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We investigate the effect of a unidirectional quenched random field on the anisotropic quantum
spin-1/2 XY model, which magnetizes spontaneously in the absence of the random field. We adopt
mean-field approach to show that spontaneous magnetization persists even in the presence of this
random field but the magnitude of magnetization gets suppressed due to disorder, and the system
magnetizes in the directions parallel and transverse to the random field. Our results are obtained by
analytical calculations within perturbative framework and by numerical simulations. Interestingly,
we show that it is possible to enhance a component of the magnetization in presence of the disorder
field provided we apply an additional constant field in theXY plane. Moreover, we derive generalized
expressions for the critical temperature and the scalings of the magnetization near the critical point
for the XY spin system with arbitrary fixed quantum spin angular momentum.

PACS numbers:

I. INTRODUCTION

Disorder is ubiquitous in solid state materials. The
effectd of disorder are often non-intuitive, and hence
have generated a lot of attention in condensed-matter
physics1–4. Disorder can currently also be engineered
in a controlled way via ultracold atoms trapped in op-
tical lattices subjected to an additional, e.g. optical
speckle potential4. Disordered systems are often en-
dowed with nontrivial properties, dramatically different
from those of their homogeneous counterparts. The novel
quantum phases5,6 and unique phenomena, such as An-
derson localization7, dynamical many-body localization8

and presence/absence of thermalization9, and high Tc

superconductivity10 are some of the prominent exam-
ples. Quenched disorder in type II superconductors have
been investigated by using Ginzburg-Landau theory to
uncover “glassy” properties in the system11. In partic-
ular, considerable efforts have been dedicated to under-
standing the effects of disorder in spin models, both clas-
sical and quantum12–16.

In classical systems with continuous symmetry, it
has been shown that a random field with the symme-
try of the system may cause significant changes in its
properties17,18. A small random magnetic field of this
kind can destroy magnetization in a classical spin system
at any temperature, including zero-temperature. E.g.,
two-dimensionalXY and Heisenberg models do not mag-
netize in presence of random fields with SO(2) and SO(3)
symmetries respectively13,17 (see also18 for the analogous
effect in systems with discrete symmetry). The effect
prevails in higher dimensions as long as the random field
exhibits the corresponding symmetry13. However, in ab-
sence of appropriate symmetry, these systems exhibit
spontaneous magnetization14,15.

Despite the difficulty in dealing with spontaneous mag-
netization and other system characteristics in quantum
disordered systems, many important results have been
obtained. A quantum Hall nematic phase has been pre-
dicted in a zero temperature two-dimensional electron
system that is unstable to weak disorder19,20. Collective
properties of magnetic impurities on a topological surface
were studied both theoretically21 and experimentally22.
Experimental and theoretical investigations in solid state
systems have revealed that alloy disorder can reduce the
Curie temperature in the system23. Arbitrarily weak in-
terparticle interactions were shown to destabilize the sur-
face states of topological superconductors in the presence
of non-magnetic disorder24. The critical behavior and ef-
fective exponents in ferromagnetic quantum phase tran-
sitions of disordered systems were derived in Ref.25.

Recently, a mean-field classical spin model with SO(n)
symmetry was considered and its spontaneous magneti-
zation was investigated in presence of unidirectional ran-
dom fields15. The natural question is how a symmetry
breaking random field affects these systems in the quan-
tum limit. As already mentioned before, this question
is particularly relevant due to the current accessibility
of disordered quantum spin models in experiments4. If
we restrict ourselves to the XY model with a random
field, and to one dimension, then such quantum sys-
tem of a moderately large size can be investigated using
the Jordan-Wigner technique26. However, higher dimen-
sional quantum spin models remain intractable due to
the lack of analytical and numerical techniques, even for
ordered systems. We work within the mean-field (MF)
approximation which is often effective in capturing sys-
tem’s properties qualitatively. Numerical schemes like
exact diagonalization are usually inefficient for even mod-
erately large systems, due to the exponential growth of
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the dimension of the system’s Hilbert space. Metasta-
bility effects and slow relaxation rates, usually present
in disordered systems, make other numerical simula-
tion techniques such as density-matrix renormalization
group, Monte-Carlo approach difficult to apply, particu-
larly in higher-dimensional lattice systems with higher-
dimensional spins. The mean-field approach essentially
liberates one from these immediate challenges allowing
for a detailed analysis, that enables us to answer some
of the key questions. Of course, the price to pay is that
the mean field approach is not expected to describe the
details of the critical behavior precisely, except in high
dimensions.

In this work, we consider the quantum spin-1/2
XY model with anisotropic interaction in presence of
a unidirectional quenched random field. The purely
isotropic case, i.e., the quantum XY model with van-
ishing anisotropy parameter and vanishing disorder, ex-
hibits a spontaneous magnetization which has circular
symmetry. The anisotropy breaks the continuous sym-
metry even for the pure system. The pure spin-1/2 XY
system magnetizes below a certain critical temperature.
This system still magnetizes when a random field is in-
troduced at a critical temperature which is higher than
in the system without disorder. We show by means of
numerical as well as perturbative analysis that the sys-
tem now magnetizes in specific directions, which is either
along the parallel or the perpendicular directions to the
random field. The critical temperature in both cases de-
creases with the increase of the random field strength.
We find that the critical temperature to magnetize in
transverse and parallel directions show opposite behavior
with respect to the anisotropy in the system. Specifically,
with the increase of anisotropy, the critical temperature
corresponding to the transverse magnetization increases,
while the opposite happens for parallel magetization. It
is important to mention that for vanishing anisotropy
parameter, the continuous symmetry of the pure XY
system is broken by the introduction of an arbitrarily
small random field. We also present general expressions
of the scalings of critical temperature of magnetization
for the quantum XY spin systems with arbitrary half-
integer and integer spins.

In addition, adding a constant magnetic field along
with the random field, we find that the component of the
magnetization perpendicular to the random field gets en-
hanced due to the disorder, an effect known as “random-
field-induced order” or “order from disorder”, which has
also been reported for several other models16,27.

The rest of the paper is arranged as follows. In Sec. II,
we introduce the spin-1/2 quantum XY model in pres-
ence of the random field, and subsequently derive critical
scaling of the magnetization via perturbative approach.
We also discuss numerical results obtained within the MF
approximation. In Sec. III, we demonstrate, both numer-
ically and analytically, the order from disorder phenom-
ena under the influence of an additional constant field.
In Sec. IV, we derive the generalized expressions for the

case of arbitrary integer and half-integer spins. Finally,
we conclude in Sec. V.

II. QUANTUM SPIN-1/2 XY MODEL IN A
RANDOM FIELD

We consider the quantum spin-1/2XY model in a ran-
dom field. Our aim is to study the effect of the random
field on the magnetization as a function of temperature,
and to find the scaling of the magnetization around the
critical temperature. In the following subsection, we in-
troduce the system and the mean-field approximation.

A. The system and its mean-field treatment

The Hamiltonian of the ferromagnetic quantum XY
model is given by

HXY = Hint +Hext, (1)

where

Hint = −
N
∑

|i−j|=1

[Jxσ
x
i σ

x
j + Jyσ

y
i σ

y
j ]. (2)

The coupling constants, Jα, are assumed to be positive.
They can be further expressed in terms of an anisotropy
parameter, γ, as Jx = J(1 + γ) and Jy = J(1 − γ). The
indices, i and j denote the sites of an arbitrary d dimen-
sional lattice and σα

i , α = x, y are the Pauli matrices on
the ith site. The part of the Hamiltonian in Eq. (1) due
to an inhomogeneous magnetic field, Hext, equals

Hext = −ǫ
∑

i

~hi · ~σi, (3)

where ǫ (> 0), a dimensionless parameter that quantifies
the strength of the randomness, is typically chosen to be

small. The unidirectional random field, ~hi, is chosen to

be ~hi = ηi · êy, where ηi are independent and identically
distributed quenched Gaussian random variables with
zero mean and unit variance, and êy is the unit vector in
the y-direction. Within the mean-field limit, as we show
below, the pure systems governed by the Hamiltonian
Hint magnetizes even at low-dimensions. This does not
contradict the Mermin-Wagner-Hohenberg theorem28,
which predicts no spontaneous magnetization in one-
and two-dimensions since the predictions made by the
mean-field approximation only becomes accurate in
higher dimensions29 where Mermin-Wagner-Hohenberg
theorem is not valid. Interestingly, it has been shown
that a uniaxial random field may help the system to
magnetize even at two-dimension14,30. Note that had

the random field, ~hi, been chosen to be invariant under
rotations, the system would not magnetize at any
nonzero temperature in any dimension d ≤ 413,17,18.
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FIG. 1: (Color online) System magnetizes in directions par-
allel and transverse to the disorder field. Zero contour lines
of the F ǫ,2

x (m) and F ǫ,2
y (m) in Eqs. (10) [solid-red] and (11)

[dotted-blue] for γ = 0.3, ǫ/J = 0.1 and Jβ = 2, respectively,
as functions of mx and my. All quantities are dimensionless.

Within the mean-field approximation, each spin is re-
garded to be reacting to an average field due to all
the other spins in the system. Assuming N to be
the total number of spins in the system, the effec-
tive interaction, replacing the nearest neighbor interac-
tion in Hint, for large N , equals approximately Hint =

−1/N(
∑

α=x,y

∑N
j;j 6=i νJ

′
ασ

α
i )σ

α
j = −∑

α=x,y νJ
′
αmασ

α
i ,

where mα = 1
N

∑N
j=1 σ

α
j . J ′ is the coupling constant

and ν is the coordination number which depends on the
geometry of the lattice. Note that mean-field approxi-
mation provides close to the exact description for large
dimensional lattice systems31. Within the mean-field ap-
proximation, the Hamiltonian, HXY , is given by

H = −J(1 + γ)mxσx − J(1− γ)myσy − ǫ~η · ~σ, (4)

where the operatorsmα are replaced by their average val-
ues denoted by the same symbol, in the canonical equilib-
rium state at absolute temperature T and J = J ′ν. Now
in order to monitor the behavior of the magnetization as
a function of temperature, one needs to calculate the ex-
pectation value of the spin operators, σα, α = x, y. So in
the mean-field regime, the magnetization of the system
governed by the Hamiltonian, H (see Eq. (4)), is given
by

mα = Avη

[

Tr [σα exp(−βH)]

Tr [exp(−βH)]

]

, (5)

where β = 1/(kBT ), where kB is the Boltzmann con-
stant, and Avη[.] denotes the average over the realiza-
tions of randomness. From Eqs. (4) and (5), we obtain a
coupled set of the following two equations:

mǫ,2
⊥ ≡ mx = Avη

[

J(1 + γ)mx

kǫ
tanh(βkǫ)

]

(6)

and

mǫ,2
‖ ≡ my = Avη

[

J(1− γ)my + ǫη

kǫ
tanh(βkǫ)

]

, (7)

where kǫ =
√

(J(1 + γ)mx)2 + (ǫη + J(1− γ)my)2.
Note that the subscripts ⊥ and ‖ classify two distinct
cases, as would be apparent later. The superscripts ǫ
and 2 keep track of the strength of the disorder and of
the value of the spin (1/2) respectively.

B. Critical point and scaling of magnetization near
criticality

The magnetization, ~m, can be obtained by finding the
common zeros of the following two functions obtained
from Eqs. (6) and (7))

F ǫ,2
x (~m) = Avη[

J(1 + γ)mx

kǫ
tanh(βkǫ)]−mx, (8)

and

F ǫ,2
y (~m) = Avη[

J(1− γ)my + ǫη

kǫ
tanh(βkǫ)]−my, (9)

where kǫ =
√

(J(1 + γ)mx)2 + (ǫη + J(1− γ)my)2. Let
us set mx = m cosφ1, my = m sinφ1, and ~m = (mx,my).

By performing perturbative analysis, we can study the
magnetization for small ǫ. Taylor series expansion of Eqs.
(8) and (9) in ǫ around ǫ = 0 gives

F ǫ,2
x (~m) = c1 +

1

2
b1ǫ

2 +O(ǫ4), (10)

and

F ǫ,2
y (~m) = c2 +

1

2
b2ǫ

2 +O(ǫ4), (11)

where

c1 = mx(−1 +
J(1 + γ)

k
tanh(βk)), (12)

c2 = my(−1 +
J(1− γ)

k
tanh[βk]), (13)
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b1 =
−3J3mxm

2
yβ(1− γ)2(1 + γ)

k4
1

cosh[βk]2
+

Jmxβ(1 + γ)

k2
1

cosh[βk]2
+

3J3mxm
2
y(1 − γ)2(1 + γ) tanh[βk]

k5

−Jmx(1 + γ) tanh[βk]

k3
−

(2J3mxm
2
yβ

2(1 − γ)2(1 + γ) tanh[βk])

k3
1

cosh[βk]2
, (14)

b2 =
−3J3m3

yβ(1 − γ)3

k4
1

cosh[βk]2
+

3Jmyβ(1 − γ)

k2
1

cosh[βk]2
+

3J3m3
y(1− γ)3 tanh[βk]

k5

−3Jmy(1− γ) tanh[βk]

k3
−

2J3m3
yβ

2(1− γ)3 tanh[βk]

k3
1

cosh[βk]2
. (15)

Here k =
√

(J(1 + γ)mx)2 + (J(1 − γ)my)2.
A contour analysis at this point becomes helpful to

characterize the behavior of the system, in particular,
in finding the directions in which the system magnetizes
(see Fig. 1). This amounts to identification of the zero-
contour lines corresponding to Eqs. (10) and (11). The
intersection points of the zero-contour lines are possible
solutions of the magnetization. For any given set of pa-
rameters, one immediately finds that the roots of the
F ǫ,2
x (~m) and F ǫ,2

y (~m) exist only at φ1 = 0 or π/2. This
implies that the magetization is either transverse to the
random field (case I) or parallel to the random field (case
II). Note that for ǫ = 0 and γ = 0, the zero contour lines
for both the equations would lie on top of each other due
to the circular symmetry in the system. However, an ar-
bitrary small random field is enough to break this sym-
metry. It follows from the contour analysis that above a
certain temperature, the critical temperature, the zero-
contour lines corresponding to Eqs. (10) and (11) inter-
sect only if mx = my = 0, which is a trivial solution.
In order to find the critical temperature and the scal-

ing of magnetization near criticality, we perform another
round of Taylor expansions in Eqs. (10) and (11) around
m = 0 to obtain

F ǫ,2
x (~m) = −1

3
(3 + Jβ(1 + γ)(−3 + β2ǫ2))m cosφ1

− 1

3!

2

5
J3β3(1 + γ)3(5− 8β2ǫ2 + 4β2ǫ2 cos 2φ1)m

3 cosφ1

+O(m5),

(16)

and

F ǫ,2
y (~m) = (−1 + Jβ(1− γ)(1 − β2ǫ2))m sinφ1

− 1

3!

2

5
J3β3(1 − γ)3(5− 16β2ǫ2 + 4β2ǫ2 cos 2φ1)m

3 sinφ1

+O(m5).

(17)

The contour analysis implies that the allowed values of φ1

are π/2 and 0. For transverse magnetization, i.e., for the

case I with φ1 = 0, F ǫ,2
y (~m) vanishes (see Eq. (17)). The

nontrivial solutions, which solely appear from Eq. (16),
are given by

mǫ,2
⊥ = ±

√
5

√

3 + Jβ(1 + γ)(ǫ2β2 − 3)

(−5 + 4ǫ2β2)J3β3(1 + γ)3
. (18)

The critical point is obtained by setting mǫ,2
⊥ = 0 in

Eq. (18). We get

βǫ,2
c,⊥ =

1

J(1 + γ)
+

ǫ2

3J3(1 + γ)3
. (19)

Here β is associated with the subscript ⊥, following the
similar convention in magnetization.
The magnetization values corresponding to case II are

obtained by setting φ1 = π/2 in Eqs. (16) and (17). In
this case, the function in Eq. (16) vanishes. The nontriv-
ial solutions of Eq. (17) are given by

mǫ,2
‖ = ±

√
3

√

1 + Jβ(1 − γ)(ǫ2β2 − 1)

J3β3(1− γ)3(4ǫ2β2 − 1)
. (20)

Subjecting Eq. (20) to the constraintmǫ,2
‖ = 0, we obtain

the following expression for the critical temperature:

βǫ,2
c,‖ =

1

J(1− γ)
+

ǫ2

J3(1 − γ)3
. (21)

Following the set of Eqs. (18)-(19)) and (20)-(21)), one
can immediately infer that the effect of disorder is more
conspicuous if the system chooses to magnetize along the
direction parallel to the random field, as compared to
the other possibiliy with a transverse magnetization. In-
terestingly, the findings are consistent with the pictures
drawn within a classical limit15 for the isotropic case i.e.,
γ = 0. However, quantitative comparison shows that the
analysis with classical spins overestimates the effect of
disorder on the critical scaling.
Note that one can immediately deduce the scaling ex-

pressions for the magnetizations and critical temperature
of the isotropic ordered systems by putting γ = ǫ = 0



5

0.8 1 1.2 1.4 1.6
Jβ

-1

-0.5

0

0.5

1

m

1 1.2 1.4 1.6
Jβ

-0.5

0

0.5

m
 

0.9 0.95 1
Jβ

0

0.2

0.4

m

1.1 1.15 1.2
0

0.2

0.4

aa

(a)

(b)

FIG. 2: (color online) Numerical and analytical results ex-
hibit persistence of spontaneous magnetization in specific di-
rections even after insertion of disorder. Numerical results
for the magnetization as a function of Jβ, in the directions a)
transverse and b) parallel to the disordered field. Red circles
correspond to the roots of Eqs. (6) and (7) with ǫ/J = 0.1
and γ = 0.1. Insets: The blue solid lines correspond to the
analytic solutions derived for small m given in Eqs. (18) and
(20) for the same set of parameters. The red circles are the
numerical results. We find that the numerical and analyti-
cal results agree in the small m regime. All quantities are
dimensionless.

in Eqs. (20) and (21) (or equivalently, in Eqs. (18) and
(19)). In this case, the solutions form a circle in the XY
plane. This can be easily understood by following the
set of Eqs. (6) and (7), which become identical for the
isotropic ordered systems. The symmetry is broken in
presence of the random field and then the system prefers
a specific direction of magnetization.

Moreover, it is clear from Eqs. (19) and (21), that crit-
ical temperature at which system magnetizes increases
with the coordination number, i.e., with the dimension
of the system, for any value of γ.

C. Numerical results

In the previous section, we derived the expressions for
magnetization near the critical point. However, away
from the critical point, where the perturbative approach
is no longer valid, one has to rely on a numerical simu-
lation to find the roots of the coupled set of equations,
given in Eqs. (6) and (7). We use the classical Monte
Carlo technique for performing a configurational averag-
ing over η. It requires a few thousands of random realiza-
tions in order to obtain converged values. Our numerical

0.6 0.8 1
Jβ

-1

-0.5

0

0.5

1

m

1 2 3 4 5
Jβ

-1

-0.5

0

0.5

1

m
 

0 0.4 0.8
γ

0.6

0.8

1

β c

0 0.4 0.8
γ

0

2

4

6

β c

aa

(a)

(b)

FIG. 3: (color online) Magnetization as a function of Jβ for
different choices of the anisotropy constant, γ, in the direc-
tions a) transverse and b) parallel to the random field. Circles,
squares, and crosses correspond to the magnetization of the
system with ǫ/J = 0.1 and γ = 0.2, 0.4, and 0.6, respectively.
Insets show the inverse critical temperatures as functions of
γ for ǫ/J = 0.1. All quantities are dimensionless.

searches show the presence of two kind of solutions, either
mǫ,2

⊥ 6= 0, mǫ,2
‖ = 0 (i.e., case I) or mǫ,2

⊥ = 0, mǫ,2
‖ 6= 0

(i.e., case II), which is in accordance with previous discus-
sions in the context of analytical perturbative analysis.
Fig. 2(a) exhibits the results obtained by numerical

analysis for the transverse magnetization, i.e. case I,
with vanishing y-component and non-zero x-component,
for ǫ/J = 0.1 and γ = 0.1. When the temperature is
high enough, the system does not magnetize, similarly to
the case of an ordered system, i.e. ǫ/J = 0. However,

below the critical temperature (i.e. if β > βǫ,2
c,⊥), the

system magnetizes in the direction transverse to the ap-
plied random field. We see that the critical temperature
decreases in the presence of the disorder, i.e. that the
critical point, βǫ,2

c,⊥, shifts towards the right in presence
of the random field. We also find excellent agreement be-
tween the exact numerical results and the approximate
analytical expression of the transverse magnetization de-
rived using a perturbative approach given in Eq. (18) (see
inset of Fig. 2(a)).
The numerical results for case II with vanishing y-

component and non-zero x-component are shown in
Fig. 2(b) for ǫ/J = 0.1 and γ = 0.1. The features of
parallel magnetization are qualitatively similar to that of
transverse magnetization. However, we find that the crit-
ical point, βǫ,2

c,‖, as may be expected by now given the an-

alytical results, shifts towards an even higher value com-
pared to the case of transverse magnetization. A closer
examination of the Figs. 2(a)-(b) show that the effect of
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disorder is more prominent in the parallel magnetization
than in the tranverse one. This is confirmed by the ex-
pressions derived in the small-m regime (see Eqs. (18) &
(20)).
The behavior of the transverse and the parallel mag-

netizations for a given ǫ and selectively chosen values of
the anisotropy constant, γ, is demonstrated in Fig. 3. We
find that the inverse critical temperature, βǫ

c,⊥, decreases
with increasing γ for the case when the system magne-
tizes in the direction which is transverse to the applied
random field. The opposite happens when the system
magnetizes in the direction which is parallel to the radom
field. The insets of the Figs. 3(a-b) show the critical tem-
peratures βc’s as functions of γ. The trends suggest that
for highly anisotropic systems, the parallel magnetiza-
tion would occur only at sufficiently low temperatures.
High anisotropy favors transverse magnetization, i.e. the
system starts magnetizing in the transverse direction at
comparetively higher temperatures.

III. ORDER FROM DISORDER: RANDOM
FIELD QUANTUM XY MODEL IN THE

PRESENCE OF AN ADDITIONAL UNIFORM
FIELD

Until now, we have seen that the spontaneous magne-
tization in the system persists, albeit only in a restricted
set of directions, even in the presence of a disordered
field. Is this still true when there is an additional con-
stant field? In this section, we consider this question and
show that not only does the spontaneous magnetization
persist—disorder can now help one of the components
of the magnetization to achieve an enhanced value com-
pared to the ordered system.
We first consider the case in which the ordered XY

model is subject to a constant magnetic field, ~h. The
mean-field Hamiltonian, Hh, governing the system in this
case is given by

Hh = −
(

J ((1 + γ)mxσx + (1− γ)myσy) + ~h · ~σ
)

(22)

The constant field ~h lies in the XY plane,

i.e. ~h = (hx, hy) = (h cosx, h sinx) with magnitude
h, where 0 < h ≤ 1, and phase x, with −π/2 ≤ x ≤ π/2.
In the presence of the constant field, the mean-field
equation for the magnetization is obtained replacing
H by Hh in Eq. (5). The system now has no critical
temperature, as there is always a unique solution at any
value of β.

Let us now investigate the effect of a random field, ǫ~η,
on the system. The mean-field Hamiltonian Hh,ǫ can be
written as

Hh,ǫ = −
(

J((1 + γ)mxσx + (1− γ)myσy) + ~h · ~σ + ǫησy

)

,

(23)
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FIG. 4: (Color online) Order from disorder. Effect of the ran-
dom field in presence of a constant field. The X-component
of magnetization, mx, as a function of Jβ for (a) γ = 0.05
and (b) γ = 0.1. Red pluses show mx for the case when the

XY model is subjected to a constant field ~h with h/J = 0.3,
and x = π/3. The blue solid and the green dashed lines rep-
resent mx when the system is treated with random field of
strength ǫ/J = 0.1 and ǫ/J = 0.2, respectively, along with
the constant field (the corresponding Hamiltonian is given
in Eq. (23)). The insets show blow-ups of the same for a
smaller range of Jβ. The enhancement of mx in presence of
the disorder field uncovers a “random field induced order”.
Comparing panels (a) and (b), we observe that for fixed h/J
and x, the order-from-disorder phenomenon appears as the
anisotropy parameter is cranked down. All other quantities
are dimensionless.

where we assume the random field to be directed along
the y-axis. Replacing again H by Hh,ǫ in Eq. (5), we
obtain two coupled equations, which we solve to find ~m.
As may be expected, the solution for the magnetization
is again unique.
Our numerical calculations show that the magnetiza-

tion m and the y-component of the magnetization vector
my are reduced in length in the presence of disorder, i.e.
when the system is governed by Hh,ǫ as compared to
the ordered system described by Hh. However, the x-
component mx behaves in a very different manner. De-
pending upon the system parameters, mx can be both
higher and lower than its value in the ordered system. In
Fig. 4, we exhibit the results in the particular example for
the system with h/J = 0.3, x = π/3, which demonstrate
the random field induced enhancement of mx in the pres-
ence of disorder for two different values of γ, signaling
random-field-induced order, also known as “order from
disorder.” Our numerical observations are further sup-
ported by results obtained analytically via peturvative
approach at low temperature. The details are discussed
below.

A. Perturbative analysis of the low-temperature
magnetization

The mean field equations in Eq. (5) can be alterna-
tively presented as

mx =
1

βJ(1 + γ)

∂Γ

∂mx

(24)

and

my =
1

βJ(1 − γ)

∂Γ

∂my

, (25)
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where

Γ ≡ Avη [logeTr exp(−βHh)] (26)

or in the disordered case,

Γ ≡ Avη [loge Tr exp(−βHh,ǫ)] (27)

depending on whether the governing Hamiltonian is Hh

or Hh,ǫ. The symmetry of the Gaussian distribution of η

ensures that ~m is an even function of ǫ. As a result, dmx

dǫ

and
dmy

dǫ
vanish at ǫ = 0. Starting with the Eqs. (24)

and (25), straightforward algebra leads to the following
set of coupled equations:

d2mx

dǫ2

[

1− 1

βJ(1 + γ)

∂2Γ

∂m2
x

]

=

1

βJ(1 + γ)

[

∂3Γ

∂2ǫ∂mx

+
∂2Γ

∂my∂mx

d2my

dǫ2

]

, (28)

and

d2my

dǫ2

[

1− 1

βJ(1− γ)

∂2Γ

∂m2
y

]

=

1

βJ(1− γ)

[

∂3Γ

∂2ǫ∂my

+
∂2Γ

∂my∂mx

d2mx

dǫ2

]

, (29)

where the total and partial derivatives are evaluated at

ǫ = 0. In order to evaluate d2mx

dǫ2
and

d2my

dǫ2
, at ǫ = 0,

we need to calculate the partial derivatives at ǫ = 0. For

example, the expression for 1
βJ(1+γ)

∂2

∂ǫ2
∂Γ
∂mx

is

1

βJ(1 + γ)

∂Γ

∂mx

= mx =
Jmx(1 + γ) + hx

kǫ′
tanh(βkǫ

′).

(30)
It follows that

1

βJ(1 + γ)

∂2

∂ǫ2
∂Γ

∂mx

=

Avη[(Jmx(1 + γ) + hx)
(−3βη2(hy + Jmy(1 − γ) + ǫη)2

kǫ′
4 cosh2(βkǫ′)

+
βη2

kǫ′
2[cosh2(βkǫ′)]

− η2 tanh(βkǫ
′)

kǫ′
3

+
3η2(hy + Jmy(1 − γ) + ǫη)2 tanh(βkǫ

′)

kǫ′
5

−2β2η2(hy + Jmy(1− γ) + ǫη)2 tanh(βkǫ
′)

kǫ′
3 cosh2(βkǫ′)

)

].

(31)

Here kǫ
′ =

√

((J(1 + γ)mx) + hx)2 + ((J(1 − γ)my) + ǫη + hy)2.
Next, using the asymptotic expansion of the hyperbolic
function tanh(βkǫ

′) ≈ 1 − 2 exp(−2βkǫ
′), we obtain for

the partial derivatives at ǫ = 0

d2mx

dǫ2
|ǫ=0 =

1

h2
P

(

x,
J

h

)

+O(e−β), (32)
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FIG. 5: (Color online) The span of order-from-disorder in pa-
rameter space. Plots of the functions (a) P (x, j), (b) Q(x, j),
(c) R(x, j), and (d) S(x, j) with respect to x and j = J/h.
Note that there are ranges of the (x, j), for which the function
P (x, j) is positive signaling order from disorder in the system
described by the Hamiltonian Hh,ǫ. However, this is not true
for Q(x, j) and R(x, j), which are negative for the entire range
of x and j. The fact that S(x, j) is also negative in the entire
range implies that in the presence of disorder, the magneti-
zation vector moves away from the direction of the applied
random field. All other quantities are dimensionless. Here
γ = 0.1.

and

d2my

dǫ2
|ǫ=0 =

1

h2
Q

(

x,
J

h

)

+O(e−β), (33)

where the functions P and Q are given by (for j = J/h)

P (x, j) =
AE +BC

DE − CC′
(34)

and

Q (x, j) =
AC′ +BD

DE − CC′
. (35)

Here

A(x, j) = a cosx(
3b2 sin2 x

k′5
− 1

k′3
), (36)

B(x, j) = b sinx

(

3b2 sin2 x

k′5
− 3

k′3

)

, (37)

C(x, j) = −Jab cosx sinx

k′3
(1− γ), (38)

C′(x, j) = −Jab cosx sinx

k′3
(1 + γ), (39)
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D(x, j) = 1− J(1 + γ)

k′
(1− a2 cosx

k′2
), (40)

and

E(x, j) = 1− J(1 − γ)

k′
(1 − b2 sinx

k′2
), (41)

with a = 1 + j(1 + γ), b = 1 + j(1 − γ), and k′ =
√

a2 cos2 x+ b2 sin2 x. The positivity of P (x, j) implies
that order from disorder phenomenon occurs.
As is clear from Fig. 5(a), there exists a region in the

parameter space (x, j), for which P (x, j) > 0 which con-
firms that the quenched averaged X-component mx of
the magnetization is enhanced by the presence of disor-
der. This does not hold for the quenched averaged Y -
component, my, which is reduced in length in the pres-
ence of disorder (see Fig. 5(b)).
To further investigate the effect of disorder on the

length m and phase φ1 of the magnetization, we expand
tanφ1 =

my

mx

as

tanφ1 =
my

mx

∣

∣

ǫ=0
+ ǫ2

d2

dǫ2

(

my

mx

)

∣

∣

ǫ=0
+O(ǫ4), (42)

with

d2

dǫ2

(

my

mx

)

∣

∣

ǫ=0
=

mx
d2my

dǫ2
−my

d2mx

dǫ2

m2
x

∣

∣

ǫ=0

=
1

m2
x

∣

∣

ǫ=0

1

h2
S(x, j) +O(e−β), (43)

where

S(x, j) = Q(x, j) cos x− P (x, j) sinx. (44)

S(x, j) is negative for all x and J/h (see Fig. 5(d)) im-
plying that the phase always shift towards the X-axis in
the presence of the random field.
The square of the length of the magnetization, when

similarly expanded, is given by

m2
x +m2

y = (m2
x +m2

y)
∣

∣

ǫ=0
+ 2ǫ2

(

R(x, j) +O(e−β)
)

,

(45)
where

R(x, j) = (P cosx+Q sinx)
∣

∣

ǫ=0
. (46)

As seen in Fig. 5(c), R(x, j) is negative regardless of the
choice of parameters, i.e., the length of the magnetiza-
tion decreases in the presence of the disorder. Note that
the analytical results are in agreement with the numer-
ical evidence presented above. It is worth mentioning
here that the analytical results are valid for small ǫ and
large β. The difference between the magnetization in the
disordered system and the ordered system, as obtained
analytically, is of the order of ǫ2. Comparison of these
analytical results with the numerical ones is valid only
when the same difference, obtained numerically, has pre-
cision of order ǫ2.

IV. GENERALIZATION TO ARBITRARY
SPINS AND SCALING OF CRITICAL

TEMPERATURE

In this section, our aim is to investigate d-dimensional
lattices where the occupant of each lattice site is a quan-
tum spin with arbitrary spin angular momentum. Here
we restrict ourselves to the XX model. For our purposes,
it is necessary to treat the half-integer and integer spins
separately. In the following subsections, we derive the
generalized expressions for the scaling of the magnetiza-
tion and critical temperature for both cases.

A. Half-integer spins

The mean-field equations for a general half-integer spin
n+1
2 , (n = 1, 3, . . . ) are

mx = Avη

[

Jmx

k

∑n
p=0(2p+ 1) sinh(2p+ 1)βk
∑n

p=0 cosh(2p+ 1)βk

]

, (47)

my = Avη

[

Jmy + ǫη

k

∑n
p=0(2p+ 1) sinh(2p+ 1)βk
∑n

p=0 cosh(2p+ 1)βk

]

,

(48)

where k =
√

J2m2
x + (Jmy + ǫη)2.

Finding the magnetization ~m requires simultaneous so-
lution of the coupled set of Eqs. (47) and (48), i.e., finding
the common zeros of the following two functions:

F ǫ,n
x (~m) =

Avη

[

Jmx

k

∑n
p=0(2p+ 1) sinh(2p+ 1)βk
∑n

p=0 cosh(2p+ 1)βk

]

−mx, (49)

F ǫ,n
y (~m) =

Avη

[

Jmy + ǫη

k

∑n
p=0(2p+ 1) sinh(2p+ 1)βk
∑n

p=0 cosh(2p+ 1)βk

]

−my.

(50)

The Taylor expansion in ǫ, followed by the expansion
in m, of the functions given in Eqs. (49) and (50), around
ǫ = 0 and m = 0, gives

F ǫ,s
x (~m) =

1

45
[−45 + 60Jβs(s+ 1)−

8Js(s+ 1)(2s2 + 2s+ 1)β3ǫ2]m cosφ1 +

1

3!

16

315
β3J3[s(s+ 1)(−21(2s2 + 2s+ 1) +

2β2ǫ2(4s2 + 2s+ 1)(4s2 + 6s+ 3))]m3 cosφ1 +O(m5),

(51)
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FIG. 6: (Color online.) δβ as function of 1/s for the trans-
verse (red circles) and parallel (blue squares) magnetizations
for ǫ/J = 0.05. The lines serve as guides to the eye. All
quantities are dimensionless.

and

F ǫ,s
y (~m) =

1

15
[−15 + 20Jβs(s+ 1)−

8Js(s+ 1)(2s2 + 2s+ 1)β3ǫ2]m sinφ1 +

1

3!

16

315
β3J3[s(s+ 1)(−21(2s2 + 2s+ 1) +

10β2ǫ2(4s2 + 2s+ 1)(4s2 + 6s+ 3))]m3 sinφ1 +O(m5),

(52)

where s = n + 1/2 with n = 0, 1, 2,. . . . φ1 has two
allowed values: π/2 (system magnetizes in the direction
parallel to the disordered field) and 0 (system magnetizes
in the direction transverse to the disordered field). For
transverse magnetization, F ǫ,n

y (~m) vanishes and two non-
trivial solutions solely come from Eq. (51) as

mǫ,s
⊥ = ±

√

21

8

√

[45− 60Jβs(s+ 1) + 8Js(s+ 1)(2s2 + 2s+ 1)β3ǫ2]

J3β3s(s+ 1)[−21(2s2 + 2s+ 1) + 2β2ǫ2(4s2 + 2s+ 1)(4s2 + 6s+ 3)]
. (53)

The critical point can now be easily obtained by setting
mǫ,s

⊥ = 0 in Eq. (53). We get

8s(s+ 1)(2s2 + 2s+ 1)Jβ3ǫ2 − 60s(s+ 1)Jβ + 45 = 0,

(54)

which gives

βǫ,s
c,⊥ =

3

4Js(s+ 1)
+

9

160

(2s2 + 2s+ 1)

J3s3(s+ 1)3
ǫ2, (55)

The critical temperature decreases with the increase of

number of spin. The shift in critical temperature is of
the order of ǫ2 for all spins. Note that the generalized
expressions for the scaling and for the critical tempera-
ture for the pure system with a transverse magnetization
can be obtained simply by putting ǫ = 0 in Eqs. (53) and
(55), respectively.

In order to find the expressions for the parallel magne-
tization, we put φ1 = π/2 in the Eqs. (51) and (52). In
this case also, the right-hand side of Eq. (51) vanishes to
leading order, while Eq. (52) has two nontrivial solutions,
given by:

mǫ,s

‖ = ±
√

63

8

√

15− 20Js(s+ 1)β + 8Js(s+ 1)(2s2 + 2s+ 1)β3ǫ2

J3β3s(s+ 1)[−21(2s2 + 2s+ 1) + 10β2ǫ2(4s2 + 2s+ 1)(4s2 + 6s+ 3)]
. (56)

The critical point can be obtained by considering mǫ,s

‖ =

0 in Eq. (56) and we obtain

βǫ,s

c,‖ =
3

4Js(s+ 1)
+

27

160

(2s2 + 2s+ 1)

J3s3(s+ 1)3
ǫ2 (57)

The generalized expressions of the scaling and the critical
temperature for the pure system with a parallel magneti-
zation can again be obtained by putting ǫ = 0 in Eqs. (56)
and (57), respectively. However, the shift in the critical
temperature due to the random field is in this case big-
ger than in the transverse case and hence the effect of the

disorder is more prominent in the parallel case similarly
to what was seen in section (II B) without constant field.

B. Integer spins

The generalized mean-field equations for the system
with integer spin n

2 , n even, are given by

mx = Avη

[

Jmx

k

∑n
p=1 2p(e

2pβk − e−2pβk)

1 +
∑n

p=1(e
2pβk + e−2pβk)

]

, (58)
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my = Avη

[

Jmy + ǫη

k

∑n
p=1 2p(e

2pβk − e−2pβk)

1 +
∑n

p=1(e
2pβk + e−2pβk)

]

,

(59)

where k =
√

J2m2
x + (Jmy + ǫη)2. Now in order to

find the magnetization ~m we have to solve the coupled
set of Eqs. (58) and (59). As one can expect from
the previous discussions, there are two different kinds
of magnetizations—the transverse magnetization, mǫ,s

⊥ ,
and the parallel magnetization, mǫ,s

‖ . To derive the crit-

ical scaling for this case, we follow a Taylor expansion
method, similar to the one used for the half-integer spin
case. The final expressions for mǫ,s

⊥ , mǫ,s

‖ , and the as-

sociated critical temperatures are given by the set of
Eqs. (53),(55),(56),(57) with s = n, where n = 1, 2, 3, . . .
Therefore, we again obtain corrections of order ǫ2 to

the critical temperature for all the integer spin systems.
Again, the effect of disorder is more pronounced in the
parallel magnetization case than in the transverse case.

C. Critical temperature versus spin quantum
number

In order to study the effect of disorder as a function of
s, we define the dimensionless quantity δβ, given by

δβ =
βǫ,s
c − β0,s

c

β0,s
c

. (60)

δβ is shown as a function of 1/s in Fig.6 for ǫ/J = 0.05.
We find that the shift in the critical temperature caused
by the random field decreases with increasing spin quan-
tum number.

V. CONCLUSIONS

We considered the quantum spin-1/2XY model within
the mean-field approximation and showed that the spon-
taneous magnetization persists in the system with the in-

troduction of a unidirectional quenched disordered field,
albeit it is smaller than in the pure system. Below a
certain critical temperature, the magnetization occurs
in specific directions, either parallel or transverse to
the disordered field. The critical temperatures and the
magnitude of the magnetization decrease with increasing
strength of the disorder. We found perturbative expres-
sions for scaling of the magnetization and the expres-
sions for the scaling of the critical temperatures at which
the system magnetizes. We also performed numerical
simulations to obtain the behavior of magnetization for
various values of the temperature, disorder strength and
anisotropy parameter, which match with the perturba-
tive calculations for small disorder values. Moreover, we
extended our analysis to arbitary values of (half-integer
or integer) spin. We found that the decrease in the length
of the magnetization due to the random field is of the
order of the square of the strength of the disorder for
all values of spin. The magnitude of magnetizations in
the disordered systems decrease faster with increasing
spin quatum number and the system requires lower tem-
perature to magnetize when the spin quantum number
increases, implying that the effect of disorder increases
with increasing spin quantum number. In addition, we
studied the random field quantum spin-1/2 XY model
with an additional constant field, for which we showed a
random-field-induced ordering in the component of mag-
netization transverse to the disordered field.
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