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The time-evolution of multiparty quantum correlations as quantified by monogamy scores and bipartition
collections of quantum correlations is investigated for light-harvesting complexes modeled by the fully con-
nected and the Fenna-Mathews-Olson (FMO) networks. The dynamics consists of a coherent term as well
as dissipative, dephasing, and sink operator terms. The multiparty quantum correlation reveals important
information regarding the sharability of quantum correlations in the networks, which allow us to categorize
the network sites into three distinct groups in the FMO complex and to predict the structural geometry of the
complex. In particular, we show that the relative values of the ingredients of multiparty quantum correlation
measures in the time dynamics clearly indicate the primary route of energy transfer from the antenna to the
bacterial reaction center in the FMO complex.

I. INTRODUCTION

Quantum correlations1,2 are known to play a crucial
role in a wide variety of physical phenomena in ultracold
gas, solid state, nuclear magnetic resonance, and other
systems3–5. In the last few years, quantum coherence
and quantum correlations have been claimed to be of rel-
evance in certain biological processes6–8. Two important
biological phenomena in which quantumness may play a
role include avian magnetoreception, used by migratory
birds for efficient navigation9, and the Fenna-Mathews-
Olson (FMO) light-harvesting protein complex of green
sulfur bacteria, responsible for photosynthesis6,7,10–13.
In the latter process, the FMO complex plays the role
of the mediator to transfer excitation energy from the
light-harvesting chlorosome antennae to a reaction cen-
ter. Recently, it was argued that the efficient trans-
fer of energy in photosynthesis can not be explained
by the classical incoherent hopping model14,15. On the
other hand, several studies show that quantum coher-
ence is essential in excitation energy transfer in the FMO
complex6,7,14–23. Specifically, the dynamics of entangle-
ment under the influence of dissipative environments,
both Markovian and non-Markovian, have been exten-
sively investigated18,19,24.
Most of the studies in this direction are restricted to

bipartite quantum correlation measures (for exceptions,
see22,25). However, there exist several phenomena in the
domain of quantum information and many-body physics
which can not signaled and explained by bipartite quan-
tum correlation measures, while multisite quantum cor-
relations provide an adequate description (see e.g.26–29).
Also, recent experimental breakthroughs have ensured
that multiparty quantum states can be created and their
multiparty quantum correlations can be detected30.

An obstacle in the study of multipartite quantum cor-
relations is the usual unavailability of computable multi-
partite measures. One avenue to overcome this difficulty
is to work with the class of multipartite quantum correla-
tion measures based on the concept of monogamy. Qual-

itatively, monogamy of a quantum correlation measure
says that among three parties sharing a quantum state,
if two are highly quantum correlated, then the third party
can only possess a negligible amount of quantum correla-
tion individually with the other two. Note that classical
correlations do not satisfy any such monogamy condition.
This qualitative concept of monogamy can and has been
quantified31,32, and leads to multiparty quantum corre-
lation measures, referred to as monogamy scores31,33.

Another strategy to understand multiparty quantum
correlations is to look at the collection of the bipartite
quantum correlations across different partitions of the
system. This is akin to the concept of entanglement en-
tropy and area law34, where the scaling of entanglement
of a part of a many-body system to the rest is used to
understand the cooperative phenomena in the system.

In this paper, we investigate the dynamics of
monogamy-based multipartite quantum correlation mea-
sures, specifically, negativity and discord monogamy
scores, as well as collections of quantum correlations in
the different bipartitions. The investigations are carried
out for the fully connected network14,23 as well as for
the FMO complex. To understand the effects of decoher-
ence in the energy transfer, the evolution of multiparty
quantum correlations are studied through the Lindblad
mechanism, including dissipation and dephasing effects,
with the initial states being close to the antenna. We
find that the behavior of multipartite quantum correla-
tion measures depend both on the initial state as well as
the “nodal” observer used in the monogamy scores. The
results show that in the FMO complex, the negativity
monogamy score is more robust against noise than its bi-
partite counterpart, irrespective of the choice of the nodal
observer and the initial state. Recent findings show that
the FMO complex is made of seven inequivalent chro-
mophore sites and a sink19. We observe a complementary
behavior between the dynamics of negativity and discord
monogamy scores in the presence of noisy environments,
both in the fully connected network model and in the
FMO complex. In particular, we find that in the FMO
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complex, the modulus of the discord monogamy score
possesses much smaller values as compared to the quan-
tum discord present in the constituent bipartite states –
the situation is opposite in the case of negativity. The
findings clearly indicate that to detect quantum corre-
lations in the FMO complex, multipartite entanglement
measures are more effective than the bipartite ones. The
opposite is true for quantum discord. Moreover the dy-
namics of quantum correlations allows us to classify the
seven inequivalent sites of the FMO complex into three
groups, which in turn helps us to predict the structural
arrangement of the complex. Interestingly, if we look at
collections of the quantum correlations in different bipar-
titions, and investigate their behavior as they evolve in
time, then their relative values indicate the route through
which the energy is transformed from the antenna to the
bacterial reaction center, as has been estimated in recent
observations6,20,25.
The paper is organized as follows. In Sec. II, we dis-

cuss the network models for light-harvesting complexes
and describe their time evolution that involves dissipa-
tive and dephasing effects. In Sections III and IV, we
present the bipartite and multipartite quantum correla-
tions used in this paper. The results regarding the be-
havior of the monogamy scores and bipartite quantum
correlations with time are presented in Sec. V. In par-
ticular, Sec. VA presents the results for fully connected
network model, while those for FMO complex are dis-
cussed in Sec. VB. In Sec. VI, we show that ingredients
of multiparty quantum correlation measures can detect
the primary route of energy transfer from the antenna to
the bacterial reaction center in the FMO complex. We
conclude in Sec. VII.

II. THE NETWORK MODEL FOR LIGHT-HARVESTING

COMPLEXES

In this section, we review important abstract net-
work models for quantum transport, where the local
sites undergo both local dissipation and dephasing noise,
and the excitation transfer to a reaction center is de-
signed via an irreversible coupling to a preferred trapping
site6,13,14,23,35. This model is a basic framework for light-
harvesting complexes as they are typically constituted of
multiple chromophores which irreversibly transfer exci-
tations to the reaction center. In order to illuminate the
basic phenomena clearly, it is usual to consider that the
relevant complexes are composed of several distinct two-
level sites. In a network of N sites, an excitation in the
site j is described as

|j〉 =






|e〉j

N
⊗

i=1
i6=j

|g〉i






⊗ |g〉N+1 , (1)

where |g〉 denotes the absence of an excitation and |e〉
represents the presence of an excitation at a particular

site. The site N + 1 is also included, to be treated as
a “sink” site. A sink state |N + 1〉, indicating that the
exciton is trapped to the reaction center, is given as fol-
lows:

|N + 1〉 =
(

N
⊗

i=1

|g〉i

)

⊗ |e〉N+1 . (2)

Similarly the ground state |0〉, that represents the loss of
the exciton, is given by

|0〉 =
N+1
⊗

i=1

|g〉i . (3)

The density matrix which characterizes the quantum
state of the whole network is

ρ =
∑

i,j∈{0,1,...,N+1}

ρij |i〉 〈j| . (4)

The coherent exchange of excitations between sites in the
network is governed by a simple Hamiltonian dynamics.
The dephasing and the dissipation caused by the envi-
ronment are modeled using local Lindblad terms. The
Hamiltonian for the coherent evolution of a network of
N sites is given by

H =

N
∑

j=1

~ωjσ
+
j σ

−
j +

N
∑

i,j=1
i6=j

~vij(σ
+
i σ

−
j + σ+

j σ
−
i ), (5)

where σ+
j and σ−

j are the raising and lowering operators

respectively for the site j, and have the form σ+
j = |j〉 〈0|

and σ−
j = |0〉 〈j|. Also, ~ωj denotes the on-site excitation

energy at j whereas ~vij represents the coupling energy
between the sites i and j. We assume that the system is
affected by two distinct types of noise due to environmen-
tal effects: (i) dissipation of the exciton that transfers the
excitation energy of site j to the environment, and (ii)
a dephasing interaction with the environment that de-
stroys the phase coherence of the system. Both types of
noise processes can be described using a Markovian mas-
ter equation with local dephasing and dissipation terms
by the following Lindblad super-operators:

Ldiss(ρ) =

N
∑

j=1

Γj

[

2σ−
j ρσ

+
j − {σ+

j σ
−
j , ρ}

]

, (6)

Ldeph(ρ) =

N
∑

j=1

γj
[

2σ+
j σ

−
j ρσ+

j σ
−
j − {σ+

j σ
−
j , ρ}

]

, (7)

where Γj and γj denote respectively the dissipation and
dephasing rates of the noise processes for site j. The
trapping of the exciton in the reaction center by an ir-
reversible decay process from a “preferred” site k is de-
scribed by the Lindblad super-operator,

Lsink(ρ) = ΓN+1[2σ
+
N+1σ

−
k ρσ+

k σ
−
N+1

−{σ+
k σ

−
N+1σ

+
N+1σ

−
k , ρ}]. (8)
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The evolution of the density operator ρ, given in Eq. (4),
is governed by the equation

ρ̇ = −i[H, ρ] + Ldiss + Ldeph + Lsink. (9)

The population at site j at time t is obtained by pj(t) =
〈j| ρ(t) |j〉, whereas the population transferred to the re-

action center is given by psink(t) = 2ΓN+1

∫ t

0
pk(t

′)dt′.

A. Fully Connected Network Model

The fully connected network (FCN) model is a simple
network model which helps us to understand the effects
of various environmental effects on quantum transport.
Thus, before going over to the more complex FMO dy-
namics, it is helpful to study this simpler network model.
The FCN is an abstract model in which all the coupling
constants in the Hamiltonian (Eq. (5)) are equal, i.e.,
~vij = J for all i 6= j. In case of “uniform” FCN, i.e.,
when ωj, Γj , and γj are equal for all sites, an exact an-
alytical solution of the density matrix can be found for
arbitrary (positive) integral values of N14. This exact
solution provides useful insights into various mechanisms
that contribute to the dephasing-assisted transport as
well as to the quantum correlations involved.

B. FMO Complex

The FMO complex is a pigment-protein complex which
is believed as the main contributor to the ultra-efficient
energy transfer from the light-harvesting chlorosomes to
the bacterial reaction center in green sulfur bacteria. It is
a trimer of three identical units, each composed of seven
bacteriochlorophyll a molecules lodged in a scaffolding
of protein molecules. Generally, it is modeled as a con-
nected network of seven chromophore sites correspond-
ing to seven bacteriochlorophyll a molecules with site-
dependent coupling strengths and site energies. The ma-
trix form of the Hamiltonian (in the site basis {|j〉}7j=1)
responsible for the coherent dynamics of the complex is
as follows13:

H =



















215 −104.1 5.1 −4.3 4.7 −15.1 −7.8
−104.1 220 32.6 7.1 5.4 8.3 0.8
5.1 32.6 0 −46.8 1.0 −8.1 5.1
−4.3 7.1 −46.8 125 −70.7 −14.7 −61.5
4.7 5.4 1.0 −70.7 450 89.7 −2.5

−15.1 8.3 −8.1 −14.7 89.7 330 32.7
−7.8 0.8 5.1 −61.5 −2.5 32.7 280



















,

(10)

where the numbers are given in units of cm−1, a gen-
eral convention in spectroscopic experiments. The in-
coherent part of the dynamics is the same as the net-
work model described above. Recent work suggests that
site 1 and 6 are closest to the chlorosome antenna and
are thus most likely to be the initial state of the FMO
complex in the dynamics15, whereas site 3 is the pre-
ferred site, which is coupled to the reaction center at
site 8 (sink)13. We choose the trapping rate, as in14,17,

to be Γ8 = 62.8/1.88 cm−1, corresponding to about
6.3 ps−1. We also assume that the dissipation rates
are same for all sites and have the value Γj = Γdiss =
1/(2×188) cm−1, corresponding to about 5×10−4 ps−1.
Finally, we set the optimized dephasing rates γj to be
{0.157, 9.432, 7.797, 9.432, 7.797, 0.922, 9.433} ps−1, for
time t = 5 ps, as in Ref.14.

III. BIPARTITE QUANTUM CORRELATIONS

Quantum correlations, in the form of entanglement1

and quantum discord2, considered to be unique char-
acteristics of quantum systems, are useful resources for
many quantum information and computational tasks36.
Among entanglement measures, we will mainly focus on
the negativity37, which is based on the Peres-Horodecki
criterion of separability38. Among other things, negativ-
ity has the advantage as it is computable for arbitrary
states in arbitrary bipartite dimensions. Quantum dis-
cord, is an information theoretic measure of quantum
correlations and is in some sense a more fine-grained de-
tector of quantum correlations as compared to entangle-
ment. The measures are however equivalent, though not
necessarily of equal numerical value, for pure bipartite
quantum states.
For a bipartite quantum state, ρAB, the negativity is

defined as the absolute sum of the negative eigenvalues
of the partial transposed state:

NA:B ≡ N(ρA:B) =
||ρTA

AB|| − 1

2
, (11)

where ||A|| = Tr
√
A†A is the trace norm of the matrix

A and ρTA

AB is the partially transposed state with partial
transposition38 being taken with respect to party A. The
value of the negativity does not depend on which party
the partial transposition is performed.
Quantum discord of the bipartite quantum state, ρAB,

is defined in terms of the quantum mutual information,
I and “classical correlation”, J , as39,40

DA:B ≡ D(ρA:B) = I(ρAB)− J (ρAB). (12)

Here, I(ρAB) is defined as

I(ρAB) = S(ρAB)− S(ρA)− S(ρB), (13)

and interpreted as the total correlation present in the
quantum state ρ40, where S(̺) = tr(̺ log2 ̺) is the von
Neumann entropy of ̺. The quantity J is defined as

J = S(ρB)− S(ρB|A), (14)

and interpreted as the classical correlations in ρ, where

S(ρB|A) = min
∑

i

piS(ρB|i) (15)

is the minimal average conditional entropy obtained by
performing measurement on the A part and averaging
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FIG. 1. (Color online.) Monogamy scores in the FCN in the clean case. Monogamy scores for negativity (δN) and for discord
(δD) are plotted as ordinates against time along as abscissae for the seven-site FCN network in the clean case. The different
colors are for monogamy scores with respect to different nodal observers. The solid lines represent the monogamy scores while
the dashed lines are for the bipartite contributions. The quantities plotted as the ordinates in the left panel are in ebits, while
those in the right one are in bits.
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FIG. 2. (Color online.) Population at different sites as func-
tions of time for the FCN in the clean case. The ordinates
are dimensionless.

over all measurement outcomes with the corresponding
outcome probabilities being pi. The minimization is over
all projection measurements on the A part. For nonsy-
metric states, the value of quantum discord depends on
the part on which the measurement is performed. We
will always be considering situations where measurement
is performed on the first system.

IV. MONOGAMY SCORES AND BIPARTITION

COLLECTIONS

The monogamy score is a multiparty quantum correla-
tion measure. Corresponding to any bipartite quantum
correlation measure, Q, the monogamy score for Q of an

N -party quantum state ρ1,2,...,N is defined as31,33

δQi ≡ δQi(ρ) = Q(ρi:R)−
N
∑

j=1,j 6=i

Q(ρj:i), (16)

where we have assumed the site i to act as the “nodal”
observer. Here Q(ρi:R) is the quantum correlation of the
entire N -party state ρ1,2,...,N in the partition i : R, where
R denotes the collection of all the parties 1, 2, . . . , N ex-
cluding the nodal observer i. Note that R is a func-
tion of i, although that has been kept silent in the no-
tation. Here, Q(ρj:i) is the quantum correlation, Q, of
the state ρj:i obtained after tracing out all the parties
of ρ1,2,...,N except i and j. If δQi(ρ) is positive for all
states ρ for all N , then the quantum correlation mea-
sure, Q, is said to be monogamous. It has been argued
that the monogamy score can act as a measure of multi-
party quantum correlation31,33, obtained by subtracting
the “bipartite contribution”, QRi

=
∑

j 6=i Q(ρj:i), from

the total quantum correlation,Qi:R = Q(ρi:R) in the par-
tition i : R. In this paper, we will be using monogamy
scores for negativity and quantum discord, and, we will
refer to them as “negativity monogamy score” and “dis-
cord monogamy score”, respectively. First of all, the mul-
tiparty measures are then computable either analytically
or via efficient numerical procedures. Moreover, nega-
tivity and quantum discord fall on different sides of the
broad division in the space of bipartite quantum corre-
lation measures into entanglement-separability measures
and information-theoretic ones. The multiparty quantum
correlations generated thereof will therefore lead to the
identification and understanding of a breadth of features
on sharability of quantum correlations in the system con-
sidered.
Along with using monogamy scores as multiparty

quantum correlation measures, we also use collections
of quantum correlations in different bipartitions for the
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FIG. 3. (Color online.) Monogamy scores in the FCN in the case of energy mismatch. See Sec. VA2 for the values of the
parameters. All other descriptions remain the same as in Fig. 1.
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FIG. 4. (Color online.) Monogamy scores in the FCN in the case of dephasing mismatch. See Sec. VA3 for the relevant
parameter values. The rest of the descriptions remain the same as in Fig. 1.

same purpose. Given anN -party quantum state ρ1,2,...,N ,
we consider a bipartite quantum correlationQ, as for the
monogamy scores. We then consider the collection Qi:R

for all i. The collection provides information about how
the quantum correlation, Q, is shared between different
single party and the rest bipartitions, and hence gives us
an understanding of the multiparty quantum correlation
in the entire state. This is somewhat similar to the con-
cept of area law (or its violation) where entanglement of
different bipartitions of the entire system is utilized to
gather information about the character of a many-body
system, including quantum phase transitions34.

V. DYNAMICS OF BIPARTITE AND MULTIPARTITE

QUANTUM CORRELATIONS

In this section, we will first present our results on
bipartite and multiparty quantum correlations in the
fully connected network. Then we apply the concept of
monogamy of quantum correlations to understand the

exciton transport in FMO complexes.

A. Fully connected network

We consider a 7-site FCN model for the discussion. In
a FCN, all the hopping amplitudes, denoted by vij , are
taken to be equal14,23. The evolution of the density ma-
trix under dissipation, dephasing, and the sink operator
is obtained by using Eq. (9). We choose site 7 as the
preferred one, which is connected to the sink at site 8.
The evolution starts off from an initial state, which in
this case is taken to be |1〉.

1. Clean case

Consider the Hamiltonian given in Eq. (5) and fur-
ther assume that Γj and γj are zero for all j = 1, . . . , N .
Physically it means that the system is dissipation- and
dephasing-free, and excitons created in the system are
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not destroyed due to any environmental effect. Rather,
they only decay to the sink (site 8) from site 7. Such
FCN models will be referred to as “clean” cases through-
out the manuscript. For simplicity, all ωj are chosen to
be zero. The rate of transfer of energy to the sink is
ΓN+1 which is chosen to be 50 cm−1. We also choose
~vij = J = 50 cm−1. Starting with the initial state
where only one electronic exciton is present at the first
site, creation and annihilation of excitons take place as
the excitation moves from one site to other sites over a
time period which is of the order of a picosecond, and
finally the energy is transported from the first site to the
sink, numbered 8, via the dynamics of the exciton.
To consider the monogamy scores, we have to identify

a nodal observer. The different situations correspond to
cases when the nodal observers are located at sites 1, 2
or 7. (Note here that the sites 2−6 are equivalent in this
case.) We begin with the case when the nodal observer
is at site 1. In this case, the negativity monogamy score
is given by

δN1 = N1:R −
7
∑

j=2

Nj:1. (17)

A similar monogamy score can be defined for quantum
discord (δD1), and for other sites as nodal observers. The
monogamy score for negativity in this case is depicted in
Fig. 1. The evolution of the system is monitored for a
period of 10 ps, but exhibited in the figure only up to 2
ps. After 2 ps, the oscillations in the correlations have ei-
ther vanished or are steadily decreasing. The monogamy
score, δN1, remains negative throughout the evolution.
A non-zero value of the monogamy score indicates the
multipartite nature of entanglement in the state31. Sim-
ilar features are also observed for the discord monogamy
score when site 1 is the nodal observer. It is to be noted
here that while δN1 saturates after 1.2 ps, δD1 exhibits
significant oscillations even after 2 ps. The features for
negativity and discord monogamy scores are broadly sim-
ilar in the case when the site 2 is considered to be the
nodal observer. A notable difference is that δN2 > 0
for all times, so that the dynamically evolved states are
monogamous for all times. See Fig. 1.

The story of entanglement sharability among the sites
of the FCN is not the same when the site 7 is considered
as the nodal observer. The evolved state, in this case, ex-
hibits both monogamous and non-monogamous behavior
with time with respect to entanglement. See Fig. 1. Ini-
tially, the negativity monogamy score oscillates between
positive and negative values and after some picoseconds,
the monogamy score vanishes. On the other hand the dis-
cord monogamy score with respect to site 7 as the nodal
observer is always negative. Interestingly therefore, the
discord monogamy scores of the evolved state is negative
irrespective of the site chosen as the nodal observer.

The population transfer for the clean case can be cal-
culated explicitly, and for large time, i.e. for t → ∞, it

is given by

psink(∞) =
1

N − 1
. (18)

For the 7-site network model, psink ≈ 0.1667. So, the
rest of the population remains in the network sites and
contributes to the quantum correlations and monogamy
scores, except for site 7, for which the bipartite quantum
correlations, NR7

and DR7
, as well as the monogamy

scores, δN7 and δD7, decay to zero after sufficient time.
This is because the population at the site (site 7) con-
nected to sink is zero after sufficient time. See Fig. 2.

2. Energy mismatch

In this subsection, we will consider the case when the
on-site energy of one of the sites (in our case, site 1) is
different from the other sites in the FCN. We have cho-
sen ~ω1 = 50 cm−1. It has been argued that the energy
mismatch at one or more sites introduces a “static disor-
der” in the FCN model and is responsible for an increase
in transportation efficiencies. We have seen that having
one or more sites with different energies, the transporta-
tion efficiency of the FCN channel can be made to unity,
even without any dephasing. We find that the behavior
of sharability of quantum correlations changes drastically
due to such energy mismatch. In particular, the negativ-
ity monogamy score, δN1, now oscillates between being
monogamous and non-monogamous for 0 ≤ t ≤ 1.4 (in
ps), and vanishes thereafter. See Fig. 3. In the clean
case, δN1 remains non-monogamous for all time. An-
other important change in behavior is that the quantum
correlations QRi

and the δQi for all i decay to zero with
time. This is in contrast to the behavior of these quan-
tities in the clean case, where many of them had con-
verged to non-zero steady values, though QR7

and δQ7

last longer in the clean case. Just like for the clean case,
the discord monogamy scores (δDi) are non-monogamous
throughout the dynamics.

3. Dephasing mismatch

Now let us consider the situation where one of the de-
phasing parameters is non-zero and rest are set to zero.
We choose γ1 = 50 cm−1. The on-site energies are all
set to zero. It is found that an increase in the dephasing
increases the transfer of population in this model. The
corresponding plots for quantum correlations are shown
in Fig. 4 for different sites as the nodal observers. Just
like in the clean case and in the case of energy mismatch,
the panels in the figure exhibits bipartite contributions
as well as monogamy scores of quantum correlations with
respect to the different nodal observers. The bipartite
contribution is initially high in the case of site 1 as nodal
observer, shown by a dashed red line in Fig. 4, and the
state of the whole system remains non-monogamous for
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FIG. 5. (Color online.) Monogamy scores in the FMO complex with site 1 as the nodal observer. The top row of panels is for
negativity as the quantum correlation measure, while the bottom row is for quantum discord. The three columns of panels are
(from left to right) for the initial state as |1〉〈1|, |6〉〈6|, and their equal mixture respectively. The line of zero ordinate, wherever
present is for pointing out the distinction between negative and positive values of the negativity and discord monogamy scores
with time. The qualitative behavior is very similar when the site 2 is used as the nodal observer. The ordinates in the top
panels are in ebits, while those in the bottom one are in bits.
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FIG. 6. (Color online.) Monogamy scores in the FMO complex with the site 3 as the nodal observer. The remaining descriptions
are the same as in Fig. 5, except that the qualitative features remain the same when the site 4 or the site 7 is used as the nodal
observer.

around 0.05 ps, and after that it becomes monogamous.
The negativity monogamy scores are positive for other
sites as nodal observers for almost all time except a short
period at the beginning. The discord monogamy scores
on the other hand remain negative for all the sites as
nodal observers (see Fig. 4). Unlike the clean case, the
discord monogamy score with site 1 as the nodal observer

decays faster than the one with site 7 as the nodal ob-
server. In both the cases, if the site 2 is taken as the
nodal observer quantum correlation sustain for an even
longer period. We will see that such analysis of quantum
correlations is useful to detect energy transfer pathways
in network models (especially in the FMO complex).
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FIG. 7. (Color online.) Monogamy scores in the FMO complex with the site 5 as the nodal observer in the first and second
rows, and with the site 6 as the nodal observer in the third and fourth rows. The remaining descriptions are the same as in
Fig. 5.

B. FMO complex

Having discussed a relatively simpler model of exci-
ton transportation in light-harvesting complexes, we are
now in a position to discuss the distribution of quantum
correlations among different sites in the FMO complex.
The system consists of 7 sites and is governed by Eq. (9)
with the Hamiltonian given in Eq. (10). The initial state
of the evolution is chosen to be among |1〉 〈1| , |6〉 〈6|,
and (|1〉 〈1| + |6〉 〈6|)/2, as the sites 1 and 6 are closer
to the receiver (antenna)15. It is to be noted here that
the Hamiltonian contains interaction terms between any
site, say the ith site, with all the other sites different
from the ith site. This may lead to non-zero bipartite
quantum correlations among distant sites of the FMO

complex. Quantities like Ni:R, NRi
=
∑N

j=1,j 6=i N(ρj:i),
and monogamy score for negativity are important to an-
alyze the underlying dynamics of entanglement in the
system (similarly for quantum discord). For example, if
Ni:R is greater than NRi

, the multipartite entanglement
are more prominent in the system during the dynamics.
Otherwise, it is the bipartite contributions that domi-
nate the dynamics. We will show that the dynamics of
quantum correlations helps us to indicate the possible
structure of the FMO complex.
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FIG. 8. (Color online.) Population of different sites of the FMO complex with time. The population at the ith site is denoted
as pi, for i = 1, . . . , 7, while that of the sink is denoted as ps. The vertical axes represent dimensionless parameters.

1. Dynamics of monogamy scores with sites 1 and 2 as

nodal observers

We present here our results regarding monogamy
scores calculated with sites 1 and 2, respectively, as nodal
observers. They are close to each other in the on-site en-
ergy scale (E1 = 215 cm−1 and E2 = 220 cm−1). We
observe that for |6〉 〈6| and (|1〉〈1|+ |6〉〈6|)/2 as the ini-
tial states and the sites 1 and 2 as nodal observers, the
monogamy score δNi is greater than the bipartite contri-
bution NRi

(i = 1, 2) for most of the time (see in Fig. 5
for these sites). Note that with these initial states, some
small fraction of the population remains in the sites 1 and
2 during the dynamics (see Fig. 8). The main contribu-
tion to NRi

for i = 1, 2 comes from sites 6 and 5, i.e.,
NRi

≈ Ni:6 +Ni:5 for i = 1, 2. For |1〉〈1| as initial state,
δNi < NRi

during the initial period in the dynamics, so
that we have a non-monogamous nature of the negativity
monogamy score there (see in Fig. 5). It is also observed
that after t > 0.2 ps, δNi > NRi

for the same initial
state (see Fig. 5). This has not been observed in the
cases when initial states were |6〉 and (|1〉〈1|+ |6〉〈6|)/2.
Specifically, for these initial states, δNi > NRi

for all
time. Note again, and in contrast to the cases when |6〉
and (|1〉〈1|+ |6〉〈6|)/2 were initial states, having |1〉〈1| as
the initial state, most of the population remains in the
sites 1 and 2 during the initial period of time, developing
much bipartite entanglement for those sites with other
sites in that period. In case of quantum discord, most of
the time, δDi is negative (non-monogamy), except when
the initial state is (|1〉〈1|+ |6〉〈6|)/2 in which case, quan-
tum discord is monogamous initially and then δDi os-
cillates between positive and negative values. Here, δDi

degrades quickly in comparison to δNi, while NRi
de-

grades faster as compared to DRi
.

2. When sites 3, 4, and 7 are nodal observers

Substantial similarity in behavior is obtained with re-
spect to multipartite quantum correlations as measured
by monogamy scores with 3, 4, and 7 as nodal observers.
For these sites, δNi > NRi

(i = 3, 4, 7) for most of the

FIG. 9. (Color online.) Schematic structure of the FMO com-
plex and the group classifications of different sites, as inferred
from the dynamics of quantum correlations.

time and for any choice of initial state among |1〉〈1|,
|6〉〈6|, and (|1〉〈1| + |6〉〈6|)/2 (see Fig. 6). These sites
are not very close to the antenna and therefore despite
a relatively long period of time, only a small fraction
of total population (≈ 10%) arrives at these sites (Fig.
8). There is correspondingly no substantial amount of bi-
partite entanglement sustained between any of these sites
with other sites. NRi

always remains at a lower value as
compared to Ni:R, for i = 3, 4, 7. The discord monogamy
score, δDi, on the other hand shows opposite behavior
as compared to negativity monogamy score correspond-
ing to these sites. Precisely, we find that DRi

> Di:R for
i = 3, 4, 7 for any choice of the said initial states. Just
like for the cases when the sites 1 and 2 are nodal ob-
servers, δDi degrades quickly as compared to δNi, while
DRi

shows more robustness as compared to NRi
.
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FIG. 10. (Color online.) Detecting the energy transfer route in the FMO complex when the initial excitation is at the site 1. At
any time, the bipartition collection {Di:R} for i = 1, 2, . . . , 7 is plotted on the vertical axes. The three panels are for different
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FIG. 11. (Color online.) Detecting the energy transfer route in the FMO complex when the initial excitation is at the site 6.
All other descriptions remain the same as in Fig. 10.

3. When sites 5 and 6 are nodal observers

Monogamy scores with sites 5 and 6 as nodal observers
show qualitative similarity in the dynamics, while being
opposite to that for sites 1 and 2. However, significant
peculiarities are obtained (e.g. in first row middle, third
row middle, and fourth row right of Fig. 7) that ne-
cessiates the separation of the measures considered here
with those in Sec. VB 2. The sites 5 and 6 are close to
each other in the on-site energy scale (E5 = 450 cm−1

and E6 = 330 cm−1). One of the peculiarities is that
for |6〉〈6| as the initial state, the negativity monogamy
δNi(i = 5, 6) has a lower value as compared to the bipar-
tite term NRi

during some initial period of time (≈ 1.4
ps). Note that initially, the sites 6 and 5 receive maxi-
mum fraction of the population (Fig. 8) and share a max-
imum amount of bipartite entanglement with the other
sites. It is also noted that when |6〉〈6| is used as the initial
state, δN6 initially shows non-monogamous nature. For
|1〉〈1| and (|1〉〈1|+ |6〉〈6|)/2 as initial states, δNi > NRi

for most of the time interval. Discord monogamy scores
(δDi) remain negative almost all the time in this case.
In this case too, δDi decays quickly as compared to δNi,
while DRi

lasts longer as compared to NRi
.

4. Classification of chromophore sites and structural

geometry of FMO complex

The above discussions on the dynamics of multipartite
as well as bipartite quantum correlations (δQi, Qi:R and
QRi

) with various sites have enabled us to classify the
seven sites into three distinct groups, namely Group I,
consisting of sites 1 and 2, Group II, with sites 5 and 6,
and Group III, with sites 3, 4, and 7. The qualitative
behaviors of the dynamics of quantum correlations (mul-
tiparty as well as bipartite ones) for different sites within
each group are the same, reflecting the fact that differ-
ent sites within the same group behave similarly in the
dynamics of the FMO complex. Recent studies predict
that sites 1 and 6 are the closest ones to the chlorosome
antenna15 and site 3 is coupled to the reaction center13.
This fact, obtained in Refs.13,15, along with our obser-
vation on the dynamics of multipartite as well as bipar-
tite quantum correlations strongly suggest the structural
arrangement of the FMO complex. Fig. 9 shows the
schematic structure of the FMO complex, highlighting
the group classifications, based on these observations,
which match with the results obtained from electron-
microscopic studies13,41. We will show that these group
classifications also support the primary energy transfer
pathway in the FMO complex, obtained in the next sec-
tion.
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FIG. 12. (Color online.) Detecting the energy transfer route in the FMO complex when the initial excitation is a mixture of
excitations at sites 1 and 6. All other descriptions remain the same as in Fig. 10.

VI. DETECTION OF ENERGY TRANSFER ROUTE IN

FMO COMPLEX

In the preceding section, we focused on the monogamy
scores and their constituent expressions to investigate the
multiparty quantum correlations in the fully-connected
and FMO networks and classified the chromophore sites
into three groups. In this section, we will consider collec-
tions of quantum correlations in bipartitions for the same
purpose. More precisely, we consider the FMO complex
and look at the time-evolution of the collections {Ni:R}
and {Di:R} as functions of time. We will thereby demon-
strate how the dynamics of collections can detect the
most probable excitation transfer pathways in the FMO
complex. Fig. 10 shows the dynamics of the quantum
discords in the bipartitions i : R for i = 1, 2, ..., 7 when
the initial excitation is at site 1. Upto 0.4 ps, the max-
imum between the Di:R at a particular time oscillates
between D1:R and D2:R, starting with D1:R for t = 0 ps.
From 0.4 ps to around 0.8 ps, D2:R becomes the maxi-
mum and after that D3:R swims up. Beyond that, D4:R

comes close to D3:R and both decay to zero at large time.
Such analysis tempted us to infer that the main energy
transfer pathway in the FMO complex, when the site 1
was initially excited, is 1 ↔ 2 ↔ 3 ↔ 4, i.e., from Group
I to Group III (Fig. 9), which is in consistent with earlier
findings6,20,25.

Similarly, Fig. 11 shows the dynamics of collections of
quantum discords in bipartition when the initial excita-
tion is at site 6. In a similar fashion, as when the initial
excitation was at site 1, the dynamics of {Di:R}, can de-
tect the energy transfer pathway, and which in this case
is 6 ↔ 5 ↔ 4 ↔ 3 (i.e., Group II to Group III (Fig. 9)).
Similar results can also be found with negativity {Ni:R}
and the monogamy score of negativity squared {δN2

i }.
For the initial state (|1〉 〈1| + |6〉 〈6|)/2, it is found that
both the routes, mentioned earlier, come into active con-
sideration (Fig. 12).

VII. CONCLUSION

We have presented an analysis of the dynamics of mul-
tipartite quantum correlations in light-harvesting com-
plexes modelled by the fully connected and the FMO
networks. Several interesting features are shown to be
present in the scenario of bipartite vs. multipartite cor-
relations in both the networks. It is been found that
in general, multiparty correlations are more prominent
and sustain longer than the bipartite ones for entangle-
ment, while the opposite is found to hold in the case of
quantum discord. The discord monogamy score is nega-
tive most of the time irrespective of the nodal observer
and the initial state indicating that the quantum state
of the FMO complex is similar in behavior to the W
state42. Another important feature is that the multipar-
tite monogamy score for quantum discord decays faster
than that for negativity, whereas the opposite happens
for the bipartite contributions therein. Based on the
dynamics of bipartite and multipartite correlations, we
have categorized the seven chromophore sites into three
distinct groups, which enabled us to predict the struc-
tural arrangement of different sites in the FMO complex.
Finally, we have shown that the dynamics of multipar-
tite quantum correlations, as quantified by collections of
quantum correlation in bipartition as well as monogamy
scores can detect the primary energy transfer pathways
in the FMO complex.
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