severe wet events for future, which
is rather contrary to the current trend observed for this region.
The frequencies of severe drought events predicted by both MBC
and NBC were similar, with the NBC value being slightly on the
lower side. Frequency of severe wet events predicted by NBC was
greater than that predicted by MBC. The frequency for severe wet
events increased for 2- and 5-year durations, whereas the frequency
for severe drought events remained almost same for these time
windows.
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