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To freeze or not to: Quantum correlations under local decoheence
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We provide necessary and sufficient conditions for freeainguantum correlations as measured by quantum
discord and quantum work deficit in the case of bipartite al agemultipartite states subjected to local noisy
channels. We recognize that inhomogeneity of the magritimaof the shared quantum states plays an im-
portant role in the freezing phenomena. We show that thefrealue of the quantum correlation and the time
interval for freezing follow a complementarity relationorstates which do not exhibit “exact” freezing, but
can be frozen “effectively”, by having a very slow decay naith suitable tuning of the state parameters, we
introduce an index — the freezing index — to quantify the gasd of freezing. We find that the freezing index
can be used to detect quantum phase transitions and diseussrtesponding scaling behavior.

I. INTRODUCTION which bit-flip (BF), phase-flip (PF), or bit-phase-flip (BP&t}
rors can occur. We show that inhomogeneity in magnetiza-

Characterizing correlations between different subsystaim 0N plays a crucial role for the freezing behavior of theeta
a composite quantum system has been an important field a}_he necessary and sufficient criteria show that there edst r
research in quantum informatiol [1, 2]. This is due to the9ions in which QD freezes while QWD does not, highlight-
fact that quantum correlations, in the form of entanglementind the necessity of proper choice of the quantum correiatio
is shown to be significantly more useful for performing com-Méasure to demonstrate the freezing phenomenon, and also
munication and computational tasks over their classicaheo that if the efficient performance of a certain quantum infor-
terparts([B]. Moreover, these tasks have successfully tesdn ~ Mation task requires the freezing of a particular quanturm co
ized in the laboratory in several physical systems and biyere relation measure, the same may not remain efficient in a sit-
attracted a lot of attention in the field of detection and guanUation or environment where another quantum correlation is
tification of quantum correlations[1[4]. On the other hand,frozen. For both QD and QWD, we propose a complementar-
several non-intuitive results like local indistinguisilap of Ity relation between the quantum correlation during theZre
orthogonal product states, non-classical efficienciesasfra- N9 interval end the QUretlon of the mteryal. For the claks o
putational task by states having negligible entanglemetat, — States for which freezing is observed, we find a corresporelen
have also been discoveréd [5-7], which highlights the need\b}etween the entanglement of the initial state end its frepzi
for conceptualization of quantumness in a composite systefroperties. The study is extended to multipartite statesrah
that is different from entanglement. This led to the intredu WO prescriptions for generating multipartite freezinatss are
tion of quantum correlations like quantum discord (QD) [g] ProPosed. Like decoherence-free subspélces [21], inteatiuc
and quantum work deficit (QWD)[9] that are independent oft® Protect qubits, the generated inherently decohererese-f
the entanglement paradigm. states can be a bundlng bI_ock of quantum memary [22] in

One of the difficulties encountered in realizations of qun-Vhich quantum correlation in the form of QD or QWD can

tum information protocols is that quantum correlationsadec P€ Stored.
here rapidly by interaction with the environmdn_ﬂ[lo]. Sipec Undoubtedly, the bipartite as well as the multipartiteesat
ically, the intra-system quantum correlations decreagk wi Which show freezing are of immense theoretical and experi-
time while the quantum correlations between the system an@ental importance in quantum information processing tasks
the environmentincrease. As a result, the system typibally ~as they are inherently decoherence-free states for a fimiee t
comes less efficient in performing quantum information pro-interval. However, there exists a large class of states fachv
cessing tasks. Therefore, the decay of quantum corretatiorfjuantum correlations do not freeze, but the change in quan-
with time in an open quantum system is a cause for concerdum correlations is very slow with time. Hence it is interest
Consequently, knowledge of the behavior of quantum correlaing to quantify the freezing quality of a quantum correlatio
tions in various quantum systems when subjected to differermeasure. We introduce a measure to quantify the goodness of
environments seems indispensable. Recent studies show tfieeezing and call the measure as the “freezing index”. We the
for a specific class of states, entanglement undergeedd@en  apply the measure to characterize the “effective freezifg”
death[11-13] at a finite time whereas QD decays asymptoti-QD present in the anisotropic quantuxiy” model in a trans-
cally with time ]_ verse field |L_2B], which appears in the description of certain
Although a few studies have addressed the issue of presergolid-state realization%q, as well as in that of coreal
ing quantum correlation measures during their dynadi%;s [17laboratory settings [25-27]. Moreover, the index is cagabl
Iﬁl, |dent|fy|ng the inherent property in quantum State’g’-p of deteCting the quantum phase transition in the model. The
hibiting the loss of quantum correlations over time, id sii ~ corresponding finite size scaling analysis has also beeiedar
open question. In the present work, we derive necessary arHt.
sufficient conditions for freezing of quantum correlatioaan The paper is organized as follows. In Secfidn Il, we briefly
sures, for both QD and QWD, when a two-qubit statith  discuss the measures of quantum correlations used intiaig st
magnetizatioris subjected to local depolarizing channels, inand describe the methodology for investigating their dyigam
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in the presence of local noise. In Section 111, the necesaady ~ with {I1;!} being a complete set of rarikprojective measure-
sufficient conditions for freezing of quantum correlatidoas ~ ment and/z denotes the identity operator on the Hilbert space
bipartite states are derived and a complementarity of theeva of B. If p4 is a single-qubit state, the rarikprojectors are of

of the frozen quantum correlation with the freezing intéisa  the formIl! = |®,)(®x|, k = 1,2, where

obtained. The possible correspondence of the entanglement

properties of the initial states to their freezing behaisalso |®1) = cos Q|o> + % sin 0 1)
addressed. Sectin]lV deals with the generalization of the b 2 ; 2 p
partite freezing behavior into multipartite cases. We aksc o) = —e—i% gin 210 e 6
the phenomenon of effective freezing in Secfidn V. There, we [©2) com 2| ) + cos 2| ) ©)

also quantify the quality of freezing by proposing a fregzin . : )
index, and demonstrate its behavior in the case of the weIYVIth 0<0<mandl < ¢ < 2m, and with{|0), |1)} form

. - . Ing the computational basis of the qubit Hilbert space. The
"”OW'T‘ transverse—fle_ld anisotropicY” model.  Sectio VI classical correlation (CCY,,, in the statep 4 g, between the
contains the concluding remarks.

subsystemsl and B can be quantified by maximizing, with
respect to{T11} [8], and is given by

1. UANTUM CORRELATIONS: DEFINITIONS AND

Q DYNAMICS C_, =S (pp) — min ZPZ@S (pZB) . (7
{mi} %

In this section, we provide a brief description of the quamtu The difference between the total correlations and the CE pro
correlation measures used in the paper, namely, the QD and thiides the measure of quantum correlation, QD, and is given
QWD. We also present the methodology for investigating theby
dynamics of quantum correlations, when quantum states are
subjected to local noise, and discuss the freezing of quantu D_, =S (pa) — S (pap) + min Zka (PI,ZB) )
correlations. {m} 5%

There is an inherent asymmetry in the definition of the QD
which implies that the value of the QD is not invariant with
respect to the swapping of the parties. Throughout the pa-
o ) ) ) per, we denote the CC and the QD 6yand D respectively,
In classical information theory, mutual information beeme  5nd calculate QD by performing the measurementlorThe
two random variablesl and B is defined as optimization involved in the definition makes the analytica
I(A: B) = H(A) + H(B) — H(A, B) calculation of the QD, for an a.rbitrary _bipartite state, acha
— H(B)— H(BIA 1 problem. However, for states with certain symmetries, agch
= H(B) - H(B|A), 1) the Bell-diagonal (BD) states, the optimization is known ex

whereH (A) = — Y, pi* log, p* is the Shannon entropy of, ~ actly [29].

and similarly forH (B), while H (A, B) is the joint entropy of

AandB. HereH (B|A) = H(A, B)—H(A) is the conditional o

entropy of B given A. Translation of these definitions into B.  Quantum work deficit

the quantum regime of bipartite quantum states leads to two

inequivalent definitions of mutual information. One of them  The other information-theoretic quantum correlation mea-
which may be identified as the “total correlation” of a bifitert ~ sure that we consider is the QWD [9]. It is quantified as the

A. Quantum discord

quantum system g, can be defined a5 [28] difference between the amount of pure states extractable un
der suitably restricted global and local operations. Foi-a b
I'=5(pa)+S(pp) = S(pan), (2) partite staten, we consider the class of global operations,
wherep, andpp are the states of the subsystersnd 3 termed “closed operations™ (CO), consisting®funitary op-
respectively and (p) = —Tr[plog, p] is the von Neumann €rations, andii) dephasing the bipartite state by a set of pro-

entropy of the quantum staje An alternative definition of ectors,{Il;}, defined on the Hilbert spack of pap. One
mutual information in the quantum regime takes the fdrim [g] ¢an show that the amount of pure states extractable from

under CO is given by
J. =5(ps)— S (pslpa), (3)

. o _ _ Ico = log, dim(H) — S(pag). 9)
where the sign-’ indicates that the measurement is being
performed atA. Here S(pg|pa) = >, prS (b4 ) is the  On the other hand, the class of “closed local operations and

measured quantum conditional entropy, where classical communication” (CLOCC) consists(dflocal uni-
L " " tary operations(ii) dephasing by local measurement on the
PaB = (Hk ® IB) PAB (Hk ® IB) /P (4) subsystem4, and(iii) communicating the dephased subsys-
and tem to the other partyi3, over a noiseless quantum channel.

The average quantum state after the projective measurement
pe=Tr (I} @ In) pas) , (5) {If}onAisp,z =Y, pepli s Whereph 5 andp; are given



by Egs. [[4#) and[{5), respectively. The amount of pure statesuch decay. An interesting possibility is the identificatuf

extractable under CLOCC is given by shared quantum states that offer a stagnant or near-constan
; . behavior of quantum correlations when affected by noisgtim
I = log, dim (H) — S (Pag)- 10 _ : .
ctoce 82 () A (Pan) (10) dynamics. In case we find that a quantum correlation measure

k

is a constant in time for a certain time interval, we say that i

The (one-way) QWDW', is then defined & = Ico (pa5)—~  is exhibiting the phenomena of freezing.

Iciocc(paB)-

. . Ill.  FREEZING IN TWO-QUBIT SYSTEMS
C. Local dynamics of quantum correlations

We will consider the situation where each qubit of a multi- A genera[ two-qubit state can be written, up to local unitary
transformationd [29, 31], as

qubit system interacts with an independent reservoir via de

coherence channels. Following the Kraus operator formalis 1 3
the density matrix of a system ¥ qubits, py, evolves with PAB = Z[IA ®Ig + Z CanlQ R 0%
time as a=1
_ (1) Ny (it ()T 3 3
p_kzk Thy ®...®TkN POTy, ®...®T,W ) +anoUﬁ®IB+ZCOBIA®U'BB]a (13)
LN a=1 =
(12) -

(a) . . . .where the diagonal correlatorg,, = Tr[c® ® c%pag],
WheLe{Tka } descgbes trednmsyb(_:hanrr:e[ acting on thfe q“bt')trepresent “classical” correlators, the single-qubit diti@s,
a. The quantum channels describing the interaction of a qubit “ "y e’ 7 ) 1 andegy — Trlla @ 0% pag], are the

and its environment (the reservoir) can be of various typesmagnetizations, and, and I; are identity operators on the
We focus on three types of decoherence channels, namely, theypa ¢ spaces ofl and B respectively

bit-flip (BF), the phase-flip (PF), and the bit-phase-flip (8P To address the question of freezing of quantum correlations
channels. The Kraus operators for these channels are gven 91 bipartite states under local noise, we first focus oumatte

~ , , tion on the BF channel. Using Eq._{11), it is easy to show that

0 =4/1 =51, Tf—\/jalv (12)  quri i in un-

2 2 uring the BF evolution 0p 4, ¢11, c19, andcy; remain un
changed, whereas the correlators, and the magnetizations
Coa @Ndcyo (o = 2,3) decay withy as(1 — )% and(1 — v)
respectively. To observe freezing phenomena of quantum cor
Felation measures under the BF channel, it is therefor@reas
able to choose the bipartite state of the form

whereo?, i = 1, 2, 3, are the Pauli spin matrices afigis the
identity operator on the qubit Hilbert space. Hefefor i =
1,2, and3 correspond to the BF, BPF and PF channels respe
tively. The decoherence probability, called parametrized
time, depends explicitly on timeand is taken to be the same

for all the qubits with0 < v < 1. It is convenient to de- 1 3

scribe the dynamical evolution of systems under decoherenc PAB = Z[IA ®Ip + Z Canl% ® 0%

channels in terms of the decoherence probabilities, sincle s a=1

description takes into account a wide range of physicaasitu + (clogix ®1Ip + corla ® 0119)]7 (14)

tions. A particularly important class of physical scenari®
the one for which the functional dependence of the decohewith c.. # 0 as the initial state of the quantum evolution.
ence probability on timet, describes the Markovian approx- We refer to these states as the canonical initial statest, Nex
imation, wherey is often an increasing functiorfy-(¢), of t, ~ we will show that to preserve quantum correlation from deco-
such asy = 1 — eI, with T being a “decay rate”of the func- hering, inhomogeneous magnetizations play an importet ro
tion @] When a non-Markovian environment is considered,The analysis is henceforth mainly carried out for the lodal B
~ may be an oscillatory function of time with a decaying am-channel. However, a straightforward generalization ofittee
plitude. One should note that under Markovian approxinmatio sented results is possible for other local quantum chaninels
I' # 0 and is fixed for a given bunch of local environments, particular, the PF and the BPF channels.
with the corresponding evolution being scanned by varying
Once the time evolved density matrjx;), is known, one can
calculate its different quantum correlations as functiofrsys- A. Freezing of QD
tem parameters and the decoherence probability, to igasti
their dynamical behavior under various decoherence ch&nne We begin by investigating the freezing dynamics of quan-
tum correlations, as measured by the QD, using the canonical
. initial states. Unlike the Bell-diagonal (BD) statés|[26]D
D. Freezing of the states evolved from CI states cannot be computed ana-
lytically [82]. However, numerical simulations show that f

Even as quantum correlations continue to be regarded aslarge fraction of states specialCl (SCI) stateqS;) — the

fragile quantities, there are undespairing efforts to knt optimization takes place for the projectors corresponding



three sets of “regular” valued, ¢}: sy = {0 = 0,7}, s =  greater thatD; which leads to the conditiob (IL5)(iii), thereby
{0 =m/2,¢ = 7/2,3m/2}, ands; = {# = 7/2,¢ = 0,7}.  proving the necessity of the group of conditions giver{in) (15
The existence of the complementary class, which we denot®r the occurrence of freezing of QD. Next, we assume that
by S, makes the analytical calculation of the QD fekp D = Ds. In a similar fashion as in the previous case, one can
difficult. If D denotes the QD of the statey,g andD’ repre-  show that the set of conditions given [n116) is necessary for
sents the QD calculated with the assumption that € S;,  the freezing of QD. Lastly, leD = D;. From Eq. [IV), it
then our numerical analysis shows thkat 0.0028, where is easy to see that the on|y term dependen{ydg S( ) )

e = max{D’ — D} is the maximum value of the error due ; ; ) Pan
. D e . The eigenvalues of the time evolved stafﬁB with the state
to the assumption. Similar findings have been reportedezarli

. . . . &1 as the initial state can be easily determined to be
for two-qubit X states[[32]. For the numerical simulation, the PAB € o1 y

two-qubit canonical initial statey 45, IS generated on a grid

with a separation of- 1072 for all correlators¢,., and mag- AL =
netizations¢;g andcg; . Proposition | provide a necessary and
sufficient criterion for freezing of QD for the SCI states. -Nu A2 =
merical evidence strongly suggests that the propositidtisho

for the entire class of Cl states up to the second decimagplac A3 =
Proposition I. If a two-qubit SCI state is sent through local

BF channels, an NS condition for the QD in the evolved state), =
to remain constant over a finite interval of time is given by
either of the following sets of equations:

(L4 c11 — /(€10 + co1)2 + (v — 1)4(caz — c33)2),

(14 11 + v/ (c10 + co1)? + (7 — 1)4(ca — €33)?),

(1 —c11 — v/ (c10 — co1)2 + (7 — 1)*(caz + €33)?),

N N N T

(1 =11+ v/ (c10 — co1)? + (7 — 1)*(can + €33)?).
(18)

(i) (con/cs3) = —(cr0/co1) = —ci1, One can easily show th&t(pgg) varies with~ for all pos§i- .
(i) Ayt <1 ble non-zero values of the correlators and the magnetiztio
33 10l =& which is not possible if QD freezes. Hen¢el(15) dnd (16) are
(iii) F (\/033 + 031) < F(ein) + F(eor) — F(cio); the necessary conditions for the occurrence of freezingdn Q
(15) in the case of initial two-qubit states, g € S;.
To prove the sufficiency of the conditions, we first consider
the set of conditions i (15). If conditioh (115)(i) is impake

(i) (e33/c22) = —(c10/co1) = —c11, over the initial two-qubit state 4 5 € Sy, it can be shown that

(i) 39+ <1, D, is independent of time for all values of One should note
0P ( T o ) <F F _F . that a condition similar to this one has ea.rl|_e.r been re_:rjorte

(i) ¢+ ) S Flew) + Fleo) = Flew) for the PF channel [33]. Fde;;| = 1, the initial state is a

(16)  pure state with QD monotonically decaying withMoreover,
) Dy, > Dy V¥ v, when Eq. [(Ib)(i) is satisfied implying that
_ 1+ _
Here, F(y) = 2 (H(=Y) — 1), with H(a) = —alogya — e QD is given byD = min{D;} with | = 1,3. Besides
(1 - a)log, (1 — «) being the binary entropy function. @3)(i), condition [IF)(ii) ensures positivity of the it two-
Note: We call the functiod” as the “freezing entropy” and the qubit statep. s € Si. Application of conditionsI{I5)(i)-(ii)

relations [(Ib)(iii) and[(T6)(iii) as the “freezing subativity” leads to the following forms of the functiod®; andDs:
I and Il, for the QD, respectively.

Proof. For a statewap € S1, QD is given byD = min{D,;} 1
wherel = 1,2, and3 correspond to the sets, s», andss, D, = §(F(C1o) — F(c1)),
respectively, with 1
D3 = §(F(001) — F(c)). (19)

Di=58(pa) =SS0 =D pi > xi510g, Xi3013
oY Here,'* = 2, +c2;(1—~)*. Note thatDs is a monotonically
decreasing function of. When condition[(I5)(iii) is applied,
we getDs > D, for a finite interval of time in which QD
freezes. Similarly, one can prove that the QD, giverihy is
invariant with~ when the sets of conditions given [n{16) are
obeyed. Hence for the two-qubit statess € Si, the set of
conditions[[Ib) and(16) are both necessary and sufficient fo
the QD to remain constant under the BF noise. |

+(1 = 6u3) (1 + F(c5)/2). 7)

Here, §;;» denote the Kronecker delta:{s2 =3 + (1 -
1) (B30 + By012), pi = 2 (14 (=1)'c), andxy; =

(1 + (=1)'ei0 + (=1)/ (cor + (=1)%c11))/2 (1 + (=1)’cro).
Note that the marginal statpg andpp of the canonical initial
statep 4 do not vary withry. Let us first focus on the neces-
sity of the conditions given i (15) and (16). If freezing obQ

takes placeD must be invariant withy for a finite interval. The freezing phase diagram on thgs, cy1) plane, for SCI

Let us assume thd? = D, in that interval. From the expres- giateq s exhibited in Fiff] 1(a) for med vzzlluq@fﬂ =0.6.

sion of Dy, it is easy to show that fob, to be independent For given values ot;;, one obtains different freezing phase
of ~, condition [I%)(i) must be satisfied. Under this condltlon,diagrams depending on whether conditiod (15]af (16) is used
(@5)(ii) is required to ensure the positivity of the initisiate  Here we chose conditiof {IL5) for Figl 1(a). Then, the states
pap € S1. SinceD; = min{D;},l = 1,2,3, D3 must be that show freezing of QD under the BF channel are enclosed



by the circlec?, + ¢3; = 1 and also satisfy the freezing sub- 1 % iy
additivity | for QD. The white region outside the circle de-
picts states that violate positivity. Freezing occurs, ddfi-
nite parametrized time intervab, < v < vy, withinthe two S o
crescents — they form the “freezing crescents” for QD for the
chosen parameter space. We refey t@s the “freezing termi- 05|
nal”. The freezing crescents as well as the freezing terimina |
are functions of the input quantum state, the channel, amd th = _
measure employed to quantify quantum correlatiops.can
be found by solving

05

F(y\/cgy + c33(1 —=)*) = F(enn) + F(cor) — F(cio). (20) 08

In Fig. [(a), they; are mapped onto the freezing crescents in , 06
the phase diagram. The states for which freezing takes plac& \ § : 0.4
are indicated by the faded regions while the black region rep‘}f B WO N . 0.2
resents states for which the QD decays with The differ-

ent shades in the freezing crescents indicate the valuémof t

0.25

-1 -05 0 0.5 1

tum Corr
o
=
[6)]

freezing terminaly;. Note that the states inside the freezing é\’f =8 \ Cas

crescents can be generated by BF evolution from the states lys 01 S AT ROy S
ing on the perimeter of2; + ¢, = 1. If |c11] is decreased, © | _ _.: =0T 0N Wior 63708 - -
the freezing region expands, thereby indicating an ineréas L S————— Wi 04 S
~y for fixed ¢33 andcyq, although the value of the frozen QD TSmO\ D for separable state- -+ -
decreases. We revisit this issue in Proposition IV. Noté tha 0 e

choosing condition[{16) to draw the freezing phase diagram, 0 02 04 v 0.6 08 !
the corresponding; would be given by the equation obtained (c)

by replacingess by ca2 Eq. (20).
Let us now state two corollaries which follow directly from
Proposition I. Figure 1. (Color online) Freezing phase diagram. The frepnf

Corollary 1. When an SCI state, satisfying the NS freezin%(a) QD and (b) QWD under local BF channels for the Cl stateh wit
conditions for QD, is subjected to local BF noise, the fragzi <] = 0-6 and obeying condition (al (15)(i) for QD and (B)124)()
¢ inal attains it - lue f - | fand for QWD. See text for details. (c) The dynamics of quantunresor
erminal attains 1ts maximum vaiue for given vajues,gian lations, as measured by the QD and the QWD, using two-qubit ClI

co1, at the maximum allowed va21Iue )@2{33| or |C2i|' states obeying conditions {15) 6r124) with, + ¢, = 1. For all of

Proof. From Egs. [(I6) andL(20, +c33(1—7)" = constant  these states, the value fefi;| = 0.6. Inset: Another freezing phase

for fixedci1 andco:. This implies thaty; attains its maximum  diagram for QWD on thécss, |c11]) plane for the CI states obeying

value for|css|mas = /1 — ¢2,. A similar proof exists if Eq. ~ condition [22)(i)-(ii) with ¢35 + ¢5, = 1. All quantities plotted are

({@B) is considered instead of Eq.15). H dimensionless, except QD, which is in bits, and QWD, whicinis
qubits.

Coroallary 2. When an SCI state is subjected to local BF noise,

the QD will always decay if the magnetization is homogeneous o ] o

Proof. Homogeneity of magnetization implies; = c10, and QD under decoherence can be of vital importance in realizing

from Eq. [I5)(i) or [I)(i), it is clear that the homogeneify ~duantum information protocols.
non-zero magnetization requirgs;| = 1 which violates the The results mentioned above are only for the SCI states that

necessary condition for freezing of QD in SCl states. W Satisfy conditions[{IS)(i)-(ii). Our numerical findingaggest
that a small fraction of the states that obey conditibn$({)L5)

Note that ifcy; = ¢10 = 0, the Cl state reduces to a BD a_md (_ii) l_aelong to the sef,. Extensive num_erical sim_ula-

state, in which freezing of different quantum correlatioes tions |nd|pate that sugh states are found only in the regions

cur [17520]. In the case of the BD states, the second relatio{’® freezing phase diagram where the quantum states do not

in B)() (or in (IB)(i)) does not hold while the first condi- show freezing behavior. Irrespective of the opt_|mal _semm_

tion is still valid and gives a necessary condition for freez Measurement of QD, Proposition I and numerical simulations

ing [17,[18]. In Fig. [1(a), force; = 0, the BD states are strongly sgggest that f[he QD of .the entlrg class of (;I.states,

along the horizontal diameter of the circle. The two end fsoin Would exhibit freezing if and only if they satisfy the coridits

of that diameter represent BD states for which QD is knowr{13)() and [I5)(i).

to exhibit freezingl[17]. The dynamics of QD for the BD state

with |011| = |622| = 0.6, |C33| =1,¢c01 =c1o =0 is shown )

in Fig. [(c). Note that there exist initial states, eg. thatest B. Freezing of QWD

satisfying [Ib) and lying on3; + ¢3; = 1, for which freezing

terminals longer than that of the BD state can be achieved (Fi  We now move on to investigate the freezing phenomena

[@(c)). Identifying such a state with a prolonged constarfcy ofor other information-theoretic quantum correlation meas.



Freezing of QD has been extensively studied for BD states, foof the following sets of equations:
which QWD and QD coincidé [9]. Let us consider an arbitrary

L ) : ; (i) 2= _ce_ g
bipartite stateg 45, of whichp 4 () is the marginal state of the 33 co1 11,
subsystemd (B) obtained by tracing out the other subsystem (i) 33+ <1,
B(A), th advance tq the fgllowlng proposition. _ (iii) F ( /2, + C(Qn) < Flen) + Fleo));
Proposition Il. For a given bipartite state 4 5 evolving under
local BF channels, if the optimizations in QD and QWD occur (24)
in the same optimal ensemblgy, 0% 5} for v < 7, and if _ . .
H ({pr.})—S (04) isindependent of time for the same interval, (1) & =-00=—cn,
then QWD freezes fer < ; provided QD freezes foy < 7} (it) 3y +c3 <1,
wherey > ;. (i) F (\/cgrz ¥ 031) < Fleir) + Fleo))-
Proof. From the definitions of QD and QWD, we get (25)
W =D —5S(0a)+ min Zpks (QZB) Proof. Proceeding in a similar fashion as in the case of QD, it
154 s can be shown that QWD of the time evolved two-qubit state,
pf;YB, is given byWW = min{W;} with [ = 1,2, and3 cor-
_{an S (ZkaAB> (21)  responding to the three sets {f, ¢} values,s;, s2, andss,
i k where
Using the concavity of von Neumann entropy, Wi = 2(611 + d1a) — PAB — b Z i logy \;
> mS (dhs) = S (pr’zB> +H({p)), (22 +5F (wzal + (b + Byia) (1 - w*) . (26)
k k
Here,
using which, we reach )
A1 =~ (1+co1+cro+cn),
W =D~ S(ea) + H({pi}), (23) 1
A2 =~ (1—co1 —cio+ci1),
provided both the minimizations in Eq._(21) take place far th
same ensemble. If Eq_(23) is satisfied, the freezing of QWD A3 = 1 (1 - cot + c10 — c11)
demands the freezing of QD, providéd({p.}) — S (pa) is 4 ’
constant in time in the relevant interval. Note that the ltasu Ay = 1 (1+ co1 — c10 — c11)
not restricted to two-qubit states. | 4 0 0 '
For the SCI states, the conditions in the above proposition (27)
can be relaxed. Specifically, we obtain the following caml We begin with the proof for the necessity of the conditions

Corollary 3. When an SCI state is sent through local BF chan-[@2) and2b. First, let us assume that the QWD is given by
nels, QWD freezes whenever QD shows freezing behavior, prey, . For freezing to occuy; must be independent afin a
vided the optimizations occur for the same ensemble. finite interval. It is easy to show that ¥ is independent of
Proof. For an SCI statepap, S(p4) remains unaltered with  ~, then condition[(24)(i) is satisfied. Then to ensure the pos-
time. From the relation between QD and QWD given in Eq.itivity of the initial state, condition[{24)(ii) must be ssfied.
(23), forpap, we find thatp, = 1/2 Vk whenever QD freezes Also, W = W, implies thatiWs > W for a finite range of
and hence the proof. B -+ leading to the conditio (24)(iii). Hence the set of condi-
tions [23) is necessary for freezing of QWD whigh = .
Similarly as for QD, numerical investigation shows thabals In a similar fashion, one can show that the set of conditions
in the case of QWD, there exist two sets of statgsandsS,, (23)(i)-(iii) is necessary for freezing of QWD whé#i = W
depending on the optimal measurements. For the statese ~ ForWW = W, similar to the case of the QD, thedependence
S1, the optimization of QWD takes place for the projectorscomes through the tertﬁ(pAB) which can be determined us-
corresponding to three sets of “regular” values, while &8 r ing the eigenvalues given in Eq[_{18). One can easily show
of the states constitute the s&t. Interestingly, for the states that the functiori¥’; always depends onfor all possible val-
pap € S1, the three regular sets are identical to those for QDues of the correlators and magnetizations, thereby pratiaty
We also observe that the set of states, for which the optimgteezing of QWD is not possible fd#” = W3. Hence the sets
measurements are at irregular values, is small. Let us nowf conditions given in[(24) an@(25) are necessary for fregzi
state the NS condition for the freezmg behavior of QWD. to occur in the case of QWD with, g € S; as initial states.
Proposition IlI. If a two-qubit state irS; is sent through local To prove the sufficiency of the conditions, we start with
BF channels, an NS condition for QWD in the evolved state tdthe set of conditions (24). When condition (24)(i) is im-
remain constant over a finite interval of time is given by@ith posed, the functiomV; is independent ofy, andW, > Wy,



implying W = min{W;} with I = 1,3. The second 0.98 0.98 ~ 1

condition of [24) is required to ensure positivity of the 0.8 0.8 0.8
initial state once the conditiori_(R4)(i) is applied. Under_ o — 06 06
the conditions[(24)(i)) and (i)/; = —%F(cll) whereas g'04 Soa 04
Wy = 1(F(co1) — F(\/c& + ¢Z3(1 —~)%)), which decreases 02 0'2
monotonically withy. If the third condition of[[24) is applied, ' '

W5 > W, for a finite range ofy so thatiW = W, in that 0 ‘ ‘ 0 0

range. Sincd¥; is invariant with~, freezing of QWD takes 105 0 05 1

place in that range thereby proving the sufficiency of thebet Ca3 °3?6
conditions [[24). Following a similar path, one can show that @) ()

W = W, freezes for a finite interval of, when conditions . ]
@3) are applied. m Figure 2. (Color online) Complementarity. Value@¥ + v for QD

(a) and QWD (b) using the canonical initial state obeying EtH)

. . : . and [23) respectively with3; + ¢3; = 1 as the initial state under BF
Comparison. There are clear signatures that point to differ dynamics. The surt); + x is represented by different shades, as

ences in the behav'or of Q,D and QWD in the dynamics. IMindicated by the color-bar, on thess, |ci1]) plane. The QD is zero
particular, extensive numerical searches show that noa@® st for ,, — 0 (the white vertical line in (a)). For QWDy; = 0 above
satisfying[(2#)(i) and (ii) is irS>. Thisisin stark contrastto the the white curves in (b), as shown earlier (inset of Fig. 1(he
findings for QD. Like QD, the freezing terminal;, for QWD dimensions are the same as in [fip. 1.

can be determined as the solution of the equalian= W3

(assuming condition§ (24)). The freezing of the QWD is de-

picted in the(css, co1) plane in Fig.[l(b) for CI states with D = —1F(c11), so thatyy = 1 — \/[e11|/]css|. Now,
le11] = 0.6 and when the conditions{R4)(i) and (ii) are obeyed.D + 7y is an even function ot;;, having no maxima and
For fixed parameters, the freezing region for QWD can be single minima betweefh and 1. As a function ofcss,
smaller than that of QD, indicating the existences € S; D + 7y attains its maximum gt;3| = 1. The maximal value
for which QD freezes but QWD does not. Interestingly, for of the function isl for ¢;; = 0,+1. SinceW = D in the
such states, we find that the optimal projectors are diftdcen  case of the BD state, the proposition holds for QWD as vilél.
QD and QWD. Eg., see Fidl 1(c) fegz = 0.4. The inset of

Fig. [I(c) maps they; for the QWD in the(|c11], cs3) plane Now the question remains whether the complementary rela-
under condition[(24) withe3; + c3; = 1. The shades repre- tion holds for other classes of states. For the Cl statestret
sent similar situations as in the case of Fig. 1(a). The blackondition [I5), the valueg; are obtained by the implicit equa-
inner region between the two curves correspond to states féion (20). Similar equations can be solved for the othersase
which the QWD decay monotonically under the BF noise andNumerical analysis with such equations reveal that the é@mp
exhibit no freezing. Contrary to the behaviour of QWD, QD mentarity relation[(28) is valid for all possible statedsfging
shows freezing for all states on thie;1 |, c33) plane under the the NS conditions in Proposition | and Ill, and therefore-cor
same condition except a3 = 0, for which the initial state is  respond to both QD and QWD. Specifically, we find that the
completely classical. This is an example where the behafior maximum ofQ; + ~r is 1, and occurs only whea; = 0 or
QD and QWD differ in a very drastic way. In contrast to ear-|ci11| = |cs3| = 1 (see Fig[R).

lier findings, focussing on BD statés [18], our analysis djea

shows that freezing of quantum correlations depends ettplic

on the choice of the correlation measures. D. Non-convexity

Up to now, we have concentrated on the conditions on the
C. Complementarity parameters of the class of states for which QD and QWD
freeze. We now study the properties of the set of states which
From the freezing behavior of QD and QWD, we observeshow freezing for QD as well as those for QWD. In patrticular,
that for the Cl states, the frozen values of the quantum eorrewe have the following proposition.
lation measures increase while the freezing terminalssdeser  Proposition V. The SCI states that exhibit freezing of QD form
with the tuning of appropriate system parameters. Thisebsea non-convex set. The same is true for QWD.
vation is made more precise in Proposition IV. Proof. If the sets are convex, then the state= ppl, 5 +
Proposition IV. If a two-qubit BD state freezes under local BF (1 — p)p% 5 for all 0 < p < 1 will be a state that will exhibit
noise, the frozen quantum correlatiqly, as measured by QD freezing, ifp, ; andp? ; does so. We note that the necessary
or QWD, and the freezing terminal;», satisfy the comple- conditions for freezing for both the QD and the QWD are given
mentarity relation in (I5)(i) and [26)(ii). Therefore, for convexity to hold,ew
Qr +r <1, (28) must have the relation

1 N2 1 N2
whereyp = ¢ or 7y, respectively. P +{ p>c§2 — P +{ p)céo
Proof. In the case of the BD states;o = co1 = 0 in pesg + (1 —p)ess pegy + (1= p)egy
Eq. (I3), and the QD, under condition [15), is given by = —pcyy — (1 = p)cy, (29)
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Figure 3. (Color online) The boundaries of the entangledfeeering
regions for QD and QWD are plotted for1| = 0.2 (a) and|c11| =
0.8 (b). Clearly, the entangled region increases as the valye gf
increases, while the trend is opposite for the freezingoregof QD
and QWD. All quantities plotted are dimensionless.
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Figure 4. (Color online) States having non-zero quantumetation
that exhibit freezing under local noise are in the shadeineyVhile
the separable states contain the classically correladéessthe freez-
ing states do not, and while the class of separable statesvsx, the
others are not.

or the relation

pesz + (1 —p)eds Pclo + (1 —p)cko
pC%Q + (1 —p)C%Q p001 + (1 —=p)e (2)
= —pc%l -(1 _p)cil' (30)

true for allp. Here,c!,, andc?,, a = 0,1,2,3 denote the
correlators and magnetlzauons,sz)}gB andp? 5 respectively.
For arbitrary values of the correlators, the above equatioa
not satisfied except fgr = 0, 1, proving the non-convexity of
the sets. [

E. Relation between entanglement and freezing

are applied[11]. However, we find that the behavior of entan-
glement of the Cl states of the form {14) bear interestingezor
spondence with the freezing behavior of quantum correiatio
For a two-qubit ClI state satisfying conditidn {15), we finditth
the region in thecss, cp1) space, for a fixegk:, |, constituting

of entangled states, increases with increasing (as shown

in Fig. [3), while the freezing regions for QD does the oppo-
site. Similar results are found for QWD. Note that an inceeas
(a decrease) dt;]|, while satisfying condition(15) results in
the magnetizations of the state becoming more (less) homo-
geneous in magnitude. For the canonical initial states kvhic
satisfy Eq. [(Ib), the value of the freezing terming}, de-
creases with increasing1|. In contrast, entanglement lingers
for longer time for ClI states with higly1] (i.e., the time at
which the entanglement becomes zero, increases with the in-
crease ofc;1|). For a small value ofc14 |, even separable but
quantum correlated (as measured by QD or QWD) CI states,
when subjected to BF noise, can exhibit freezing for a fimite i
terval as exhibited in Fid.]3(a). The dynamics of QD for such
states withy is depicted in Figl11(c). Similar result is obtained
for the BD state, in Ref[[17]. The space of all mixed states
(both separable and entangled) can be classified accomling t
the occurrence and absence of freezing of quantum correla-
tions. For a schematic representation, see[Rig. 4.

IV. MULTIPARTITE FREEZING STATES

The question that follows logically from the above discus-
sion is whether freezing is an entirely bipartite phenonmeno
or can also be found in multipartite states. In this sectioa,
demonstrate the freezing of QD and QWD in multiparty sys-
tems. For the purpose of demonstration, we use the BF chan-
nel. However, similar results can be found for other deciolger
channels also.

A. States with genuine multiparty classical correlators

Let us consider a quantum state of an even nuntberpf
qubits given by

P2n = 22n < 2nl‘[ +ZCQn j= 10 )7 (31)

wheren > 1. We assuméc§,| # 0. The state is com-
pletely defined by thgenuine multiparty‘classical” corre-
latorscg, = Tr{(c®)®*" pan }, Where none of the single-qubit
operators are multiples df We refer to the state as thdégo-

nal state The marginal states of the above multipartite state in
the bipartition;j : rest(j = 1,--- ,2n) are maximally mixed.
An NS condition for the freezing of QD, calculated in the par-
tition j : rest(y = 1,---,2n), for the diagonal state, can be
obtained using only the genuine multiparty classical dafre

We have already found the conditions by which QD andtors. A similar condition can also be obtained for QWD. Note
QWD of two-qubit mixed states remain constant with time inthat the two-qubit state that we had considered before is of
the presence of local noise. On the other hand, entanglemergnk at mostt while the multipartite state here is of rank at
of the state undergoes sudden death when local BF channetsost22”,



Proposition VI. If local BF noise is applied to a diagonal 0.3
state, an NS condition for freezing of QD in the bipartition ’
where one block consists of a single qubit is given by either o 0.25
the following conditions:
() o= (-1)"chuc} .l
i Cop = -1 nCQnCQWJ
32
Lle@AH%h B2y oas)
0.1}
: 3 _ (_1\n,.l .2 .
(Z) Con _2( 1) 021n02n7 (33) 0.05 t
(it) 1= |eg,| > [eg,].

Proof. Under the application of the BF channel, the time-

evolved statqyéjl) has the same form as that given in Hq.] (31).
Both the correlators3,, andcj,, decay withy as(1 —~)?" un-
der the BF evolution whereas$,, remains constant over time. Figure 5. (Color online) Dynamics of the QD in the: 2- - - 2n bi-
For the time evolved Stat,eg”, QD in thej : rest bipartition partition for the state given in EJ_{B1) in the case of the B&rmel.
with j = 1,--- , 2nis given gy We plot the variation ofy; as a function of: for different values of
o |3, | with |c3,,| = 1, satisfying Eq. [3R). All quantities are dimen-

sionless, except the horizontal axis, which is in half ofibenber of

1
Dan = S(p1) + S(p2n—1) — S(ngz)) + §F(C)v (34) particles.

wherep; andp.,, 1 are the reduced density matriceSpéIL),

andc = max {|c},,|, |c3,](1 —v)*",|c3,|(1 —v)*"}. Here, the QD takes the form,, = L(F(c) = F(c},) — F(c3,(1—
F(y) is the freezing entropy defined in Proposition | and~)2"))). Application of condition[[3R)(ii) implies thaD =
S(p$?), the von Neumann entropy of the statg’, can be  —3F(c3,), thereby proving the constancy of the QD for a fi-

calculated from the eigenvalues of the stﬁéﬁ, which are nite time interval. The proofis similar for conditidn (38)hen
given by the same value of frozen QD is obtained. [ |

Clearly, with the application of condition (82), freezingss

1 i 3 _ 2n 1 H R
M= Lk R (1—)2 4 (1—~)2), tains as long ag3,[(1 — v)*" > |c3,,|, which gives the value

22n of the freezing terminaks, as
Yo = g (1 b, F B, (1- 9" F (1= )™, o &
1 1 2 2 3 2 =1 <|c§n|) ’ (36)
)‘3:2ﬁ(1$02ni02n(1_’7) nqjCQn(l_W) n)’ 2n
1 . ) o 1 3 o with |¢3,,| # 0. For fixedc},,, the maximum ofy; occurs for
Ay = 27(1 F oo F g, (1 =) £65,(1-7)7),(35) 3 ="41. Similar expression foty; can be obtained from
condition [33).
where each of the; (i = 1,2,3,4) are repeated*"~ times. Note that the value of the frozen discord in the bipartition
Note also that the marginal stateSpéIL) are maximally mixed j : rest is independent of the number of partigs, whereas
and are invariant under the local BF evolution. the freezing terminaly;, decreases with increasing thereby

We first focus on the necessity of the conditign](32). Ifindicating a better freezing with low valueswffor fixed val-
freezing of QD takes placd)s, must be independent of  ues ofcl, andc3,. Fig. [3 depicts the variation of; with
for a finite interval. Let us first assume that= |3, |, in that  increasingn for different values ofc},, | with |3,,| = 1. For
interval. Sincer,, remains unaltered under the BF dynamics,fixed values ofn and|c3,,|, ¢ decreases monotonically with
andp; andp,,,_; are independent of, the time dependence in increasingcs,,| which is also clearly depicted in Figl 5. One

QD comes through the entropz(pgjl)). One can easily show should note that it is also possible to incorporate inhomege
that S(p] ) varies with~ for all possible values of the corre- ity in the system by introducing-magnetization in such a way

lators. This implies that QD does not freeze when |} |.  thatthe magnetization of all the qubits are equal excerthier
Next, let us take: = |c3,,|(1 — )2". In this case, if QD is One over which the measurement is performed in the case of

frozen over a certain interval of, the correlators must sat- QD and QWD. Similar results can be derived in the case of the
isfy the condition[(3R)(i) so that the dependence cancels out BPF and the PF channels as well.
and the QD becomes a function &, only, thereby proving
the necessity of the condition (32). Similarly, assuminat th _
¢ =|c3,|(1 —~)*, one can prove the necessity of the condi- B. Sweeping state
tion (33).
We now prove the sufficiency of the conditiods](32) and We now propose another prescription for constructing gen-
(@3). Starting with the conditio (82)(i), one can show thateral multiparty freezing states with qubits,» being even or
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Figure 6. (Color online) (a) Freezing of QD and QWD f&y(x, a1)
with oy = 0.2 andz = 0.6. The reduced density matrpg®(z, 1)

is a BD state for which QD and QWD are identical. (b) Freezifg o
quantum correlations for the four-qubit statg(x, a1, a2) and the
and p3* obtained fromp,(z, a1, o) by tracing

reduced stateg?>*

out the first qubit and the first two qubits respectively. Here =

0.2, az = 0.25, andz = 0.6. Again, the QD and the QWD are
identical forp3*. All quantities are dimensionless except QD, which

is in bits, and QWD, which is in qubits.

odd. Before presenting the multiparty state, let us firstewri
down an explicit form of the bipartite state which is a Cl stat

and which obeys the NS conditidn {15) witky + 3, = 1:

pala, @) = SP [[U3() + [4()]
1—-=z

2

wherez = c¢11, o] =
stategZ () and[y?(«)) are

45 () = 10) @ |5 (),
Wi (o) = 1) ® [vi (o),

[Pllvg ()] + Pllvi(a))]], (37)

5 and P [[)] = |¥)(v]. The

(38)
(39)

with |4 (a)) = a|0) + V1 —a2[1) and|v(a)) = all) +

VI—a2|0).

straightforwardly extended to the tripartite case as
X
pa(z,01) = P [[95(1)) + [ (an))]

L2 [PIg @) + Plludan)] , @40)

with the encodingy3 (a1)) = [0) ® |13 (1)) and|y3 (aq)) =
1) ® |[v2(n)), where|v2 (a1)) = a1]00) + /1 — o2[11) and
|V (c1)) = ai1|11) + /1 — a2]00). The state in Eq.[{40)
can show freezing of QD as well as that of QWD in the bi-
partition 1 : 23. Note that the marginal stajg>(z,a1) =
Tri{ps(x, 1)} is a BD state, which satisfies the freezing con-
dition of QD and QWD, as depicted in Figl. 6(a).

Starting from the state in Eq.[_(40), a four-qubit freezing
stateps(z, a1, ) can be generated by performing a two-qubit
encoding in the qubit 3 as

|0) = 12 () = a2]00) + 1/1 — a3|11),

1 — a2|00).

+

1) = vi(a2) = aa|11) + (41)
Freezing of QD as well as QWD is observed, when measure-
ment is made on the first qubit @f(x, a1, as). Interest-
ingly, like the three-qubit case, all reduced density neasi

of p4(z, aq, 2) Obtained by tracing out parts from left side,
starting from the qubit 1, show freezing of QD and QWD. In
particular, the marginajs?®*, p3* of p4(z, a1, ) show freez-

ing of QD and QWD when the bipartition of the marginal state
is considered between the first qubit and the rest of the gjubit
and the measurements are performed on the first qubit. The
freezing of the four-qubit state and that exhibited by ite#

and two-qubit reduced states are shown in Eig. 6(b).

The above procedure can be continued to generate-an
qubit freezing statey,, (¢, {c;}), ¢ = 1,---,n — 2, by ap-
plying an encoding similar to that in E.{41), so that théesta
{]0),|1)} of the qubit(n—1) of p,,—1 (2, a1, - - , p—3) iSNOW
replaced by{13(a,, o), Vi (a,—2)}. The statep, (x, {a;}) is
a very special multipartite state for which freezing is oked
for QD or QWD calculated in the bipartitioh: 2...n, with the
speciality being that a freezing statemafparties(m < n) can
be obtained fromp,,(x, {;}) whenn — m parties are traced
out fromthe “left” side. Each of the —m states obtained dur-
ing sweeping outhe qubits starting from the first qubitis also a
multipartite freezing state in the bipartitigiirst qubit : rest,
when the freezing is observed by performing the measurement
on the qubitn —m + 1). We call the state,, (x, {«;}) as the
sweeping state.

V. EFFECTIVE FREEZING OF QUANTUM
CORRELATIONS: FREEZING INDEX

There exist classes of bipartite as well as multipartiteesta
whose quantum coherence in the form of QD and QWD can
remain constant for a finite interval of time under a noisy en-
vironment. However, such states are special in nature titden
fying these states are clearly of immense interest for effici

The bipartite state of the forni (87) can be performance of quantum information tasks. From a practical
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Figure 7. (Color online) The QD (a) and the QWD (b) as function
of the parametrized time, for the initial state given in Eq.[(37)
in conjunction with Eq. [[4R) for local BF noise. The value bét
parameterz = 0.6. All quantities are dimensionless except QD,
which is in bits, and QWD, which is in qubits.

viewpoint, it will also be interesting to find states thatesff
very slow decay of quantum correlations, instead of beimg co
stant, in time. The slowly decaying QD and QWD with time

11

initial state, and a decoherence channel. It necessarlgrots
on(i) the valueR/, of the frozen quantum correlatiofii) the
duration of freezingA~7, (iii) the onset of a freezing interval,
and(iv) the number of freezing intervaldiy, in the case of the
existence of multiple freezing in the dynamics. The vaoiati

of the quantum correlation measure with respect to time van-
ishes for exact freezing while it is greater than a small nemb

0, named tolerance, for effective freezing. Note that a given
interval is considered to be effectively frozen only if theriv
ation of the quantum correlation measure at all points in the
interval (including the end points) from the value of the mea
sure at the starting point of the interval remains lower ttinen
tolerancey. In order to quantify the quality of effective freez-
ing, we define afreezing indeX 7, for an arbitrary quantum
correlation measure, as

V2,i

_Q(v)dw ;o (43)

V1,4

Ny
ng = ZQi (1 =)
i=1

wherey,; ; and~, ; are respectively the initial and final points

of the “effective” freezing interval an@f is the average value
of @ during the freezing interval. For both QD and QWD, the
maximum value of); is unity, which occurs when maximally
entangled states are sent through a noiseless channegasher
the minimum value ofj; is zero. Note also that the index can
also quantify “exact” freezing phenomena, with the “effeet
freezing interval being replaced by the freezing intereald

@if being replaced b@f, the frozen correlation value in the
freezing interval.

To demonstrate the freezing index, we consider the bipartit
state

1
pap = ~[Ia @ Ip + c300% @ Ip + co3la @ 0%

4
3
+ Z Caals ® o%], (44)
a=1
where|csg| = |cos|, i.e., we have chosen the case of homo-

geneous magnetization in thedirection. In general, QD, or
QWD is found to be decaying functions of time when local BF
noise is applied to the state. However, the decay of the QD can
be made very slow over a certain interval of time, when the

can be termed as “effective freezing”. To visualize such-pheState parameters are tuned to appropriate values (seélFig. 8
nomena, we plot the QD and the QWD, as functions of thd~or example, for low values @fg, with properly chosen other

parametrized time/, using the initial state given in Eq[_(87)
with

[¥5(a)) = [0) @ |vg(a)),
[¥3(8)) = 10) @ [v1(B))- (42)
Note that while the QD and the QWD exactly freezedor 3,

the quantities remain effectively frozen in a finite timeeirval,
A, for “small” values ofla — 3|, as demonstrated in Figl 7.

Freezing index: Let us now introduce a measure, which we
call “freezing index”, to quantify the goodness of freezivey
havior for a given trio of quantum correlation measupe an

correlators, the decay-rates of QD as well as QWD are very
low, thereby ensuring a high value gf. With an increase in
the magnitude ofs, the effective freezing breaks and the cor-
relations decay faster with time. This causes a decreasein t
value ofny. The dynamics of QD and QWD with increasing
c3o is represented in the inset of FIg. 8.

A. Freezing in quantum spin models

The application of quantum information theoretic concepts
and techniques to probe physical phenomena in many-body
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Figure 8. (Color online) Variation of the freezing index ag in- ) ) ) .

creasing:so in the state in{4) for QD and QWD, for different values Figure 9. (Color online) QD as function of the parametrizidet
of 5. The suffixes off denote whether QD or QWD is being consid- 7 for the two-body initial state obtained from the groundtestaf
ered as the measure. We choose = 0.6, coz — —0.6, cs3 — 1.0, the infinite spin transverse Ising Hamllton.lqn (Edl 45),\far.ues of
and the local BF channel for the purpose of the plot. The cufge ~ the parameten on a equally spaced partition §9.6,1.4]. into 8
D andW for a fixed value of the tolerance merge with wach other, Nt€rvals. The curves fok = 0.6 t0 0.9 lie below thex = 1.0 curve,
Inset: Dynamics of QD and QWD using the stdiel (44) as theainiti while those for\ = 1.1 to 1.4 lie above thex = 1.0 curve for low

state to the BF channel with different values of the magaéitncs, ~ Values ofy, say, fory < 0.1. Inset: Finite size scaling analysis
The curves forso = 0.1 for QD and QWD have merged with each for the 1d transverse Ising model using the effective firegandex
other. The dimensions are as in . 7. as the observable. The phase transition point folNagpin system

approaches\ = 1 as N %"  All quantities are dimensionless,
except QD, which is in bits, anldg, N, which is in logarithm of the

. . number of particles.
condensed matter systems has given rise to a new cross-

disciplinary area of research 34]. In this sectior, w
investigate the dynamical behavior of the quantum correl
tion measures when local noise is applied to initial statas t
are ground states of a well-known one-dimensional (1d) qual
tum spin system, namely, the transverse-field anisotrapic
model [23] with periodic boundary condition. The Hamilto-
nian of the model is given by

%he issue of effective freezing behavior of quantum cofrela
tions in the transverse-field Y model and its features in the
Iﬁ\/icinity of quantum phase transition. We determine the time
evolved states obtained after local BF channels are aplied
the nearest-neighbour density matrices of the ground. dtate
Fig.[d, we plot the QD as functions of the parametrized time

I ~, for a number of two-qubit initial states derived from groun
_ 7 T _a ALY states with infinite spins, for different valuesfn the vicin-
Hxy 2 Z {1+ g)ovois + (1 -g)oloti} ity of the quantum critical point. The toleranéeis fixed at
L 0.01. The QD initially decays with time for all values af
i hz o? (45) aftgr which it effectively freezes for sometime be_fore apym
p ! totically decaying to zero. Note that the dynamics of QD at
the quantum phase transition point stands out from theIrest.
whereJ, g (-1 < g < 1), andh are respectively the coupling particular, an abrupt change in the effective freezing xnake
strength, the anisotropy, and the strength of the magneli: fi A = 1 detects the quantum phase transition. We find that the
The model is known to undergo a quantum phase transition affective freezing index increases withand vanishes in the
4 =X =\ =1[23,[34]35]. Two special cases of theY  paramagnetic region.
model are the transverse-field Ising model wjth= +1 and The quantum anisotropi& Y model with a transverse mag-
the isotropicX X model(g = 0) in atransverse magnetic field. netic field consisting of a finite number of spins can be simu-
The Hamiltoniarn/ xy can be diagonalized exactly in the ther- |ated in laboratories [27] and therefore, it is importanstiody
modynamic limitL — oo [23], for the entire range of values of the behavior of finite spin systems in the context of freezing
the anisotropy parameter, via the successive applicaticthe  dynamics. For a finite system, the transition point is again d
Jordan-Wigner and the Bogoliubov transformations, an@d@en tected by an abrupt change in the value of the freezing index.
one can determine the nearest- and further-neighbourpivo-s The phase transition point approaches= 1 with the increase
reduced density matrices for the ground states of the modeih the size of the system &§—272° j.e.,
Since the average transverse magnetization of the groated st
in the case of th&'Y model in a transverse field does not van- MV =\, + ENTOT29 (46)
ish, the two-spin states obtained from the ground state®tio n
show exact freezing of QD as well as of QWD. We addressvherek is a dimensionless constant (see Elg. 9).

i=1
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VI. CONCLUDING REMARKS relations is a non-convex set, containing entangled asasell
separable states.
We have pointed out that apart from the quantum states that
exhibit exact freezing, there also exist many quantum state
In this article, we address an interesting and as yet nothich exhibit extremely slow decay of quantum correlations

entirely understood aspect of the effects on the measures énd can be appropriate for information theoretic apploreti
quantum correlation belonging to the information theareti We introduce a freezing index — a quantifier of the figure of
paradigm under decoherence. Specifically, we investigate t merit of the dynamics with respect to freezing, which can be
freezing of quantum correlations present in an open quantumseful in classifying quantum correlation measures andhgua
system subjected to local noise. Our analysis identifiegieon tum states with respect to their goodness in freezing. Apgly
tions that must be satisfied by bipartite as well as multifgart the freezing index to the transverse-field” model, we show
quantum states for freezing of quantum correlations in @dec thatthe two phases of the ground state of the model have-diffe
hering dynamics. It turns out that inhomogeneity in the magent freezing characteristics. The scaling of the freeziutgx
netization of the state plays a crucial role in the freezielgdy- ~ with system-size is also investigated. We expect our agroa
ior. By comparing freezing properties of QD and QWD, we to inspire novel ventures in understanding the intricacfebe
conclude that the identification of a proper measure of tarre dynamics of quantum correlations in open quantum systems.
tion is necessary for observation of freezing in a specifamngu
tum state, which is clearly in contrast to earlier resultse W
propose a complementarity relation between the frozerevalu ACKNOWLEDGMENTS
of the quantum correlation and the freezing terminal, wigch
the time at which the quantum correlation in the decohering We thank A. Bhattacharya and M. Masud for useful discus-
state ceases to be frozen. We also demonstrate the fadt¢hat sions. We acknowledge computations performed at the cluste
set of states exhibiting the freezing behavior of quantum co computing facility of Harish-Chandra Research Institute.
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