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Quantum discord is a measure of quantum correlations beyond the entanglement-separability
paradigm. It is conceptualized by using the von Neumann entropy as a measure of disorder. We
introduce a class of quantum correlation measures as differences between total and classical corre-
lations, in a shared quantum state, in terms of the sandwiched relative Rényi and Tsallis entropies.
We compare our results with those obtained by using the traditional relative entropies. We find that
the measures satisfy all the plausible axioms for quantum correlations. We evaluate the measures
for shared pure as well as paradigmatic classes of mixed states. We show that the measures can
faithfully detect the quantum critical point in the transverse quantum Ising model and find that they
can be used to remove an unquieting feature of nearest-neighbor quantum discord in this respect.
Furthermore, the measures provide better finite-size scaling exponents of the quantum critical point
than the ones for other known order parameters, including entanglement and information-theoretic
measures of quantum correlations.

I. INTRODUCTION

Characterization and quantification of quantum cor-
relation [1, 2] play a central role in quantum informa-
tion. Entanglement, in particular, has been successfully
identified as a useful resource for different quantum com-
munication protocols [3] and computational tasks [4].
Moreover, it has also been employed to study cooper-
ative quantum phenomena like quantum phase transi-
tions in many-body systems [5, 6]. However, in the re-
cent past, several quantum phenomena of shared systems
have been discovered in which entanglement is either ab-
sent or does not play any significant role. Locally in-
distinguishable orthogonal product states [7] (c.f. [8]) is
a prominent example where entanglement does not play
an important role. The role of entanglement is also un-
clear in the model of deterministic quantum computation
with one quantum bit [9–11]. Such phenomena moti-
vated the search for concepts and measures of quantum
correlation independent of the entanglement-separability
paradigm. Introduction of quantum discord [12, 13] is
one of the most important advancements in this direc-
tion and has inspired a lot of research activity [2]. It has
thereby emerged that quantum correlations, independent
of entanglement, can also be a useful ingredient in sev-
eral quantum information processing tasks [2]. Other
measures in the same direction include quantum work
deficit [14], measurement-induced nonlocality [15], and
quantum deficit [16] (see also [17]). These measures can
be generally considered to be quantum correlation mea-
sures within an “information-theoretic paradigm”.

In classical as well as quantum information theory, one
of the most important pillars is the framework of en-
tropy [18], which quantifies the ignorance or lack of in-
formation in the relevant physical system. Moreover, it
helps to understand information theory from a thermo-
dynamic perspective. Almost all the quantum correlation
measures incorporate entropic functions in various forms.
And, most of the quantum correlation measures are de-

fined by using the von Neumann entropy [19]. The op-
erational significance of von Neumann entropy has been
widely recognized in numerous scenarios in quantum in-
formation theory. Nonetheless, there are classes of gen-
eralized entropies like the Rényi [20] and Tsallis [21] en-
tropies, which are also operationally significant in im-
portant physical scenarios. Both the Rényi and Tsallis
entropies reduce to the von Neumann entropy when the
entropic parameter α → 1. For α ∈ (0, 1), the relative
Rényi entropy appears in the quantum Chernoff bound
which determines the minimal probability of error in dis-
criminating two different quantum states in the setting
of asymptotically many copies [22]. In Ref. [23], it was
shown that the relative Rényi entropy is relevant in bi-
nary quantum state discrimination, for the same range
of α. The concept of Rényi entropy has also been found
to be useful in the context of holographic theory [24]. It
has also been found useful in dealing with several con-
densed matter systems [25]. The significance of the Tsal-
lis entropy in quantum information theory has been es-
tablished in the context of quantifying entanglement [26],
local realism [27], and entropic uncertainty relations [28]
(see also [29]). Both the Rényi and Tsallis entropies have
important applications in classical as well as quantum
statistical mechanics and thermodynamics [30].

While there are important interpretational and oper-
ational breakthroughs that have been obtained by using
the concept of quantum discord, there are also several
intriguing unanswered questions and thriving controver-
sies [2, 31]. It is therefore interesting and important to
look back upon the conceptual foundations of quantum
discord and inquire whether certain changes, subtle or
substantial, in those concepts lead us to a better under-
standing of the controversies and the unanswered ques-
tions. Towards this aim, we introduce measures of the
total, classical, and quantum correlations of a bipartite
quantum state in terms of the entire class of relative
Rényi and Tsallis entropy distances. We show that the
measures satisfy all the required properties of bipartite
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correlations. We then evaluate the quantum correlation
measure for several paradigmatic classes of states. As an
application, we find that the quantum correlation mea-
sures, via relative Rényi and Tsallis entropies, can indi-
cate quantum phase transitions and give better finite-size
scaling exponents than the other known order parame-
ters. Importantly, we show that the conceptualization
of the measures in terms of Rényi and Tsallis entropies
solves an incommodious feature regarding the behavior
of nearest-neighbor quantum discord in a second order
phase transition.

There are at least two distinct ways in which the rel-
ative Rényi and Tsallis entropies are defined, and are
usually referred to as the “traditional” [32] and “sand-
wiched” [33, 34] varieties. The sandwiched varieties in-
corporate the noncommutative nature of density matri-
ces in an elegant way, and it is therefore natural to ex-
pect that it will play an important role in fundamen-
tals and applications. Indeed, the sandwiched relative
Rényi entropy has been used to show that the strong
converse theorem for the classical capacity of a quantum
channel holds for some specific channels [33]. Moreover,
an operational interpretation of the sandwiched relative
Rényi entropy in the strong converse problem of quan-
tum hypothesis testing is noted for α > 1 [35]. On the
other hand, the sandwiched relative Tsallis entropy has
recently been shown to be a better witness of entangle-
ment [36] than the traditional one [26]. The relative min-
and max-entropies [37–39], which can be obtained from
the sandwiched relative Rényi entropy for specific choices
of α, play significant roles in providing bounds on er-
rors of one-shot entanglement cost [40], on the one-shot
classical capacity of certain quantum channels [41], and
in several scenarios in non-asymptotic quantum informa-
tion theory [42]. In Ref. [43], connection of max- relative
entopy with frustration in quantum many body systems
has been established.

The paper is organized as follows. In Sec. II, we discuss
the relative Rényi and Tsallis entropies. In Sec. III, we
talk about the usual quantum discord. The Rényi and
Tsallis quantum correlations are defined in Sec. IV, where
we also derive their properties and evaluate them for
paradigmatic classes of bipartite quantum states. Some
special cases like the “linear”, “min-”, and “max-” quan-
tum discord are also formulated and discussed there. The
quantum correlation measure is then applied for detect-
ing quantum phase transition in a quantum many-body
system in Sec. V. We present a conclusion in Sec. VI.

II. RELATIVE RÉNYI AND TSALLIS
ENTROPIES

The Rényi [20, 44] and Tsallis [21, 45] entropies of a
density operator ρ are given respectively by,

SRα (ρ) =
1

1− α
log tr[ρα], (1)

STα (ρ) =
tr[ρα]− 1

1− α
. (2)

(3)

Here, the parameter α ∈ (0, 1) ∪ (1,∞), unless men-
tioned otherwise. All logarithms in this paper are with
base 2. Both the entropies reduce to the von Neumann
entropy [19], S(ρ) = −tr(ρ log ρ), when α → 1. In Ref.
[46], both the Rényi and Tsallis entropies are derived
from a generalized form of entropy and several interest-
ing properties of them are discussed. The Tsallis entropy
for α = 2 is called the linear entropy, SL(ρ), given by

SL(ρ) = 1− tr[ρ2]. (4)

The traditional quantum relative Rényi entropy between
two density operators ρ and σ is defined as

SRα (ρ||σ) =
log[tr

(
ρασ1−α)]

α− 1
. (5)

Note that all the quantum relative entropies, traditional
or sandwiched, discussed in this paper, are defined to be
+∞ if the kernel of σ has non-trivial intersection with the
support of ρ, and is finite otherwise. SRα (ρ||σ) reduces to
the usual quantum relative entropy [47], S(ρ||σ), when
α→ 1, where

S(ρ||σ) = −S(ρ)− tr(ρ log σ). (6)

Recently, a generalized version of the quantum relative
Rényi entropy (called “sandwiched” relative Rényi en-
tropy) has been introduced, by considering the non com-
mutative nature of density operators [33, 34]. It is defined
as

S̃Rα (ρ||σ) =
1

α− 1
log
[
tr
(
σ

1−α
2α ρσ

1−α
2α

)α]
. (7)

Note that S̃Rα (ρ||σ) also reduces to S(ρ||σ) when α→ 1.
In Ref. [33, 34, 48–50] several interesting properties of the
sandwiched Rényi entropy have been established. Here,
we mention some of them (for two density operators ρ
and σ) which we will use later in this paper.

1. S̃Rα (ρ||σ) ≥ 0.

2. S̃Rα (ρ||σ) = 0 if and only if ρ = σ.

3. For α ∈ [ 12 , 1) ∪ (1,∞) and for any completely
positive trace-preserving map (CPTPM) E , we

have the data processing inequality, S̃Rα (ρ||σ) ≥
S̃Rα (E(ρ)||E(σ)) [48].

4. S̃Rα (ρ||σ) is invariant under all unitaries U , i.e.,

S̃Rα (UρU†||UσU†) = S̃Rα (ρ||σ) .
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The traditional quantum relative Tsallis entropy be-
tween two density operators ρ and σ is defined as

STα (ρ||σ) =
tr
(
ρασ1−α)− 1

α− 1
. (8)

The sandwiched relative Tsallis entropy between two
density operators ρ and σ is given by [36]

S̃Tα (ρ||σ) =
tr
[(
σ

1−α
2α ρσ

1−α
2α

)α]
− 1

α− 1
. (9)

Both STα (ρ||σ) and S̃Tα (ρ||σ) also reduce to S(ρ||σ) when
α → 1. It can be easily verified that the properties (1-

4), satisfied by S̃Rα (ρ||σ) are also satisfied by S̃Tα (ρ||σ).
In this paper, we will predominantly use the sandwiched
version of both the relative entropies. Hereafter, by rel-
ative entropy, we will mean the sandwiched form of the
relative entropies, unless mentioned otherwise. Some of
the important special cases of the Rényi and Tsallis rel-
ative entropies are given below.

a. Relative Linear Entropy: At α = 2, S̃Tα (ρ||σ) gives the
relative linear entropy,

SL(ρ||σ) = S̃T2 (ρ||σ). (10)

The relative linear entropy has also been defined in the
literature by using the traditional version of the rela-
tive entropy at α = 2. However, in this paper, we will
use the relative linear entropy defined only through the
sandwiched relative entropy (at α = 2).

b. Relative Collision Entropy: At α = 2, S̃Rα (ρ||σ) has
been called the relative collision entropy [37],

SC(ρ||σ) = S̃R2 (ρ||σ). (11)

c. Relative Min- and Max-Entropies: In [51], it is

pointed out that at α = 1
2 , S̃Rα (ρ||σ) gives relative min-

entropy [39],

Smin(ρ||σ) = S̃R1
2

(ρ||σ). (12)

Note that

Smin(ρ‖σ) = −2 logF (ρ, σ), (13)

where F (ρ, σ) = ‖√ρ
√
σ‖1 = tr|√ρ

√
σ| is the fidelity

between the states ρ and σ. It is shown in [34], that the
relative max-entropy [38] is nothing but relative Rényi
entropy, when α→∞ i.e.

Smax(ρ‖σ) = S̃Rα→∞(ρ‖σ), (14)

where

Smax(ρ‖σ) = inf(λ : ρ ≤ 2λσ). (15)

III. QUANTUM DISCORD

Quantum discord is a measure of quantum correlations
of bipartite quantum states that is independent of the
entanglement-separability paradigm [12, 13]. It can be
conceptualized from several perspectives. An approach
that is intuitively satisfying, is to define it as the dif-
ference between the total correlation and the classical
correlation for a bipartite quantum state ρAB . The total
correlation is defined as the quantum mutual information
of ρAB , which is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (16)

where ρA and ρB are the local density matrices of ρAB .
The mutual information I(ρAB) can also be expressed in
terms of the usual quantum relative entropy as

I(ρAB) = min
{σA,σB}

S(ρAB ||σA ⊗ σB). (17)

This follows from the fact that

min
{σA,σB}

S(ρAB ||σA ⊗ σB)

= min
{σA,σB}

{−S(ρAB)− tr(ρA log σA)

− tr(ρB log σB)},

and the non-negativity of relative von Neumann entropy
between two density matrices. Therefore, the quantum
mutual information is the minimum usual relative en-
tropy distance of the state ρAB from the set of all com-
pletely uncorrelated states, σA⊗σB , whence we obtain a
ground for interpreting the quantum mutual information
as the total correlation in the state. Further evidence in
this direction is provided in [52–55]. The classical cor-
relation is given in terms of the measured conditional
entropy, and is defined as [12, 13]

J (ρAB) = S(ρA)− S(ρA|B), (18)

where

S(ρA|B) = min
{Pi}

∑
i

piS(ρA|i) (19)

is the conditional entropy of ρAB , conditioned on mea-
surements at B with rank-one projection-valued mea-
surements {Pi}. Here, ρA|i = 1

pi
trB [(IA ⊗ Pi)ρ(IA ⊗ Pi)]

is the conditional state which we get with probability
pi = trAB [(IA ⊗ Pi)ρ(IA ⊗ Pi)], where IA is the identity
operator on the Hilbert space of A. J (ρAB) can also be
defined in terms of the mutual information as

J (ρAB) = max
{Pi}
I(ρ′AB), (20)

where

ρ′AB =
∑
i

(IA ⊗ Pi)ρAB(IA ⊗ Pi). (21)
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The classical correlation can therefore be seen as the min-
imum relative entropy distance of the state ρ′AB from all
uncorrelated states, maximized over all rank-one projec-
tive measurements on B, and is given by

J (ρAB) = max
{Pi}

min
{σA,σB}

S(ρ′AB ||σA ⊗ σB). (22)

The maximization in Eq. (22) or in Eq. (18) ensure
that J (ρAB) quantifies the maximal content of classical
correlation present in the bipartite state ρAB . Hence,
if we subtract J (ρAB) from the total correlation, the
remaining correlation is “purely” quantum, and is defined
as [12, 13]

D(ρAB) = I(ρAB)− J (ρAB). (23)

IV. TOTAL, CLASSICAL, AND QUANTUM
CORRELATIONS AS RELATIVE ENTROPIES

In this section, we define the total, classical, and quan-
tum correlation in terms of the sandwiched relative Rényi
and Tsallis entropies. We discuss the properties of these
measures and evaluate them for several important fami-
lies of bipartite quantum states. In the final subsection,
we also compare the results with those obtained with tra-
ditional relative entropies.

A. Generalized Mutual Information as Total
Correlation

We define the generalized mutual information of ρAB
as

IΓα (ρAB) = min
{σA,σB}

S̃Γα (ρAB ||σA ⊗ σB). (24)

Here, the minimum is taken over all density matrices,
σA and σB . The relative entropy, although not a met-
ric on the operator space, is a measure of the distance
between two quantum states. S̃Γα (ρAB ||σA⊗σB) is a dis-
tance between the quantum state ρAB and a completely
uncorrelated state σA ⊗ σB . Here, and hereafter, the su-
perscript Γ is either R or T , depending on whether it is
the Rényi or Tsallis variety that is considered. The cor-
responding minimum distance can be interpreted as the
total correlation present in the system. The generalized
mutual information IΓα (ρAB) becomes equal to the usual
quantum mutual information I(ρAB) when α→ 1:

lim
α→1
IΓα (ρAB) = lim

α→1
min
{σA,σB}

S̃Γα (ρAB ||σA ⊗ σB).

= min
{σA,σB}

S(ρAB ||σA ⊗ σB)

≡ I (ρAB). (25)

B. Classical and Quantum Correlation

The Rényi or Tsallis version of the classical correlation,
denoted by J Γα (ρAB), is defined as

J Γα (ρAB) = max
{Pi}

min
{σA,σB}

S̃Γα (ρ′AB ||σA ⊗ σB), (26)

where ρ′AB is obtained by performing rank-1 projective
measurements as in the definition of original classical cor-
relation (in Eq. (21)).

Therefore, quantum correlation using generalized en-
tropies is defined as

DΓα (ρAB) = IΓα (ρAB)− J Γα (ρAB), (27)

with α ∈ [ 12 , 1) ∪ (1,∞). By using the data processing
inequality, which holds in this range of α, one can prove
the non-negativity of the quantum correlation [48]. We
now look into the properties of DΓα (ρAB), which provide
independent support for identifying the quantities as cor-
relation measures.
Property 1. IΓα ,J Γα ≥ 0 since S̃Γα (ρ||σ) ≥ 0.
Property 2. IΓα ,J Γα are vanishing, and therefore, DΓα =

0, for any product state, ρAB = ρA⊗ρB , as S̃Rα (ρ||ρ) = 0.
The proof for the vanishing of total correlations follows
by noting that the product state in the argument itself
is the state which gives the optimal relative entropy dis-
tance. A similar argument, but for the measured state,
holds for the classical correlation.
Moreover, DΓα = 0 for any quantum-classical state, i.e.
any state of the form

∑
i piρ

A
i ⊗ (|i〉〈i|)B , where {pi}

forms a probability distribution, {|i〉} forms an orthonor-
mal basis, and ρi are density matrices, when the measure-
ment is performed on the B part.
Property 3. IΓα ,J Γα remain invariant under local uni-

taries, which follow from the fact that S̃Rα (ρ||σ) is invari-
ant under all unitaries U . Hence, DΓα is also invariant
under local unitaries.
Property 4. IΓα ,J Γα are non increasing under local op-
erations, which follow from the data processing inequal-
ity, S̃Rα (ρ||σ) ≥ S̃Rα (E(ρ)||E(σ)), for any CPTPM E .
Property 5. DΓα is non-negative, as J Γα is upper
bounded by IΓα . The latter statement is due to the fact
that J Γα is obtained by performing a local measurement
on ρAB , and we know from the data processing inequality
that S̃Γα is monotone under CPTPM.

The classical correlation measure that we have defined
here, satisfies all the plausible properties for classical cor-
relation proposed in Ref. [12], except the one which
states that for pure states, the classical correlation re-
duces to the von Neumann entropy of the subsystems.
We wish to mention that this property is natural for the
measure which involves the von Neumann entropy, and is
not expected to be followed by the measures with gener-
alized entropies. This is because the definition of classical
correlation in terms of the relative entropy reduces nat-
urally to the one in terms of the conditional entropy in
the case of the von Neumann entropy.
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We use the convention that each of the definitions of
IΓα , J Γα and DΓα also incorporates a division by log 2 bits,
whence all the definitions can be considered to be dimen-
sionless.

We note here that there has been previous attempts
to define quantum discord by using Tsallis entropies [56–
58]. These definitions however do not always guaran-
tee positivity of the quantum discord, so defined. Also,
the corresponding total and classical correlations are not
necessarily monotonic under local operations. Ref. [59]
defines a quantum correlation by considering the differ-
ence between the Tsallis entropies of the post-measured
and pre-measured states. In Ref. [60], a Gaussian quan-
tum correlation is defined by using the Rényi entropy
for α = 2. After completion of the current paper, we
came to know about the work in Ref. [61], which states
that quantum discord can be defined using sandwiched
relative entropy, with a definition of quantum mutual in-
formation of a bipartitite quantum state ρAB , given by

I ′Rα (ρAB) = min{σB} S̃
R
α (ρAB ||ρA ⊗ σB) (cf. Eq. (24)).

The definition of mutual information used here and in
Ref. [62] (published version of this paper) use σA in place

of ρA, which makes I ′Rα , a special case of it. By “spe-
cial case”, it is meant that the optimization performed in
this work is over a class of states that contains the class
of states used in [61]. The Rényi quantum discord was
later defined by the authors of [61] in terms of generalized
conditional mutual information [63], an approach that is
very different from the one followed in this work.

C. Special Cases

1. Linear Quantum Discord

The relative linear entropy can be used to define the
“linear quantum discord”, given by

DL(ρAB) = IT2 (ρAB)− J T2 (ρAB), (28)

where IT2 (ρAB) and J T2 (ρAB) are defined by using the
relative linear entropy, given in Eq. (10).

2. Min- and Max-Quantum Discords

We also define the “min- and max-quantum discords”
by considering relative min- and max-entropies as

Dmin(ρAB) = IR1
2

(ρAB)− J R1
2

(ρAB), (29)

and

Dmax(ρAB) = IRα→∞(ρAB)− J Rα→∞(ρAB). (30)

D. Pure States

Any bipartite pure state of two qubits can be written,
using Schmidt decomposition, as

|ψAB〉 =

1∑
i=0

√
λi|iAiB〉, (31)

where λi are non-negative real numbers satisfying∑
i λi = 1. Since a bipartite pure state is symmetric,

it is expected that the state σA ⊗ σB , which minimizes
the relative entropy of |ψAB〉 with uncorrelated states,
is also symmetric. Numerical studies support this view.
This fact is not only true for pure bipartite states, but it
holds for all symmetric bipartitite states that are consid-
ered in this paper. Moreover, numerical results indicate
that for arbitrary |ψAB〉, the state σA ⊗ σB which gives
the minimum, is diagonal in the Schmidt basis of |ψAB〉.
To numerically evaluate the minimum relative entropy
distance of a bipartite quantum state ρAB from prod-
uct states, we begin by randomly generating bipartite
product states σA ⊗ σB . Then we calculate the relative
entropies between ρAB and all such σA ⊗ σB . The min-
imum of these relative entropies is considered to be the
minimum relative entropy distance. We repeat the pro-
cedure for a larger set of randomly chosen product states.
We terminate the process when the minimum does not
change within the required precision. Note that the nu-
merical study is performed without the assumptions that
the product state at which the minimum is attained is
symmetric and that it is diagonal in the Schmidt ba-
sis. We have followed the same procedure throughout
the paper to numerically evaluate the different correla-
tions. Therefore, the minimum σA or σB is given by

σA = σB = σ ≡
1∑
i=0

ai|i〉〈i|, (32)

where ai are non-negative real numbers satisfying∑
i ai = 1. With these assumptions, the total correla-

tion of |ψAB〉 is given by

IRα (|ψAB〉) = min
{a}

1

α− 1
log
[
λa

2(1−α)
α

+ (1− λ)(1− a)
2(1−α)
α

]α
, (33)

where a0 = a, a1 = 1− a, λ0 = λ, λ1 = 1− λ. The value
of a is obtained from the condition

1

a
=

(
λ

1− λ

) α
2−3α

+ 1, (34)

for α ∈ (2/3, 1) ∪ (1,∞). For 1
2 ≤ α ≤ 2

3 , the minimiza-
tion in Eq. (33) yields

IRα (|ψAB〉) =
α

α− 1
log
[

max{λ, 1− λ}
]
. (35)
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For pure states, numerical searches indicate that the clas-
sical correlation is independent of the measurement basis.
We consider measurement performed in the Schmidt ba-
sis for calculating the classical correlation of the original
state. Just like the total correlation in the original state,
the σA⊗σB , which minimizes the relative entropy of the
post-measurement state with uncorrelated states, is sym-
metric, since we perform the projective measurement in
the Schmidt basis. Moreover, from numerical results, we
find that σA ⊗ σB is again diagonal in the Schmidt ba-
sis of |ψAB〉. The Rényi classical correlation of |ψAB〉 is
therefore given by

J Rα (|ψAB〉) = min
{a}

1

α− 1
log
[
λαa2(1−α)

+ (1− λ)α(1− a)2(1−α)
]
. (36)

The value of a is obtained from the condition

1

a
=

(
λ

1− λ

) α
1−2α

+ 1, (37)

for α ∈ (1/2, 1) ∪ (1,∞).
The linear quantum discord for |ψAB〉 is given by

DL(|ψAB〉) =
(√
λ+
√

1− λ
)4 − (√λ+

√
1− λ

)2
. (38)

We find that the min-quantum discord is vanishing for
every two-qubit pure state. We believe that this is a
peculiarity of some elements of the class of information-
theoretic quantum correlation measures that are defined
according to the premise that subtracting classical corre-
lations from total correlations will produce quantum cor-
relations. This may perhaps be paralleled with the fact
that although it was perhaps considered desirable that
all entanglement measures should possess the property
that they should vanish for separable states and only for
separable states, the discovery of bound entangled states
[64] led us to the fact that distillable entanglement [65]
can vanish for certain entangled states as well. It should
be noted that in contradistinction to distillable entan-
glement, the min-quantum discord can be non-zero for
certain separable states, indicating that at least in this
sense, the space of information-theoretic quantum corre-
lations is richer than the space of entanglement measures.

The max-quantum discord for |ψAB〉 is given by

Dmax(|ψAB〉) = log

[
( 3
√
λ+ 3
√

1− λ)3

(
√
λ+
√

1− λ)2

]
. (39)

In Fig. 1, we plot the Rényi quantum correlation of
|ψAB〉 for various values of α. We have also performed the
entire calculations for the Tsallis discord and find that its
behavior is qualitatively similar to the Rényi discord. In
Fig. 2, we have exhibited the Tsallis discord for bipartite
pure states, which clearly indicate the similarity between
the two discords. In the rest of the paper, we will only
plot the Rényi discord.

α→∞
α=10
α=2
α=1.01
α=2/3
α=0.6
α=0.5

DR
α

0

0.2

0.4

0.6

0.8

1

λ
0 0.2 0.4 0.6 0.8 1

FIG. 1. (Color online.) Rényi quantum correlation, DRα , with

respect to λ, of |ψAB〉 =
√
λ|00〉+

√
(1− λ)|11〉, for different

α. Both axes are dimensionless.

α=2
α=1.01
α=2/3
α=0.6
α=0.5

DT
α

0

0.2

0.4

0.6

0.8

1

λ
0 0.2 0.4 0.6 0.8 1

FIG. 2. (Color online.) Tsallis quantum correlation, DTα , with

respect to λ, of |ψAB〉 =
√
λ|00〉+

√
(1− λ)|11〉, for different

α. Both axes are dimensionless. The values of the Tsallis
quantum correlation are normalized, whenever possible, so
that the maximal quantum correlations are of unit value.

E. Mixed States: Some Examples

(i) Werner States: Consider the Werner state, given
by

ρW = p|ψ−〉〈ψ−|+ (1− p)I
4
,
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where |ψ−〉 = 1√
2
(|01〉 − |10〉), I denotes the identity

operator on the two-qubit Hilbert space, and 0 ≤ p ≤ 1.
Suppose the σminA and σminB are the optimal σA and σB
which minimizes the relative Rényi entropy of ρW with
uncorrelated states. Using the fact that the Werner state
is symmetric and local unitarily invariant, we choose

σminA = σminB = σ ≡ a0|0〉〈0|+ a1|1〉〈1|, (40)

where ai are non-negative real numbers satisfying∑
i ai = 1. Here we have assumed that σA ⊗ σB , which

minimizes the relative entropy of ρW with uncorrelated
states, is symmetric. Detail numerical study support our
assumption, as mentioned in Sec. IV D. It is now possi-
ble to perform the minimization for α ∈ [ 23 , 1) ∪ (1,∞).
In this range, the relative Rényi entropy distance corre-
sponding to the total correlations is minimum for a0 =
a1 = 1

2 . Therefore, the Rényi total correlation of the

Werner state for α ≥ 2
3 (α 6= 1) is given by

IRα (ρW ) = 2+
1

α− 1
log

1

4α
[
(1+3p)α+3(1−p)α

]
. (41)

Just like for the case of pure bipartite states, the Rényi
classical correlation is again independent of measurement
basis, as is expected from the property of rotational in-
variance of the Werner state.

Numerical observations also suggest that for α ≥
1
2 (α 6= 1) and for any p, the relative Rényi entropy is

minimum at σA⊗σB = I
4 for the post-measurement state

corresponding to the Werner state. So the Rényi classical
correlation, in this range of α, is given by

J Rα (ρW ) = 2+
1

α− 1
log

1

4α
[
2(1+p)α+2(1−p)α

]
. (42)

Hence, the Rényi quantum correlation of the Werner
state for α ≥ 2

3 (α 6= 1) is given by

DRα (ρW ) =
1

α− 1
log

[
(1 + 3p)α + 3(1− p)α

2(1 + p)α + 2(1− p)α

]
. (43)

For 1
2 ≤ α <

2
3 , we find the Rényi quantum correlation

for the Werner states by numerical evaluation. In Fig. 3,
we exhibit the Rényi quantum correlation for the Werner
states for different values of α.

The Rényi quantum correlation is maximum for the
Werner state at p = 1 for α ≥ 2

3 . The singlet state, and
states that are local unitarily connected with it, is there-
fore maximally Rényi quantum correlated in that range
of α, among the Werner states. However, for 1

2 ≤ α <
2
3 ,

the Bell states are not the maximally Rényi quantum cor-
related states. In this range of α, we get maximal quan-
tum correlation among the Werner states, for a value of p
that is different from unity. For example, for α = 0.6, we
find that the state, ρW , with mixing parameter p ≈ 0.96
has the maximal quantum correlation among all Werner
states. For α = 1/2, the same is at p ≈ 0.88. For
α = 1

2 , i.e., for min-entropy, the singlet has zero quan-
tum correlation. Indeed, all pure states have vanishing

α→∞
α=10
α=2
α=1.01
α=2/3
α=0.6
α=0.5

DR
α

0

0.2

0.4

0.6

0.8

1

p
0 0.2 0.4 0.6 0.8 1

FIG. 3. (Color online.) Rényi quantum correlation, DRα , with
respect to p, of the Werner state, ρW = p|ψ−〉〈ψ−|+(1−p) 1

4
I,

for different α. Both axes are dimensionless.

min-quantum discord. We will visit this issue again in
Sec. IV F.

The linear quantum discord for the Werner state is

DL(ρW ) =
1

4

[
(1 + 3p)2 + (1− p)2 − 2(1 + p)2

]
. (44)

The max-quantum discord can also be calculated simi-
larly for the Werner state and is given by

Dmax(ρW ) = log

[
(1 + 3p)

(1 + p)

]
. (45)

We have numerically evaluated the min-quantum discord
for the Werner state (see Fig. 3).
(ii) Bell Mixture: We consider a mixture of two Bell
states, given by

ρBM = p|φ+〉〈φ+|+ (1− p)|φ−〉〈φ−|,

where |φ+〉 = 1√
2
(|00〉+ |11〉), |φ−〉 = 1√

2
(|00〉−|11〉) and

0 ≤ p ≤ 1. Numerical observations suggests that

IΓα (ρBM ) = S̃Γα

(
ρBM ||

I

4

)
,

for α ≥ 2
3 (α 6= 1). Hence, in this range of α,

IRα (ρBM ) = 2 +
1

α− 1
log
[
pα + (1− p)α

]
. (46)

We have found numerically that if one performs mea-
surement in the {|0〉, |1〉} basis, the relative entropy
of the post-measurement state with I

4 gives the Rényi
classical correlation for the entire range of α, i.e., for
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α ∈ ( 1
2 , 1)∪ (1,∞), and it is equal to unity for any p and

α. Hence for α ≥ 2
3 (α 6= 1),

DRα (ρBM ) = 1 +
1

α− 1
log [pα + (1− p)α] . (47)

The linear quantum discord for this state is given by

DL(ρBM ) = 8(p2 − p) + 2. (48)

Similarly,

Dmax(ρBM ) = 1 + log [max{p, 1− p}] . (49)

In Fig. 4, the Rényi quantum correlations for ρBM is
depicted for different values of α.

α→∞
α=10
α=2
α=1.01
α=2/3
α=0.6
α=0.5
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α

0

0.2

0.4

0.6

0.8

1

p
0 0.2 0.4 0.6 0.8 1

FIG. 4. (Color online.) Rényi quantum correlation, DRα , with
respect to p, of the Bell mixture, ρBM = p|φ+〉〈φ+| + (1 −
p)|φ−〉〈φ−|, for different values of α. Both axes are dimen-
sionless.

(iii) Mixture of Bell state and a Product State:
Consider the state given by

ρBN = p|φ+〉〈φ+|+ (1− p)|00〉〈00|.

The Rényi quantum correlation is calculated numerically,
and in Fig. 5, we plot it for ρBN , for different values of
α.

F. Sandwiched vs Traditional Relative Entropies

Until now, in this section, we have used the sandwiched
relative entropy distances to define the Rényi and Tsal-
lis quantum correlations. We now briefly consider the
traditional variety for defining quantum correlation, and
discuss some of its implications. In the preceding sub-
sections, we have observed anomalous behavior of the

α=50
α=10
α=2
α=1.01
α=2/3
α=0.6
α=0.5

DR
α

0

0.2

0.4

0.6

0.8

1

p
0 0.2 0.4 0.6 0.8 1

FIG. 5. (Color online.) Rényi quantum correlation, DRα , with
respect to p, of ρBN = p|φ+〉〈φ+|+(1−p)|00〉〈00|, for different
α. Both axes are dimensionless.

Rényi quantum correlation in the range 1
2 ≤ α < 2

3 for
pure states, as well as in certain families of mixed states
in the neighborhood of pure states. In these cases, we
have, e.g., seen that the Bell states are not the maxi-
mally Rényi quantum correlated state for α < 2

3 and at

α = 1
2 , i.e, for the min- entropy, all pure states have

vanishing quantum correlations.

We can also define quantum correlations with the tra-
ditional relative Rényi and Tsallis entropies. The prop-
erties (1-4) discussed in Sec. II, are also followed by both
the traditional relative entropies [66], but the data pro-
cessing inequality holds for α ∈ [0, 1)∪(1, 2] [67]. We can
therefore define quantum correlation with traditional rel-
ative entropy distances for this range of α. If we consider
the traditional relative entropies, then we do not see any
anomalous behavior of the Rényi quantum correlation.
But from the traditional version of the relative Rényi en-
tropy, we do not get the min- entropy. Moreover, in [35],
the authors have argued that the sandwiched relative
Rényi entropy is operationally relevant in the strong con-
verse problem of quantum hypothesis testing for α > 1,
but for α < 1, the traditional version is more relevant
from an operational point of view. The anomalous be-
havior of the quantum correlation with the sandwiched
relative entropy distances seems to indicate that to de-
fine quantum correlation for α < 1, the more appropriate
candidates are the traditional relative entropies. Here we
discuss about the traditional Rényi quantum correlation
for two-qubit pure states and the Werner state.
(i) Pure States: Numerical observations similar to
the case with the sandwiched variety, give us that the
total correlation of a two-qubit pure state, |ψAB〉 =
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1∑
i=0

√
λi|iAiB〉, for traditional relative Rényi entropy,

with α ∈ ( 1
2 , 1), is given by

ITRα (|ψAB〉) = min
{a}

1

α− 1
log
[
λa2(1−α)

+ (1− λ)(1− a)2(1−α)
]
, (50)

where 0 ≤ a ≤ 1, and the value of a is obtained from the
condition

1

a
=

(
λ

1− λ

) 1
1−2α

+ 1. (51)

The classical correlation in the traditional case in com-

α=0.99
α=0.75
α=0.50

DTR
α
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0.4
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0.8
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λ
0 0.2 0.4 0.6 0.8 1

FIG. 6. (Color online.) Traditional Rényi quantum cor-

relation, DTRα , with respect to λ, of |ψAB〉 =
√
λ|00〉 +√

(1− λ)|11〉 for different α. Both axes are dimensionless.

puted numerically. The numerical computation is per-
formed by the same numerical recipe as mentioned in
Sec. IV D.

In Fig. 6, we have plotted theDTRα (|ψAB〉), for different
values of α. No anomalous behavior can be seen, and
the maximally entangled states have maximal quantum
correlations.
(ii) Werner States: Like in the sandwiched version,
exploiting the rotational invariance and symmetry of the
Werner state, it can be shown analytically that the total
correlation of the Werner state for the traditional relative
Rényi entropy, for α ∈ [ 12 , 1), is given by

ITRα (ρW ) = 2+
1

α− 1
log

1

4α
[
(1+3p)α+3(1−p)α

]
. (52)

The classical correlation of the Werner state is also mea-
surement basis independent for the traditional version,

like the sandwiched one. We get that the classical corre-
lation, in this range, is given by

J TRα (ρW ) = 2+
1

α− 1
log

1

4α
[
2(1+p)α+2(1−p)α

]
. (53)

The forms of the total and classical correlations, in this

α=0.99
α=0.75
α=0.50

DTR
α

0

0.2

0.4

0.6

0.8
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p
0 0.2 0.4 0.6 0.8 1

FIG. 7. (Color online.) Traditional Rényi quantum corre-
lation, DTRα , with respect to p of the Werner state, ρW =
p|ψ−〉〈ψ−|+ (1− p) 1

4
I, for different α. Both axes are dimen-

sionless.

case, are equivalent to those in the sandwiched version.
But here, the range of α is different. Hence, for α ∈ [ 12 , 1),
the traditional Rényi quantum correlation for the Werner
state is given by

DTRα (ρW ) =
1

α− 1
log

[
(1 + 3p)α + 3(1− p)α

2(1 + p)α + 2(1− p)α

]
. (54)

In Fig. 7, we have plotted the DTRα (ρW ), for different
values of α.

V. APPLICATION: DETECTING CRITICALITY
IN QUANTUM ISING MODEL

In this section, we show that the Rényi and Tsallis
quantum correlations can be applied to detect coopera-
tive phenomena in quantum many-body systems. Let us
consider a system of N quantum spin-1/2 particles, de-
scribed by the one-dimensional quantum Ising model [68].
Such models can be simulated by using ultracold gases
in a controlled way in the laboratories [5, 69], and is also
known to describe Hamiltonians of materials [70]. The
Hamiltonian for this system is given by

H = J

N∑
i=1

σxi σ
x
i+1 + h

N∑
i=1

σzi , (55)
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where J is the coupling constant for the nearest neigh-
bor interaction, σ’s are the Pauli spin matrices, and h
represents the external transverse magnetic field applied
across the system. Periodic boundary condition is as-
sumed. The Hamiltonian can be diagonalized by apply-
ing Jordan-Wigner, Fourier, and Bogoliubov transforma-
tions [68]. At zero temperature, it undergoes a quantum
phase transition (QPT) driven by the transverse mag-

netic field at λ ≡ h

J
= λc ≡ 1 [68]. Such a transi-

tion has been detected by using different order parame-
ters [68, 71], including quantum correlation measures like
concurrence [72], geometric measures [73–75], and quan-
tum discord [76].

We now investigate the behavior of the Rényi and
Tsallis quantum correlations of the nearest neighbor
density matrix (reduced density matrix of two neigh-
boring spins) at zero temperature, near the quantum
critical point. Note that we have reverted back to the
sandwiched version of the relative entropies in this
section. The nearest neighbor bipartite density matrix,
ρAB , of the ground state of the Hamiltonian given by
Eq. (55), represented by ρAB , can be written [68] in
terms of the diagonal two-site correlators and the average
magnetization in z-direction. The density matrix, ρAB ,
in the thermodynamic limit of N →∞, is given by

ρAB =


α+ +

Mz

2
0 0 β−

0 α− β+ 0
0 β+ α− 0

β− 0 0 α+ −
Mz

2


where α± =

1

4
(1 ± Tzz), β± =

Txx ± Tyy
4

with

Tij = tr(σi ⊗ σjρAB) and Mz = tr(IA ⊗ σzρAB). The
correlations and transverse magnetization, for the
zero-temperature state, are given by [68]

T xx(λ) = G(−1, λ),

T yy(λ) = G(1, λ), (56)

T zz(λ) = [Mz(λ)]2 −G(1, λ)G(−1, λ),

where

G(R, λ) =
1

π

∫ π

0

dφ
(sin(φR) sinφ− cosφ(cosφ− λ))

Λ(λ)

(57)

and

Mz(λ) = − 1

π

∫ π

0

dφ
(cosφ− λ)

Λ(λ)
.

(58)

Here

Λ(x) =
{

sin2 φ + [x− cosφ]2
} 1

2 , (59)

and

λ =
h

J
. (60)

 0
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FIG. 8. (Color online.) Detecting quantum phase transitions
with Rényi quantum correlations. Rényi quantum correlation,
DRα , with respect to λ, of the nearest neighbor bipartite den-
sity matrix at zero temperature, for different values of α. The
legends indicate the values of α. Both axes are dimensionless.

Note that λ is a dimensionless variable. The Rényi and
Tsallis quantum correlations are calculated for the state,
ρAB , for different values of α. In Fig. 8, we plot the Rényi
quantum correlation as a function of λ for different values
of α. QPT corresponds to a point of inflexion in the DΓα
versus λ curve and

dDΓα
dλ diverges there. We claim that

the derivatives of the Rényi (and the Tsallis) discords do
diverge at the critical point. The seeming finiteness of the
derivative at the critical point has to do with the finite
spacing of the variable λ. To see this, we perform a finite-
size scaling analysis of the full width at half maxima, of
the peak tat is obtained around the critical point for finite
size (see Fig. 9).

This feature is distinctly different from the variation
of the derivative of the quantum discord with respect
to λ around the QPT point, which exhibits a point of
inflexion at λ = 1 [76] (cf. [77]). It is only the second
derivative of quantum discord with respect to λ, which
diverges at the QPT point. This is an uncomfortable
and intriguing feature of quantum discord, and is not
shared by e.g. the concurrence at the same quantum
critical point [72]. Therefore it is advantageous to use the
Rényi and Tsallis quantum correlations to detect phase
transitions and other collective phenomena in quantum
many body systems, in comparison to quantum discord.

Finite-size scaling : The Rényi and Tsallis quantum
correlations are shown in Fig. 8 to detect phase tran-
sitions in infinite systems. Ultracold gas realization of
such phenomena, however, can simulate the correspond-
ing Hamiltonian for a finite number of spins [78]. The
quantum Ising model, which has been briefly described
earlier in this section, can also be solved for finite-size sys-
tems [68]. We calculate the quantum correlations of near-
est neighbor spins for finite spin chains using both the
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FIG. 9. (Color online.) Scaling analysis of full-width at half
maxima, δN , for DR2 . Both axes are dimensionless.

Tsallis and Rényi entropies. We find that the quantum
correlations detect the transition in finite-size systems
too. Again, the transition point corresponds to points
of inflexion in the DΓα versus λ curves, and narrow bell-

shaped peaks in the
dDΓα
dλ versus λ curves, for different

values of N . The bell-shaped curves become more nar-
row and peaked with the increase of number of spins. We
perform a finite-size scaling analysis of full-width at half

maxima, δN , of the
dDΓα
dλ versus λ curves, and the scaling

exponent is e.g. -0.36 for DR2 (see Fig. 9). The expo-
nent is a measure of the rapidity with which the narrow
bell-shaped peak tends to show a divergence with the in-
crement in system size N . The log− log scaling between
the size, N , and the width, δN , clearly indicates diver-
gence of the derivative at infinite N .

We also perform finite-size scaling analyses of the λNc ,
the value of λ for which the derivatives of the Rényi (or
Tsallis) quantum correlations with respect to λ has a
maximum for a system of N spins, for several different
values of α, and obtain the corresponding scaling expo-
nents. The exponent is a measure of the rapidity with
which the QPT point, λNc , in a finite size system of size
N , approaches the QPT point, λc, of the infinite system,
as a function of N .

TABLE I. The scaling exponents for both DRα and DTα for
some values of α.

α DRα DTα
2.0 -3.45 -3.74
10.0 -1.28 -0.87
50.0 -1.25 -2.74
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FIG. 10. (Color online.) Scaling analysis of Rényi quan-
tum correlation, DRα , for different values of α, in the one-
dimensional quantum Ising model. The legends indicate the
values of α. Both axes are dimensionless.
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FIG. 11. (Color online.) Scaling analysis of Tsallis quan-
tum correlation, DTα , for different values of α, in the one-
dimensional quantum Ising model. The legends indicate the
values of α. Both axes are dimensionless.

Table I exhibits the scaling exponents for both DRα and
DTα for some values of α. It is found that for α = 2,
the scaling exponents are much higher for both DRα and
DTα than any other known measures. In particular, the
scaling exponents for transverse magnetization, fidelity,
concurrence, quantum discord, and shared purity are re-
spectively -1.69, -0.99, -1.87, -1.28, and -1.65 [72, 79–82].

VI. CONCLUSIONS

Quantum discord is a quantum correlation measure,
belonging to the information-theoretic paradigm, and it
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has the potential to explain several quantum phenom-
ena that cannot be explained by invoking the concept
of quantum entanglement. In this paper, we have de-
fined quantum correlations with generalized classes of en-
tropies, viz. the Rényi and the Tsallis ones. The usual
quantum discord incorporates the von Neumann entropy
in its definition. We first defined the generalized mu-
tual information in terms of sandwiched relative entropy
distances. Using this definition of generalized mutual in-
formation, we introduced the generalized quantum cor-
relations, and have shown that they fulfill the intuitively
satisfactory properties of quantum correlation measures.
We have evaluated the generalized quantum correlations
for pure states and some paradigmatic classes of mixed
states.

As an application, we find that the generalized quan-
tum correlations can detect quantum phase transitions
in the transverse quantum Ising model. Interestingly,
a finite-size scaling analysis reveals that the scaling ex-
ponents obtained for the generalized quantum correla-

tions can be significantly higher than the usual quan-
tum discord as well as other order parameters, like trans-
verse magnetization and concurrence, at the same crit-
ical point. This aspect can lead to the usefulness of
these measures in quantum simulators in ultracold gas
experiments, potentially realizing finite versions of quan-
tum spin models. Moreover, while the derivative of the
quantum discord provides only a point of inflexion at the
quantum critical point, the derivative of the generalized
quantum correlations defined here signals the same crit-
ical point via a divergence.
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