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To freeze or not to: Quantum correlations under local decoherence
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We provide necessary and sufficient conditions for freezingof quantum correlations as measured by quantum
discord and quantum work deficit in the case of bipartite as well as multipartite states subjected to local noisy
channels. We recognize that inhomogeneity of the magnetizations of the shared quantum states plays an im-
portant role in the freezing phenomena. We show that the frozen value of the quantum correlation and the time
interval for freezing follow a complementarity relation. For states which do not exhibit “exact” freezing, but
can be frozen “effectively”, by having a very slow decay ratewith suitable tuning of the state parameters, we
introduce an index – the freezing index – to quantify the goodness of freezing. We find that the freezing index
can be used to detect quantum phase transitions and discuss the corresponding scaling behavior.

I. INTRODUCTION

Characterizing correlations between different subsystems of
a composite quantum system has been an important field of
research in quantum information [1, 2]. This is due to the
fact that quantum correlations, in the form of entanglement,
is shown to be significantly more useful for performing com-
munication and computational tasks over their classical coun-
terparts [3]. Moreover, these tasks have successfully beenreal-
ized in the laboratory in several physical systems and thereby
attracted a lot of attention in the field of detection and quan-
tification of quantum correlations [4]. On the other hand,
several non-intuitive results like local indistinguishability of
orthogonal product states, non-classical efficiencies of acom-
putational task by states having negligible entanglement,etc.
have also been discovered [5–7], which highlights the needs
for conceptualization of quantumness in a composite system
that is different from entanglement. This led to the introduc-
tion of quantum correlations like quantum discord (QD) [8]
and quantum work deficit (QWD) [9] that are independent of
the entanglement paradigm.

One of the difficulties encountered in realizations of qun-
tum information protocols is that quantum correlations deco-
here rapidly by interaction with the environment [10]. Specif-
ically, the intra-system quantum correlations decrease with
time while the quantum correlations between the system and
the environment increase. As a result, the system typicallybe-
comes less efficient in performing quantum information pro-
cessing tasks. Therefore, the decay of quantum correlations
with time in an open quantum system is a cause for concern.
Consequently, knowledge of the behavior of quantum correla-
tions in various quantum systems when subjected to different
environments seems indispensable. Recent studies show that
for a specific class of states, entanglement undergoes asudden
death[11–13] at a finite time whereas QD decays asymptoti-
cally with time [14–20].

Although a few studies have addressed the issue of preserv-
ing quantum correlation measures during their dynamics [17–
20], identifying the inherent property in quantum states, pro-
hibiting the loss of quantum correlations over time, is still an
open question. In the present work, we derive necessary and
sufficient conditions for freezing of quantum correlation mea-
sures, for both QD and QWD, when a two-qubit statewith
magnetizationis subjected to local depolarizing channels, in

which bit-flip (BF), phase-flip (PF), or bit-phase-flip (BPF)er-
rors can occur. We show that inhomogeneity in magnetiza-
tion plays a crucial role for the freezing behavior of the state.
The necessary and sufficient criteria show that there exist re-
gions in which QD freezes while QWD does not, highlight-
ing the necessity of proper choice of the quantum correlation
measure to demonstrate the freezing phenomenon, and also
that if the efficient performance of a certain quantum infor-
mation task requires the freezing of a particular quantum cor-
relation measure, the same may not remain efficient in a sit-
uation or environment where another quantum correlation is
frozen. For both QD and QWD, we propose a complementar-
ity relation between the quantum correlation during the freez-
ing interval and the duration of the interval. For the class of
states for which freezing is observed, we find a correspondence
between the entanglement of the initial state and its freezing
properties. The study is extended to multipartite states where
two prescriptions for generating multipartite freezing states are
proposed. Like decoherence-free subspaces [21], introduced
to protect qubits, the generated inherently decoherence-free
states can be a building block of quantum memory [22] in
which quantum correlation in the form of QD or QWD can
be stored.

Undoubtedly, the bipartite as well as the multipartite states
which show freezing are of immense theoretical and experi-
mental importance in quantum information processing tasks
as they are inherently decoherence-free states for a finite time
interval. However, there exists a large class of states for which
quantum correlations do not freeze, but the change in quan-
tum correlations is very slow with time. Hence it is interest-
ing to quantify the freezing quality of a quantum correlation
measure. We introduce a measure to quantify the goodness of
freezing and call the measure as the “freezing index”. We then
apply the measure to characterize the “effective freezing”of
QD present in the anisotropic quantumXY model in a trans-
verse field [23], which appears in the description of certain
solid-state realizations [24], as well as in that of controlled
laboratory settings [25–27]. Moreover, the index is capable
of detecting the quantum phase transition in the model. The
corresponding finite size scaling analysis has also been carried
out.

The paper is organized as follows. In Section II, we briefly
discuss the measures of quantum correlations used in this study
and describe the methodology for investigating their dynamics
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in the presence of local noise. In Section III, the necessaryand
sufficient conditions for freezing of quantum correlationsfor
bipartite states are derived and a complementarity of the value
of the frozen quantum correlation with the freezing interval is
obtained. The possible correspondence of the entanglement
properties of the initial states to their freezing behavioris also
addressed. Section IV deals with the generalization of the bi-
partite freezing behavior into multipartite cases. We discuss
the phenomenon of effective freezing in Section V. There, we
also quantify the quality of freezing by proposing a freezing
index, and demonstrate its behavior in the case of the well-
known transverse-field anisotropicXY model. Section VI
contains the concluding remarks.

II. QUANTUM CORRELATIONS: DEFINITIONS AND
DYNAMICS

In this section, we provide a brief description of the quantum
correlation measures used in the paper, namely, the QD and the
QWD. We also present the methodology for investigating the
dynamics of quantum correlations, when quantum states are
subjected to local noise, and discuss the freezing of quantum
correlations.

A. Quantum discord

In classical information theory, mutual information between
two random variablesA andB is defined as

I(A : B) = H(A) +H(B)−H(A,B)

= H(B)−H(B|A), (1)

whereH(A) = −∑i p
A
i log2 p

A
i is the Shannon entropy ofA,

and similarly forH(B), whileH(A,B) is the joint entropy of
A andB. HereH(B|A) = H(A,B)−H(A) is the conditional
entropy ofB givenA. Translation of these definitions into
the quantum regime of bipartite quantum states leads to two
inequivalent definitions of mutual information. One of them,
which may be identified as the “total correlation” of a bipartite
quantum systemρAB, can be defined as [28]

I = S (ρA) + S (ρB)− S (ρAB) , (2)

whereρA andρB are the states of the subsystemsA andB
respectively andS (ρ) = −Tr [ρ log2 ρ] is the von Neumann
entropy of the quantum stateρ. An alternative definition of
mutual information in the quantum regime takes the form [8]

J→ = S (ρB)− S (ρB|ρA) , (3)

where the sign ‘→’ indicates that the measurement is being
performed atA. HereS(ρB|ρA) =

∑

k pkS
(

ρkAB

)

is the
measured quantum conditional entropy, where

ρkAB =
(

ΠA
k ⊗ IB

)

ρAB

(

ΠA
k ⊗ IB

)

/pk (4)

and

pk = Tr
[(

ΠA
k ⊗ IB

)

ρAB

]

, (5)

with {ΠA
k } being a complete set of rank-1 projective measure-

ment andIB denotes the identity operator on the Hilbert space
of B. If ρA is a single-qubit state, the rank-1 projectors are of
the formΠA

k = |Φk〉〈Φk|, k = 1, 2, where

|Φ1〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

|Φ2〉 = −e−iφ sin
θ

2
|0〉+ cos

θ

2
|1〉, (6)

with 0 ≤ θ ≤ π and0 ≤ φ < 2π, and with{|0〉, |1〉} form-
ing the computational basis of the qubit Hilbert space. The
classical correlation (CC),C→, in the stateρAB, between the
subsystemsA andB can be quantified by maximizingJ→ with
respect to{ΠA

k } [8], and is given by

C→ = S (ρB)− min
{Πk

A}
∑

k

pkS
(

ρkAB

)

. (7)

The difference between the total correlations and the CC pro-
vides the measure of quantum correlation, QD, and is given
by

D→ = S (ρA)− S (ρAB) + min
{ΠA

k }
∑

k

pkS
(

ρkAB

)

. (8)

There is an inherent asymmetry in the definition of the QD
which implies that the value of the QD is not invariant with
respect to the swapping of the parties. Throughout the pa-
per, we denote the CC and the QD byC andD respectively,
and calculate QD by performing the measurement onA. The
optimization involved in the definition makes the analytical
calculation of the QD, for an arbitrary bipartite state, a hard
problem. However, for states with certain symmetries, suchas
the Bell-diagonal (BD) states, the optimization is known ex-
actly [29].

B. Quantum work deficit

The other information-theoretic quantum correlation mea-
sure that we consider is the QWD [9]. It is quantified as the
difference between the amount of pure states extractable un-
der suitably restricted global and local operations. For a bi-
partite stateρAB, we consider the class of global operations,
termed “closed operations” (CO), consisting of(i) unitary op-
erations, and(ii) dephasing the bipartite state by a set of pro-
jectors,{Πk}, defined on the Hilbert spaceH of ρAB. One
can show that the amount of pure states extractable fromρAB

under CO is given by

ICO = log2 dim(H)− S(ρAB). (9)

On the other hand, the class of “closed local operations and
classical communication” (CLOCC) consists of(i) local uni-
tary operations,(ii) dephasing by local measurement on the
subsystemA, and (iii) communicating the dephased subsys-
tem to the other party,B, over a noiseless quantum channel.
The average quantum state after the projective measurement
{ΠA

k } onA is ρ′AB =
∑

k pkρ
k
AB whereρkAB andpk are given
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by Eqs. (4) and (5), respectively. The amount of pure states
extractable under CLOCC is given by

ICLOCC = log2 dim(H)− min
{ΠA

k }
S (ρ′AB) . (10)

The (one-way) QWD,W , is then defined asW = ICO (ρAB)−
ICLOCC(ρAB).

C. Local dynamics of quantum correlations

We will consider the situation where each qubit of a multi-
qubit system interacts with an independent reservoir via de-
coherence channels. Following the Kraus operator formalism,
the density matrix of a system ofN qubits,ρ0, evolves with
time as

ρ =
∑

k1,··· ,kN

τ
(1)
k1

⊗ · · · ⊗ τ
(N)
kN

ρ0τ
(1)
k1

†
⊗ · · · ⊗ τ

(N)
kN

†
,

(11)

where{τ (α)kα
} describes the noisy channel acting on the qubit

α. The quantum channels describing the interaction of a qubit
and its environment (the reservoir) can be of various types.
We focus on three types of decoherence channels, namely, the
bit-flip (BF), the phase-flip (PF), and the bit-phase-flip (BPF)
channels. The Kraus operators for these channels are given by

τ0 =

√

1− γ

2
I2, τ

i
1 =

√

γ

2
σi, (12)

whereσi, i = 1, 2, 3, are the Pauli spin matrices andI2 is the
identity operator on the qubit Hilbert space. Hereτ i1, for i =
1, 2, and3 correspond to the BF, BPF and PF channels respec-
tively. The decoherence probability,γ, called parametrized
time, depends explicitly on timet and is taken to be the same
for all the qubits with0 ≤ γ ≤ 1. It is convenient to de-
scribe the dynamical evolution of systems under decoherence
channels in terms of the decoherence probabilities, since such
description takes into account a wide range of physical situa-
tions. A particularly important class of physical scenarios is
the one for which the functional dependence of the decoher-
ence probability on time,t, describes the Markovian approx-
imation, whereγ is often an increasing function,fΓ(t), of t,
such asγ = 1− e−Γt, with Γ being a “decay rate”of the func-
tion [30]. When a non-Markovian environment is considered,
γ may be an oscillatory function of time with a decaying am-
plitude. One should note that under Markovian approximation,
Γ 6= 0 and is fixed for a given bunch of local environments,
with the corresponding evolution being scanned by varyingγ.
Once the time evolved density matrix,ρ(γ), is known, one can
calculate its different quantum correlations as functionsof sys-
tem parameters and the decoherence probability, to investigate
their dynamical behavior under various decoherence channels.

D. Freezing

Even as quantum correlations continue to be regarded as
fragile quantities, there are undespairing efforts to control

such decay. An interesting possibility is the identification of
shared quantum states that offer a stagnant or near-constant
behavior of quantum correlations when affected by noisy time-
dynamics. In case we find that a quantum correlation measure
is a constant in time for a certain time interval, we say that it
is exhibiting the phenomena of freezing.

III. FREEZING IN TWO-QUBIT SYSTEMS

A general two-qubit state can be written, up to local unitary
transformations [29, 31], as

ρAB =
1

4
[IA ⊗ IB +

3
∑

α=1

cαασ
α
A ⊗ σα

B

+

3
∑

α=1

cα0σ
α
A ⊗ IB +

3
∑

β=1

c0βIA ⊗ σβ
B], (13)

where the diagonal correlators,cαα = Tr[σα ⊗ σαρAB],
represent “classical” correlators, the single-qubit quantities,
cα0 = Tr[σα ⊗ IBρAB] andc0β = Tr[IA ⊗ σβρAB], are the
magnetizations, andIA andIB are identity operators on the
Hilbert spaces ofA andB respectively.

To address the question of freezing of quantum correlations
in bipartite states under local noise, we first focus our atten-
tion on the BF channel. Using Eq. (11), it is easy to show that
during the BF evolution ofρAB, c11, c10, andc01 remain un-
changed, whereas the correlatorscαα and the magnetizations
c0α andcα0 (α = 2, 3) decay withγ as(1 − γ)2 and(1 − γ)
respectively. To observe freezing phenomena of quantum cor-
relation measures under the BF channel, it is therefore reason-
able to choose the bipartite state of the form

ρAB =
1

4
[IA ⊗ IB +

3
∑

α=1

cαασ
α
A ⊗ σα

B

+
(

c10σ
1
A ⊗ IB + c01IA ⊗ σ1

B

)

], (14)

with cαα 6= 0 as the initial state of the quantum evolution.
We refer to these states as the canonical initial states. Next,
we will show that to preserve quantum correlation from deco-
hering, inhomogeneous magnetizations play an important role.
The analysis is henceforth mainly carried out for the local BF
channel. However, a straightforward generalization of thepre-
sented results is possible for other local quantum channels, in
particular, the PF and the BPF channels.

A. Freezing of QD

We begin by investigating the freezing dynamics of quan-
tum correlations, as measured by the QD, using the canonical
initial states. Unlike the Bell-diagonal (BD) states [29],QD
of the states evolved from CI states cannot be computed ana-
lytically [32]. However, numerical simulations show that for
a large fraction of states –specialCI (SCI) states(S1) – the
optimization takes place for the projectors correspondingto
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three sets of “regular” values{θ, φ}: s1 = {θ = 0, π}, s2 =
{θ = π/2, φ = π/2, 3π/2}, ands3 = {θ = π/2, φ = 0, π}.
The existence of the complementary class, which we denote
by S2, makes the analytical calculation of the QD forρAB

difficult. If D denotes the QD of the stateρAB andD′ repre-
sents the QD calculated with the assumption thatρAB ∈ S1,
then our numerical analysis shows thatǫ < 0.0028, where
ǫ = max{D′ − D} is the maximum value of the error due
to the assumption. Similar findings have been reported earlier
for two-qubitX states [32]. For the numerical simulation, the
two-qubit canonical initial state,ρAB, is generated on a grid
with a separation of∼ 10−3 for all correlators,cαα, and mag-
netizations,c10 andc01. Proposition I provide a necessary and
sufficient criterion for freezing of QD for the SCI states. Nu-
merical evidence strongly suggests that the proposition holds
for the entire class of CI states up to the second decimal place.
Proposition I. If a two-qubit SCI state is sent through local
BF channels, an NS condition for the QD in the evolved state
to remain constant over a finite interval of time is given by
either of the following sets of equations:










(i) (c22/c33) = −(c10/c01) = −c11,
(ii) c233 + c201 ≤ 1,

(iii) F
(

√

c233 + c201

)

≤ F (c11) + F (c01)− F (c10);

(15)











(i) (c33/c22) = −(c10/c01) = −c11,
(ii) c222 + c201 ≤ 1,

(iii) F
(

√

c222 + c201

)

≤ F (c11) + F (c01)− F (c10).

(16)

Here,F (y) = 2
(

H(1+y
2 )− 1

)

, with H(α) = −α log2 α −
(1 − α) log2(1− α) being the binary entropy function.
Note: We call the functionF as the “freezing entropy” and the
relations (15)(iii) and (16)(iii) as the “freezing subadditivity”
I and II, for the QD, respectively.
Proof. For a stateρAB ∈ S1, QD is given byD = min{Dl}
wherel = 1, 2, and3 correspond to the setss1, s2, ands3,
respectively, with

Dl = S(ρA)− S(ρ
(γ)
AB)−

∑

i

pi
∑

ij

χij log2 χijδl3

+(1− δl3)(1 + F (c′δ)/2). (17)

Here, δll′ denote the Kronecker delta,c′δ
2

= c201 + (1 −
γ)4(c233δl1 + c222δl2), pi = 1

2

(

1 + (−1)ic10
)

, and χij =

(1 + (−1)ic10 + (−1)j(c01 + (−1)ic11))/2
(

1 + (−1)ic10
)

.
Note that the marginal statesρA andρB of the canonical initial
stateρAB do not vary withγ. Let us first focus on the neces-
sity of the conditions given in (15) and (16). If freezing of QD
takes place,D must be invariant withγ for a finite interval.
Let us assume thatD = D1, in that interval. From the expres-
sion ofD1, it is easy to show that forD1 to be independent
of γ, condition (15)(i) must be satisfied. Under this condition,
(15)(ii) is required to ensure the positivity of the initialstate
ρAB ∈ S1. SinceD1 = min{Dl}, l = 1, 2, 3, D3 must be

greater thatD1 which leads to the condition (15)(iii), thereby
proving the necessity of the group of conditions given in (15)
for the occurrence of freezing of QD. Next, we assume that
D = D2. In a similar fashion as in the previous case, one can
show that the set of conditions given in (16) is necessary for
the freezing of QD. Lastly, letD = D3. From Eq. (17), it
is easy to see that the only term dependent onγ is S(ρ(γ)AB).

The eigenvalues of the time evolved stateρ(γ)AB with the state
ρAB ∈ S1 as the initial state can be easily determined to be

λ1 =
1

4
(1 + c11 −

√

(c10 + c01)2 + (γ − 1)4(c22 − c33)2),

λ2 =
1

4
(1 + c11 +

√

(c10 + c01)2 + (γ − 1)4(c22 − c33)2),

λ3 =
1

4
(1− c11 −

√

(c10 − c01)2 + (γ − 1)4(c22 + c33)2),

λ4 =
1

4
(1− c11 +

√

(c10 − c01)2 + (γ − 1)4(c22 + c33)2).

(18)

One can easily show thatS(ρ(γ)AB) varies withγ for all possi-
ble non-zero values of the correlators and the magnetizations
which is not possible if QD freezes. Hence (15) and (16) are
the necessary conditions for the occurrence of freezing in QD
in the case of initial two-qubit statesρAB ∈ S1.

To prove the sufficiency of the conditions, we first consider
the set of conditions in (15). If condition (15)(i) is imposed
over the initial two-qubit stateρAB ∈ S1, it can be shown that
D1 is independent of time for all values ofγ. One should note
that a condition similar to this one has earlier been reported
for the PF channel [33]. For|c11| = 1, the initial state is a
pure state with QD monotonically decaying withγ. Moreover,
D2 > D1 ∀ γ, when Eq. (15)(i) is satisfied implying that
the QD is given byD = min{Dl} with l = 1, 3. Besides
(15)(i), condition (15)(ii) ensures positivity of the initial two-
qubit stateρAB ∈ S1. Application of conditions (15)(i)-(ii)
leads to the following forms of the functionsD1 andD3:

D1 =
1

2
(F (c10)− F (c11)),

D3 =
1

2
(F (c01)− F (c′)). (19)

Here,c′2 = c201+c
2
33(1−γ)4. Note thatD3 is a monotonically

decreasing function ofγ. When condition (15)(iii) is applied,
we getD3 > D1 for a finite interval of time in which QD
freezes. Similarly, one can prove that the QD, given byD2, is
invariant withγ when the sets of conditions given in (16) are
obeyed. Hence for the two-qubit statesρAB ∈ S1, the set of
conditions (15) and (16) are both necessary and sufficient for
the QD to remain constant under the BF noise. �

The freezing phase diagram on the(c33, c01) plane, for SCI
states, is exhibited in Fig. 1(a) for a fixed value of|c11| = 0.6.
For given values ofc11, one obtains different freezing phase
diagrams depending on whether condition (15) or (16) is used.
Here we chose condition (15) for Fig. 1(a). Then, the states
that show freezing of QD under the BF channel are enclosed
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by the circlec201 + c233 = 1 and also satisfy the freezing sub-
additivity I for QD. The white region outside the circle de-
picts states that violate positivity. Freezing occurs, fora fi-
nite parametrized time interval ,0 ≤ γ ≤ γf , within the two
crescents – they form the “freezing crescents” for QD for the
chosen parameter space. We refer toγf as the “freezing termi-
nal”. The freezing crescents as well as the freezing terminals
are functions of the input quantum state, the channel, and the
measure employed to quantify quantum correlations.γf can
be found by solving

F (
√

c201 + c233(1− γ)4) = F (c11) + F (c01)− F (c10). (20)

In Fig. 1(a), theγf are mapped onto the freezing crescents in
the phase diagram. The states for which freezing takes place
are indicated by the faded regions while the black region rep-
resents states for which the QD decays withγ. The differ-
ent shades in the freezing crescents indicate the values of the
freezing terminal,γf . Note that the states inside the freezing
crescents can be generated by BF evolution from the states ly-
ing on the perimeter ofc233 + c201 = 1. If |c11| is decreased,
the freezing region expands, thereby indicating an increase in
γf for fixed c33 andc01, although the value of the frozen QD
decreases. We revisit this issue in Proposition IV. Note that
choosing condition (16) to draw the freezing phase diagram,
the correspondingγf would be given by the equation obtained
by replacingc33 by c22 Eq. (20).

Let us now state two corollaries which follow directly from
Proposition I.
Corollary 1. When an SCI state, satisfying the NS freezing
conditions for QD, is subjected to local BF noise, the freezing
terminal attains its maximum value for given values ofc11 and
c01, at the maximum allowed value of|c33| or |c22|.
Proof. From Eqs. (15) and (20),c201+c

2
33(1−γf )4 = constant

for fixedc11 andc01. This implies thatγf attains its maximum
value for|c33|max =

√

1− c201. A similar proof exists if Eq.
(16) is considered instead of Eq. (15). �

Corollary 2. When an SCI state is subjected to local BF noise,
the QD will always decay if the magnetization is homogeneous.
Proof. Homogeneity of magnetization impliesc01 = c10, and
from Eq. (15)(i) or (16)(i), it is clear that the homogeneityof
non-zero magnetization requires|c11| = 1 which violates the
necessary condition for freezing of QD in SCI states. �

Note that ifc01 = c10 = 0, the CI state reduces to a BD
state, in which freezing of different quantum correlationsoc-
cur [17–20]. In the case of the BD states, the second relation
in (15)(i) (or in (16)(i)) does not hold while the first condi-
tion is still valid and gives a necessary condition for freez-
ing [17, 18]. In Fig. 1(a), forc01 = 0, the BD states are
along the horizontal diameter of the circle. The two end points
of that diameter represent BD states for which QD is known
to exhibit freezing [17]. The dynamics of QD for the BD state
with |c11| = |c22| = 0.6, |c33| = 1, c01 = c10 = 0 is shown
in Fig. 1(c). Note that there exist initial states, eg. the states
satisfying (15) and lying onc233 + c201 = 1, for which freezing
terminals longer than that of the BD state can be achieved (Fig.
1(c)). Identifying such a state with a prolonged constancy of
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Figure 1. (Color online) Freezing phase diagram. The freezing of
(a) QD and (b) QWD under local BF channels for the CI states with
|c11| = 0.6 and obeying condition (a) (15)(i) for QD and (b) (24)(i)
for QWD. See text for details. (c) The dynamics of quantum corre-
lations, as measured by the QD and the QWD, using two-qubit CI
states obeying conditions (15) or (24) withc233 + c201 = 1. For all of
these states, the value of|c11| = 0.6. Inset: Another freezing phase
diagram for QWD on the(c33, |c11|) plane for the CI states obeying
condition (24)(i)-(iii) with c233 + c201 = 1. All quantities plotted are
dimensionless, except QD, which is in bits, and QWD, which isin
qubits.

QD under decoherence can be of vital importance in realizing
quantum information protocols.

The results mentioned above are only for the SCI states that
satisfy conditions (15)(i)-(iii). Our numerical findings suggest
that a small fraction of the states that obey conditions (15)(i)
and (ii) belong to the setS2. Extensive numerical simula-
tions indicate that such states are found only in the regionson
the freezing phase diagram where the quantum states do not
show freezing behavior. Irrespective of the optimal sets inthe
measurement of QD, Proposition I and numerical simulations
strongly suggest that the QD of the entire class of CI states,
would exhibit freezing if and only if they satisfy the conditions
(15)(i) and (15)(ii).

B. Freezing of QWD

We now move on to investigate the freezing phenomena
for other information-theoretic quantum correlation measures.
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Freezing of QD has been extensively studied for BD states, for
which QWD and QD coincide [9]. Let us consider an arbitrary
bipartite state,̺AB, of which̺A(B) is the marginal state of the
subsystemA(B) obtained by tracing out the other subsystem
B(A), and advance to the following proposition.
Proposition II. For a given bipartite state̺AB evolving under
local BF channels, if the optimizations in QD and QWD occur
in the same optimal ensemble{p̄k, ¯̺kAB} for γ ≤ γf , and if
H ({p̄k})−S (̺A) is independent of time for the same interval,
then QWD freezes forγ ≤ γf provided QD freezes forγ ≤ γ0f
whereγ0f ≥ γf .
Proof. From the definitions of QD and QWD, we get

W = D − S (̺A) + min
{Πk

A}
∑

k

pkS
(

̺kAB

)

− min
{Πk

A}
S

(

∑

k

pk̺
k
AB

)

. (21)

Using the concavity of von Neumann entropy,

∑

k

p̄kS
(

¯̺kAB

)

= S

(

∑

k

p̄k ¯̺
k
AB

)

+H ({p̄k}) , (22)

using which, we reach

W = D − S (̺A) +H ({p̄k}) , (23)

provided both the minimizations in Eq. (21) take place for the
same ensemble. If Eq. (23) is satisfied, the freezing of QWD
demands the freezing of QD, providedH ({p̄k}) − S (ρA) is
constant in time in the relevant interval. Note that the result is
not restricted to two-qubit states. �

For the SCI states, the conditions in the above proposition
can be relaxed. Specifically, we obtain the following corollary.
Corollary 3. When an SCI state is sent through local BF chan-
nels, QWD freezes whenever QD shows freezing behavior, pro-
vided the optimizations occur for the same ensemble.
Proof. For an SCI state,ρAB, S(ρA) remains unaltered with
time. From the relation between QD and QWD given in Eq.
(23), forρAB, we find thatp̄k = 1/2 ∀k whenever QD freezes
and hence the proof. �

Similarly as for QD, numerical investigation shows that also
in the case of QWD, there exist two sets of states,S̃1 andS̃2,
depending on the optimal measurements. For the statesρAB ∈
S̃1, the optimization of QWD takes place for the projectors
corresponding to three sets of “regular” values, while the rest
of the states constitute the setS̃2. Interestingly, for the states
ρAB ∈ S̃1, the three regular sets are identical to those for QD.
We also observe that the set of states, for which the optimal
measurements are at irregular values, is small. Let us now
state the NS condition for the freezing behavior of QWD.
Proposition III. If a two-qubit state inS̃1 is sent through local
BF channels, an NS condition for QWD in the evolved state to
remain constant over a finite interval of time is given by either

of the following sets of equations:










(i) c22
c33

= − c10
c01

= −c11,
(ii) c233 + c201 ≤ 1,

(iii) F
(

√

c233 + c201

)

≤ F (c11) + F (c01));

(24)











(i) c33
c22

= − c10
c01

= −c11,
(ii) c222 + c201 ≤ 1,

(iii) F
(

√

c222 + c201

)

≤ F (c11) + F (c01)).

(25)

Proof. Proceeding in a similar fashion as in the case of QD, it
can be shown that QWD of the time evolved two-qubit state,
ρ
(γ)
AB, is given byW = min{Wl} with l = 1, 2, and3 cor-

responding to the three sets of{θ, φ} values,s1, s2, ands3,
where

Wl = 2(δl1 + δl2)− S(ρ
(γ)
AB)− δl3

4
∑

i=1

λi log2 λi

+
1

2
F

(

√

c201 + (c233δl1 + c222δl2)(1− γ)4
)

. (26)

Here,

λ1 =
1

4
(1 + c01 + c10 + c11) ,

λ2 =
1

4
(1− c01 − c10 + c11) ,

λ3 =
1

4
(1− c01 + c10 − c11) ,

λ4 =
1

4
(1 + c01 − c10 − c11) .

(27)

We begin with the proof for the necessity of the conditions
(24) and 25. First, let us assume that the QWD is given by
W1. For freezing to occur,W1 must be independent ofγ in a
finite interval. It is easy to show that ifW1 is independent of
γ, then condition (24)(i) is satisfied. Then to ensure the pos-
itivity of the initial state, condition (24)(ii) must be satisfied.
Also, W = W1 implies thatW3 > W1 for a finite range of
γ leading to the condition (24)(iii). Hence the set of condi-
tions (24) is necessary for freezing of QWD whenW = W1.
In a similar fashion, one can show that the set of conditions
(25)(i)-(iii) is necessary for freezing of QWD whenW =W2.
ForW =W3, similar to the case of the QD, theγ-dependence
comes through the termS(ρ(γ)AB) which can be determined us-
ing the eigenvalues given in Eq. (18). One can easily show
that the functionW3 always depends onγ for all possible val-
ues of the correlators and magnetizations, thereby provingthat
freezing of QWD is not possible forW = W3. Hence the sets
of conditions given in (24) and (25) are necessary for freezing
to occur in the case of QWD withρAB ∈ S̃1 as initial states.

To prove the sufficiency of the conditions, we start with
the set of conditions (24). When condition (24)(i) is im-
posed, the functionW1 is independent ofγ, andW2 > W1,
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implying W = min{Wl} with l = 1, 3. The second
condition of (24) is required to ensure positivity of the
initial state once the condition (24)(i) is applied. Under
the conditions (24)(i) and (ii),W1 = − 1

2F (c11) whereas

W3 = 1
2 (F (c01)−F (

√

c201 + c233(1 − γ)4)), which decreases
monotonically withγ. If the third condition of (24) is applied,
W3 > W1 for a finite range ofγ so thatW = W1 in that
range. SinceW1 is invariant withγ, freezing of QWD takes
place in that range thereby proving the sufficiency of the setof
conditions (24). Following a similar path, one can show that
W = W2 freezes for a finite interval ofγ, when conditions
(25) are applied. �

Comparison. There are clear signatures that point to differ-
ences in the behavior of QD and QWD in the dynamics. In
particular, extensive numerical searches show that no CI state
satisfying (24)(i) and (ii) is inS̃2. This is in stark contrast to the
findings for QD. Like QD, the freezing terminal,γ̃f , for QWD
can be determined as the solution of the equationW1 = W3

(assuming conditions (24)). The freezing of the QWD is de-
picted in the(c33, c01) plane in Fig. 1(b) for CI states with
|c11| = 0.6 and when the conditions (24)(i) and (ii) are obeyed.
For fixed parameters, the freezing region for QWD can be
smaller than that of QD, indicating the existenceρAB ∈ S1

for which QD freezes but QWD does not. Interestingly, for
such states, we find that the optimal projectors are different for
QD and QWD. Eg., see Fig. 1(c) forc33 = 0.4. The inset of
Fig. 1(c) maps theγf for the QWD in the(|c11|, c33) plane
under condition (24) withc201 + c233 = 1. The shades repre-
sent similar situations as in the case of Fig. 1(a). The black
inner region between the two curves correspond to states for
which the QWD decay monotonically under the BF noise and
exhibit no freezing. Contrary to the behaviour of QWD, QD
shows freezing for all states on the(|c11|, c33) plane under the
same condition except atc33 = 0, for which the initial state is
completely classical. This is an example where the behaviorof
QD and QWD differ in a very drastic way. In contrast to ear-
lier findings, focussing on BD states [18], our analysis clearly
shows that freezing of quantum correlations depends explicitly
on the choice of the correlation measures.

C. Complementarity

From the freezing behavior of QD and QWD, we observe
that for the CI states, the frozen values of the quantum corre-
lation measures increase while the freezing terminals decrease
with the tuning of appropriate system parameters. This obser-
vation is made more precise in Proposition IV.
Proposition IV. If a two-qubit BD state freezes under local BF
noise, the frozen quantum correlationQf , as measured by QD
or QWD, and the freezing terminal,γF , satisfy the comple-
mentarity relation

Qf + γF ≤ 1, (28)

whereγF = γf or γ̃f , respectively.
Proof. In the case of the BD states,c10 = c01 = 0 in
Eq. (14), and the QD, under condition (15), is given by

(a)
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0
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0.8
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 1

Figure 2. (Color online) Complementarity. Value ofQf + γF for QD
(a) and QWD (b) using the canonical initial state obeying Eq.(15)
and (24) respectively withc233 + c201 = 1 as the initial state under BF
dynamics. The sumQf + γF is represented by different shades, as
indicated by the color-bar, on the(c33, |c11|) plane. The QD is zero
for c33 = 0 (the white vertical line in (a)). For QWD,̃γf = 0 above
the white curves in (b), as shown earlier (inset of Fig. 1(c)). The
dimensions are the same as in Fig. 1.

D = − 1
2F (c11), so thatγf = 1 −

√

|c11|/|c33|. Now,
D + γf is an even function ofc11, having no maxima and
a single minima between0 and 1. As a function ofc33,
D + γf attains its maximum at|c33| = 1. The maximal value
of the function is1 for c11 = 0,±1. SinceW = D in the
case of the BD state, the proposition holds for QWD as well.�

Now the question remains whether the complementary rela-
tion holds for other classes of states. For the CI states thatobey
condition (15), the valuesγf are obtained by the implicit equa-
tion (20). Similar equations can be solved for the other cases.
Numerical analysis with such equations reveal that the comple-
mentarity relation (28) is valid for all possible states satisfying
the NS conditions in Proposition I and III, and therefore cor-
respond to both QD and QWD. Specifically, we find that the
maximum ofQf + γF is 1, and occurs only whenc11 = 0 or
|c11| = |c33| = 1 (see Fig. 2).

D. Non-convexity

Up to now, we have concentrated on the conditions on the
parameters of the class of states for which QD and QWD
freeze. We now study the properties of the set of states which
show freezing for QD as well as those for QWD. In particular,
we have the following proposition.
Proposition V. The SCI states that exhibit freezing of QD form
a non-convex set. The same is true for QWD.
Proof. If the sets are convex, then the stateρ = pρ1AB +
(1 − p)ρ2AB for all 0 ≤ p ≤ 1 will be a state that will exhibit
freezing, ifρ1AB andρ2AB does so. We note that the necessary
conditions for freezing for both the QD and the QWD are given
in (15)(i) and (16)(ii). Therefore, for convexity to hold, we
must have the relation

pc122 + (1− p)c222
pc133 + (1− p)c233

= −pc
1
10 + (1− p)c210

pc101 + (1− p)c201

= −pc111 − (1− p)c211, (29)
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Boundary of separable states
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Figure 3. (Color online) The boundaries of the entangled andfreezing
regions for QD and QWD are plotted for|c11| = 0.2 (a) and|c11| =
0.8 (b). Clearly, the entangled region increases as the value of|c11|
increases, while the trend is opposite for the freezing regions of QD
and QWD. All quantities plotted are dimensionless.

Figure 4. (Color online) States having non-zero quantum correlation
that exhibit freezing under local noise are in the shaded region. While
the separable states contain the classically correlated states, the freez-
ing states do not, and while the class of separable states is convex, the
others are not.

or the relation

pc133 + (1− p)c233
pc122 + (1− p)c222

= −pc
1
10 + (1− p)c210

pc101 + (1− p)c201

= −pc111 − (1− p)c211. (30)

true for all p. Here,c1αα and c2αα, α = 0, 1, 2, 3 denote the
correlators and magnetizations ofρ1AB andρ2AB respectively.
For arbitrary values of the correlators, the above equations are
not satisfied except forp = 0, 1, proving the non-convexity of
the sets. �

E. Relation between entanglement and freezing

We have already found the conditions by which QD and
QWD of two-qubit mixed states remain constant with time in
the presence of local noise. On the other hand, entanglement
of the state undergoes sudden death when local BF channels

are applied [11]. However, we find that the behavior of entan-
glement of the CI states of the form (14) bear interesting corre-
spondence with the freezing behavior of quantum correlations.
For a two-qubit CI state satisfying condition (15), we find that
the region in the(c33, c01) space, for a fixed|c11|, constituting
of entangled states, increases with increasing|c11| (as shown
in Fig. 3), while the freezing regions for QD does the oppo-
site. Similar results are found for QWD. Note that an increase
(a decrease) of|c11|, while satisfying condition (15) results in
the magnetizations of the state becoming more (less) homo-
geneous in magnitude. For the canonical initial states which
satisfy Eq. (15), the value of the freezing terminal,γf , de-
creases with increasing|c11|. In contrast, entanglement lingers
for longer time for CI states with high|c11| (i.e., the time at
which the entanglement becomes zero, increases with the in-
crease of|c11|). For a small value of|c11|, even separable but
quantum correlated (as measured by QD or QWD) CI states,
when subjected to BF noise, can exhibit freezing for a finite in-
terval as exhibited in Fig. 3(a). The dynamics of QD for such
states withγ is depicted in Fig. 1(c). Similar result is obtained
for the BD state, in Ref. [17]. The space of all mixed states
(both separable and entangled) can be classified according to
the occurrence and absence of freezing of quantum correla-
tions. For a schematic representation, see Fig. 4.

IV. MULTIPARTITE FREEZING STATES

The question that follows logically from the above discus-
sion is whether freezing is an entirely bipartite phenomenon
or can also be found in multipartite states. In this section,we
demonstrate the freezing of QD and QWD in multiparty sys-
tems. For the purpose of demonstration, we use the BF chan-
nel. However, similar results can be found for other decohering
channels also.

A. States with genuine multiparty classical correlators

Let us consider a quantum state of an even number,2n, of
qubits given by

ρ2n =
1

22n

(

⊗2n
j=1Ij +

3
∑

α=1

cα2n ⊗2n
j=1 σ

α
j

)

, (31)

wheren ≥ 1. We assume|cα2n| 6= 0. The state is com-
pletely defined by thegenuine multiparty“classical” corre-
latorscα2n = Tr{(σα)

⊗2n
ρ2n}, where none of the single-qubit

operators are multiples ofI. We refer to the state as thediago-
nal state. The marginal states of the above multipartite state in
the bipartitionj : rest(j = 1, · · · , 2n) are maximally mixed.
An NS condition for the freezing of QD, calculated in the par-
tition j : rest(j = 1, · · · , 2n), for the diagonal state, can be
obtained using only the genuine multiparty classical correla-
tors. A similar condition can also be obtained for QWD. Note
that the two-qubit state that we had considered before is of
rank at most4 while the multipartite state here is of rank at
most22n.
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Proposition VI. If local BF noise is applied to a diagonal
state, an NS condition for freezing of QD in the bipartition
where one block consists of a single qubit is given by either of
the following conditions:

{

(i) c22n = (−1)nc12nc
3
2n,

(ii) 1 ≥ |c32n| > |c12n|;
(32)

{

(i) c32n = (−1)nc12nc
2
2n,

(ii) 1 ≥ |c22n| > |c12n|.
(33)

Proof. Under the application of the BF channel, the time-
evolved stateρ(γ)2n has the same form as that given in Eq. (31).
Both the correlatorsc22n andc32n decay withγ as(1−γ)2n un-
der the BF evolution whereasc12n remains constant over time.

For the time evolved stateρ(γ)2n , QD in thej : rest bipartition
with j = 1, · · · , 2n is given by

D2n = S(ρ1) + S(ρ2n−1)− S(ρ
(γ)
2n ) +

1

2
F (c), (34)

whereρ1 andρ2n−1 are the reduced density matrices ofρ
(γ)
2n ,

andc = max
{

|c12n|, |c22n|(1− γ)2n, |c32n|(1− γ)2n
}

. Here,
F (y) is the freezing entropy defined in Proposition I and

S(ρ
(γ)
2n ), the von Neumann entropy of the stateρ(γ)2n , can be

calculated from the eigenvalues of the stateρ(γ)2n , which are
given by

λ1 =
1

22n
(1± c12n ± c22n(1− γ)2n ± c32n(1− γ)2n),

λ2 =
1

22n
(1± c12n ∓ c22n(1− γ)2n ∓ c32n(1− γ)2n),

λ3 =
1

22n
(1∓ c12n ± c22n(1− γ)2n ∓ c32n(1− γ)2n),

λ4 =
1

22n
(1∓ c12n ∓ c22n(1− γ)2n ± c32n(1− γ)2n), (35)

where each of theλi (i = 1, 2, 3, 4) are repeated22n−2 times.

Note also that the marginal states ofρ
(γ)
2n are maximally mixed

and are invariant under the local BF evolution.
We first focus on the necessity of the condition (32). If

freezing of QD takes place,D2n must be independent ofγ
for a finite interval. Let us first assume thatc = |c12n|, in that
interval. Sincec12n remains unaltered under the BF dynamics,
andρ1 andρ2n−1 are independent ofγ, the time dependence in
QD comes through the entropyS(ρ(γ)2n ). One can easily show
thatS(ργ2n) varies withγ for all possible values of the corre-
lators. This implies that QD does not freeze whenc = |c12n|.
Next, let us takec = |c32n|(1 − γ)2n. In this case, if QD is
frozen over a certain interval ofγ, the correlators must sat-
isfy the condition (32)(i) so that theγ dependence cancels out
and the QD becomes a function ofc12n only, thereby proving
the necessity of the condition (32). Similarly, assuming that
c = |c22n|(1 − γ)2n, one can prove the necessity of the condi-
tion (33).

We now prove the sufficiency of the conditions (32) and
(33). Starting with the condition (32)(i), one can show that

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2  6  10  14  18  22  26  30
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1  | = 0.3
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Figure 5. (Color online) Dynamics of the QD in the1 : 2 · · · 2n bi-
partition for the state given in Eq. (31) in the case of the BF channel.
We plot the variation ofγf as a function ofn for different values of
∣

∣c12n
∣

∣ with
∣

∣c32n
∣

∣ = 1, satisfying Eq. (32). All quantities are dimen-
sionless, except the horizontal axis, which is in half of thenumber of
particles.

the QD takes the formD2n = 1
2 (F (c)−F (c12n)−F (c32n(1−

γ)2n))). Application of condition (32)(ii) implies thatD =
− 1

2F (c
1
2n), thereby proving the constancy of the QD for a fi-

nite time interval. The proof is similar for condition (33),when
the same value of frozen QD is obtained. �

Clearly, with the application of condition (32), freezing sus-
tains as long as|c32n|(1 − γ)2n > |c12n|, which gives the value
of the freezing terminal,γf , as

γf = 1−
( |c12n|
|c32n|

)
1

2n

, (36)

with |c32n| 6= 0. For fixedc12n, the maximum ofγf occurs for
c32n = ±1. Similar expression forγf can be obtained from
condition (33).

Note that the value of the frozen discord in the bipartition
j : rest is independent of the number of parties,2n, whereas
the freezing terminal,γf , decreases with increasingn, thereby
indicating a better freezing with low values ofn, for fixed val-
ues ofc12n and c32n. Fig. 5 depicts the variation ofγf with
increasingn for different values of|c12n| with |c32n| = 1. For
fixed values ofn and|c32n|, γf decreases monotonically with
increasing|c12n| which is also clearly depicted in Fig. 5. One
should note that it is also possible to incorporate inhomogene-
ity in the system by introducingx-magnetization in such a way
that the magnetization of all the qubits are equal except forthe
one over which the measurement is performed in the case of
QD and QWD. Similar results can be derived in the case of the
BPF and the PF channels as well.

B. Sweeping state

We now propose another prescription for constructing gen-
eral multiparty freezing states withn qubits,n being even or
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Figure 6. (Color online) (a) Freezing of QD and QWD forρ3(x, α1)
with α1 = 0.2 andx = 0.6. The reduced density matrixρ233 (x, α1)
is a BD state for which QD and QWD are identical. (b) Freezing of
quantum correlations for the four-qubit stateρ4(x, α1, α2) and the
reduced statesρ2344 andρ344 obtained fromρ4(x, α1, α2) by tracing
out the first qubit and the first two qubits respectively. Here, α1 =
0.2, α2 = 0.25, andx = 0.6. Again, the QD and the QWD are
identical forρ344 . All quantities are dimensionless except QD, which
is in bits, and QWD, which is in qubits.

odd. Before presenting the multiparty state, let us first write
down an explicit form of the bipartite state which is a CI state,
and which obeys the NS condition (15) withc233 + c201 = 1:

ρ2(x, α) =
x

2
P
[

|ψ2
0(α)〉 + |ψ2

1(α)〉
]

+
1− x

2

[

P [|ψ2
0(α)〉] + P [|ψ2

1(α)〉]
]

, (37)

wherex = c11, |α| =
√

1+c33
2 , andP [|ψ〉] = |ψ〉〈ψ|. The

states|ψ2
0(α)〉 and|ψ2

1(α)〉 are

|ψ2
0(α)〉 = |0〉 ⊗ |ν10(α)〉, (38)

|ψ2
1(α)〉 = |1〉 ⊗ |ν11(α)〉, (39)

with |ν10(α)〉 = α|0〉 +
√
1− α2|1〉 and |ν11 (α)〉 = α|1〉 +√

1− α2|0〉. The bipartite state of the form (37) can be

straightforwardly extended to the tripartite case as

ρ3(x, α1) =
x

2
P
[

|ψ3
0(α1)〉+ |ψ3

1(α1)〉
]

+
1− x

2

[

P [|ψ3
0(α1)〉] + P [|ψ3

1(α1)〉]
]

, (40)

with the encoding|ψ3
0(α1)〉 = |0〉⊗ |ν20(α1)〉 and|ψ3

1(α1)〉 =
|1〉⊗ |ν21(α1)〉, where|ν20(α1)〉 = α1|00〉+

√

1− α2
1|11〉 and

|ν21(α1)〉 = α1|11〉 +
√

1− α2
1|00〉. The state in Eq. (40)

can show freezing of QD as well as that of QWD in the bi-
partition 1 : 23. Note that the marginal stateρ233 (x, α1) =
Tr1{ρ3(x, α1)} is a BD state, which satisfies the freezing con-
dition of QD and QWD, as depicted in Fig. 6(a).

Starting from the state in Eq. (40), a four-qubit freezing
stateρ4(x, α1, α2) can be generated by performing a two-qubit
encoding in the qubit 3 as

|0〉 → ν20 (α2) = α2|00〉+
√

1− α2
2|11〉,

|1〉 → ν21(α2) = α2|11〉+
√

1− α2
2|00〉. (41)

Freezing of QD as well as QWD is observed, when measure-
ment is made on the first qubit ofρ4(x, α1, α2). Interest-
ingly, like the three-qubit case, all reduced density matrices
of ρ4(x, α1, α2) obtained by tracing out parts from left side,
starting from the qubit 1, show freezing of QD and QWD. In
particular, the marginalsρ2344 , ρ344 of ρ4(x, α1, α2) show freez-
ing of QD and QWD when the bipartition of the marginal state
is considered between the first qubit and the rest of the qubits
and the measurements are performed on the first qubit. The
freezing of the four-qubit state and that exhibited by its three-
and two-qubit reduced states are shown in Fig. 6(b).

The above procedure can be continued to generate ann-
qubit freezing stateρn(x, {αi}), i = 1, · · · , n − 2, by ap-
plying an encoding similar to that in Eq. (41), so that the states
{|0〉, |1〉} of the qubit(n−1) of ρn−1(x, α1, · · · , αn−3) is now
replaced by{ν20(αn−2), ν

2
1 (αn−2)}. The stateρn(x, {αi}) is

a very special multipartite state for which freezing is observed
for QD or QWD calculated in the bipartition1 : 2...n, with the
speciality being that a freezing state ofm parties(m < n) can
be obtained fromρn(x, {αi}) whenn −m parties are traced
out from the “left” side. Each of then−m states obtained dur-
ingsweeping outthe qubits starting from the first qubit is also a
multipartite freezing state in the bipartitionfirst qubit : rest,
when the freezing is observed by performing the measurement
on the qubit(n−m+ 1). We call the stateρn(x, {αi}) as the
sweeping state.

V. EFFECTIVE FREEZING OF QUANTUM
CORRELATIONS: FREEZING INDEX

There exist classes of bipartite as well as multipartite states
whose quantum coherence in the form of QD and QWD can
remain constant for a finite interval of time under a noisy en-
vironment. However, such states are special in nature. Identi-
fying these states are clearly of immense interest for efficient
performance of quantum information tasks. From a practical
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Figure 7. (Color online) The QD (a) and the QWD (b) as functions
of the parametrized timeγ, for the initial state given in Eq. (37)
in conjunction with Eq. (42) for local BF noise. The value of the
parameterx = 0.6. All quantities are dimensionless except QD,
which is in bits, and QWD, which is in qubits.

viewpoint, it will also be interesting to find states that offer
very slow decay of quantum correlations, instead of being con-
stant, in time. The slowly decaying QD and QWD with time
can be termed as “effective freezing”. To visualize such phe-
nomena, we plot the QD and the QWD, as functions of the
parametrized timeγ, using the initial state given in Eq. (37)
with

|ψ2
0(α)〉 = |0〉 ⊗ |ν10(α)〉,

|ψ2
1(β)〉 = |0〉 ⊗ |ν11(β)〉. (42)

Note that while the QD and the QWD exactly freeze forα = β,
the quantities remain effectively frozen in a finite time interval,
∆γ, for “small” values of|α− β|, as demonstrated in Fig. 7.

Freezing index: Let us now introduce a measure, which we
call “freezing index”, to quantify the goodness of freezingbe-
havior for a given trio of quantum correlation measure,Q, an

initial state, and a decoherence channel. It necessarily depends
on (i) the value,Qf , of the frozen quantum correlation,(ii) the
duration of freezing,∆γf , (iii) the onset of a freezing interval,
and(iv) the number of freezing intervals,Nf , in the case of the
existence of multiple freezing in the dynamics. The variation
of the quantum correlation measure with respect to time van-
ishes for exact freezing while it is greater than a small number,
δ, named tolerance, for effective freezing. Note that a given
interval is considered to be effectively frozen only if the vari-
ation of the quantum correlation measure at all points in the
interval (including the end points) from the value of the mea-
sure at the starting point of the interval remains lower thanthe
tolerance,δ. In order to quantify the quality of effective freez-
ing, we define a “freezing index”, ηf , for an arbitrary quantum
correlation measure, as

ηf =





Nf
∑

i=1

Q
f

i (1− γ1,i)

∫ γ2,i

γ1,i

Q(γ)dγ





1

4

, (43)

whereγ1,i andγ2,i are respectively the initial and final points

of the “effective” freezing interval andQ
f

i is the average value
of Q during the freezing interval. For both QD and QWD, the
maximum value ofηf is unity, which occurs when maximally
entangled states are sent through a noiseless channel, whereas
the minimum value ofηf is zero. Note also that the index can
also quantify “exact” freezing phenomena, with the “effective”
freezing interval being replaced by the freezing interval,and

Q
f

i being replaced byQf
i , the frozen correlation value in the

freezing intervali.
To demonstrate the freezing index, we consider the bipartite

state

ρAB =
1

4
[IA ⊗ IB + c30σ

3
A ⊗ IB + c03IA ⊗ σ3

B

+

3
∑

α=1

cαασ
α
A ⊗ σα

B ], (44)

where|c30| = |c03|, i.e., we have chosen the case of homo-
geneous magnetization in thez-direction. In general, QD, or
QWD is found to be decaying functions of time when local BF
noise is applied to the state. However, the decay of the QD can
be made very slow over a certain interval of time, when the
state parameters are tuned to appropriate values (see Fig. 8).
For example, for low values ofc30, with properly chosen other
correlators, the decay-rates of QD as well as QWD are very
low, thereby ensuring a high value ofηf . With an increase in
the magnitude ofc30, the effective freezing breaks and the cor-
relations decay faster with time. This causes a decrease in the
value ofηf . The dynamics of QD and QWD with increasing
c30 is represented in the inset of Fig. 8.

A. Freezing in quantum spin models

The application of quantum information theoretic concepts
and techniques to probe physical phenomena in many-body
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Figure 8. (Color online) Variation of the freezing index against in-
creasingc30 in the state in (44) for QD and QWD, for different values
of δ. The suffixes ofδ denote whether QD or QWD is being consid-
ered as the measure. We choosec11 = 0.6, c22 = −0.6, c33 = 1.0,
and the local BF channel for the purpose of the plot. The curves for
D andW for a fixed value of the tolerance merge with wach other.
Inset: Dynamics of QD and QWD using the state (44) as the initial
state to the BF channel with different values of the magnetizationc30
The curves forc30 = 0.1 for QD and QWD have merged with each
other. The dimensions are as in Fig. 7.

condensed matter systems has given rise to a new cross-
disciplinary area of research [2, 26, 34]. In this section, we
investigate the dynamical behavior of the quantum correla-
tion measures when local noise is applied to initial states that
are ground states of a well-known one-dimensional (1d) quan-
tum spin system, namely, the transverse-field anisotropicXY
model [23] with periodic boundary condition. The Hamilto-
nian of the model is given by

HXY =
J

2

L
∑

i=1

{

(1 + g)σx
i σ

x
i+1 + (1− g)σy

i σ
y
i+1

}

+h

L
∑

i=1

σz
i (45)

whereJ , g (−1 ≤ g ≤ 1), andh are respectively the coupling
strength, the anisotropy, and the strength of the magnetic field.
The model is known to undergo a quantum phase transition at
h
J
≡ λ = λc ≡ 1 [23, 34, 35]. Two special cases of theXY

model are the transverse-field Ising model withg = ±1 and
the isotropicXX model(g = 0) in a transverse magnetic field.
The HamiltonianHXY can be diagonalized exactly in the ther-
modynamic limitL→ ∞ [23], for the entire range of values of
the anisotropy parameter, via the successive applicationsof the
Jordan-Wigner and the Bogoliubov transformations, and hence
one can determine the nearest- and further-neighbour two-spin
reduced density matrices for the ground states of the model.
Since the average transverse magnetization of the ground state
in the case of theXY model in a transverse field does not van-
ish, the two-spin states obtained from the ground states do not
show exact freezing of QD as well as of QWD. We address
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Figure 9. (Color online) QD as function of the parametrized time
γ, for the two-body initial state obtained from the ground state of
the infinite spin transverse Ising Hamiltonian (Eq. 45), forvalues of
the parameterλ on a equally spaced partition of[0.6, 1.4]. into 8
intervals. The curves forλ = 0.6 to 0.9 lie below theλ = 1.0 curve,
while those forλ = 1.1 to 1.4 lie above theλ = 1.0 curve for low
values ofγ, say, forγ < 0.1. Inset: Finite size scaling analysis
for the 1d transverse Ising model using the effective freezing index
as the observable. The phase transition point for anN spin system
approachesλ = 1 asN−0.729 . All quantities are dimensionless,
except QD, which is in bits, andlog2 N , which is in logarithm of the
number of particles.

the issue of effective freezing behavior of quantum correla-
tions in the transverse-fieldXY model and its features in the
vicinity of quantum phase transition. We determine the time
evolved states obtained after local BF channels are appliedto
the nearest-neighbour density matrices of the ground state. In
Fig. 9, we plot the QD as functions of the parametrized time
γ, for a number of two-qubit initial states derived from ground
states with infinite spins, for different values ofλ in the vicin-
ity of the quantum critical point. The toleranceδ is fixed at
0.01. The QD initially decays with time for all values ofλ,
after which it effectively freezes for sometime before asymp-
totically decaying to zero. Note that the dynamics of QD at
the quantum phase transition point stands out from the rest.In
particular, an abrupt change in the effective freezing index at
λ = 1 detects the quantum phase transition. We find that the
effective freezing index increases withλ and vanishes in the
paramagnetic region.

The quantum anisotropicXY model with a transverse mag-
netic field consisting of a finite number of spins can be simu-
lated in laboratories [27] and therefore, it is important tostudy
the behavior of finite spin systems in the context of freezing
dynamics. For a finite system, the transition point is again de-
tected by an abrupt change in the value of the freezing index.
The phase transition point approachesλc = 1 with the increase
in the size of the system asN−0.729 i.e.,

λNc = λc + kN−0.729, (46)

wherek is a dimensionless constant (see Fig. 9).
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VI. CONCLUDING REMARKS

In this article, we address an interesting and as yet not
entirely understood aspect of the effects on the measures of
quantum correlation belonging to the information theoretic
paradigm under decoherence. Specifically, we investigate the
freezing of quantum correlations present in an open quantum
system subjected to local noise. Our analysis identifies condi-
tions that must be satisfied by bipartite as well as multipartite
quantum states for freezing of quantum correlations in a deco-
hering dynamics. It turns out that inhomogeneity in the mag-
netization of the state plays a crucial role in the freezing behav-
ior. By comparing freezing properties of QD and QWD, we
conclude that the identification of a proper measure of correla-
tion is necessary for observation of freezing in a specific quan-
tum state, which is clearly in contrast to earlier results. We
propose a complementarity relation between the frozen value
of the quantum correlation and the freezing terminal, whichis
the time at which the quantum correlation in the decohering
state ceases to be frozen. We also demonstrate the fact that the
set of states exhibiting the freezing behavior of quantum cor-

relations is a non-convex set, containing entangled as wellas
separable states.

We have pointed out that apart from the quantum states that
exhibit exact freezing, there also exist many quantum states
which exhibit extremely slow decay of quantum correlations,
and can be appropriate for information theoretic applications.
We introduce a freezing index – a quantifier of the figure of
merit of the dynamics with respect to freezing, which can be
useful in classifying quantum correlation measures and quan-
tum states with respect to their goodness in freezing. Applying
the freezing index to the transverse-fieldXY model, we show
that the two phases of the ground state of the model have differ-
ent freezing characteristics. The scaling of the freezing index
with system-size is also investigated. We expect our approach
to inspire novel ventures in understanding the intricaciesof the
dynamics of quantum correlations in open quantum systems.
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