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We derive complementarity relations for arbitrary quantum states of multiparty systems, of ar-
bitrary number of parties and dimensions, between the purity of a part of the system and several
correlation quantities, including entanglement and other quantum correlations as well as classical
and total correlations, of that part with the remainder of the system. We subsequently use such
a complementarity relation, between purity and quantum mutual information in the tripartite sce-
nario, to provide a bound on the secret key rate for individual attacks on a quantum key distribution
protocol.

I. INTRODUCTION

Quantum key distribution (QKD) is a protocol that al-
lows two distant parties to share a secret without meeting
and in the presence of a malicious eavesdropper [1]. The
security of the protocol is based on the validity of quan-
tum mechanics [2]. Quantum key distribution protocols
broadly fall under two main categories, viz. the product-
state and the entanglement based ones, the Bennett-
Brassard 1984 (BB84) [3] and the Ekert 1991 [4] protocols
being prominent examples of the respective categories. It
was later realized that the two categories are similar from
several perspectives [5], with a notable difference being
in the device independent security proof [4, 6–8], which
is based on the Ekert protocol with security obtained
via violation of Bell inequality [9]. We may note that in
the two-qubit scenario, strong violation of Bell inequal-
ity is possible only by states close to maximally entangled
states, and such states are almost pure [10, 11]. An al-
most pure state shared between the legitimate users of
the key distribution channel implies that these users are
informationally detached from the rest of the world, in-
cluding a possible eavesdropper, indicating the security
of the information flowing in the channel between the
legitimate users.

In this work, we ask whether we can start a step later
to obtain a security proof of quantum cryptography for
individual attacks via a variation [12] of the Ekert key
distribution protocol. Precisely, we consider states with
high purity and that also has correlations which allow
generation of correlated bit sequences. We consider a sce-
nario with three parties called Alice, Bob, and Eve, where
Alice and Bob represent the legitimate users of the pro-
tocol, while Eve represents the potential eavesdropper.
We prove complementarity relations between the purity
of the Alice-Bob system and the quantum mutual infor-
mation in the Alice-Bob versus Eve bipartition. We then
show that such a complementarity can potentially lead
to a bound on the secret key rate in the case of individ-
ual attacks. This secret key rate is obtained by concepts
independent of Bell inequalities, which, along with pro-
viding another perspective of the security of the Ekert

protocol, can also be important to avoid vulnerability of
the proof from loopholes in experiments that violate Bell
inequalities [8, 13] (cf. [14]). Note that the complemen-
tarity relation is true for any quantum state of arbitrary
dimensions of the individual parties, and is also true for
an arbitrary number of parties, and so can have appli-
cations in other quantum information protocols with or
without security.
On the way, we also show that a similar complementar-

ity exists in all multiparty quantum systems between the
purity of the “legitimate” users, and a large number of
quantum characteristics including quantum correlations
in the legitimate versus “eavesdroppers” bipartition, ir-
respective of whether the multipartite quantum state is
pure or mixed and irrespective of the dimensions of the
subsystems and the number of parties involved. We also
numerically investigate the tightness of the obtained in-
equalities by Haar uniformly generating states of three
qubits of different ranks.
The paper is organized as follows. In the following

section, we derive the complementarity relations. Their
tightness is considered in the Sec. III. In the succeeding
section (Sec. IV), we use a complementarity relation to
provide bounds on the secret key rate. A concluding
section is presented at the end.

II. COMPLEMENTARITY RELATIONS

We now derive the complementarity relations for arbi-
trary multiparty quantum states. The parties involved
are divided into “legitimate” users and “eavesdroppers”.
The relations show a trade-off between two quantities,
one of which is the purity of the state of the legitimate
users, while the other is a quantum characteristic in the
legitimate users versus eavesdroppers bipartition. To be
specific, we begin with the three party case, where there
are two legitimate users and a single eavesdropper. We
will briefly mention the case of an arbitrary number of
parties later.
Consider therefore a three-party quantum system in

the state ρABC . For several non-classical bipartite cor-
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relation measures, Q′, the relation Q′
AB:C − SAB ≤ 0

holds, where SAB ≡ S(ρAB) is the von Neumann en-
tropy of its argument, and ρAB = trCρABC . [SAC , etc.
are similarly defined.] And Q′

AB:C is the non-classical
correlation Q′ of the state ρABC in the AB : C bipar-
tition. The relation holds [15] e.g. for entanglement
of formation [16], entanglement cost [17], distillable en-
tanglement [16], relative entropy of entanglement [18],
and one-way distilled key rate [19]. Interestingly, Q′

AB:C

can also be a measure of classical correlation, as quanti-
fied by the measured quantum mutual information, de-
fined as follows. The measured quantum mutual infor-
mation [20], of a bipartite quantum state ̺XY is de-
fined as J (̺XY ) = S(ρX) − min

∑

pkS(̺
k
XY ), where

the minimization is over measurements performed by
the party Y that creates the ensemble {pk, ̺kXY }. Here,
ρX = trY ̺XY . That Q′

AB:C − SAB ≤ 0 is valid for Q′

identified with this classical correlation, follows e.g. from
Ref. [21].

FIG. 1. (Color.) The complementarity for three qubit systems. The different panels exhibit histograms for the sum of two
quantities, viz. the normalized purity and a normalized correlation. The correlation is the negativity in panel (a), logarithmic
negativity in (b), and quantum mutual information in (c), for rank 1 states. We Haar uniformly generate 104 three qubit states
for generating the histograms. The histograms for normalized measured quantum mutual information, quantum discord, and
quantum work deficit are almost identical to that of the normalized quantum mutual information. The vertical axis represents
the relative frequency of occurence of a randomly generated three-qubit state in the corresponding range of the sum of the two
quantities on the horizontal axis. All quantities are dimensionless.

This relationQ′
AB:C−SAB ≤ 0 can be rewritten, using

appropriate normalized quantities, as

log2 dAB − SAB

log2 dAB

+
Q′

AB:C

min{log2 dAB, log2 dC}

≤ 1 +Q′
AB:C

(

1

min{log2 dAB, log2 dC}
− 1

log2 dAB

)

.

(1)

While the above relation only needs Q′
AB:C − SAB ≤ 0,

we may note that the choice of the denominators in
the terms on the left hand side have been guided by
the fact that 0 ≤ S(ρAB) ≤ log2 dAB , so that 0 ≤
log2 dAB − S(ρAB) ≤ log2 dAB, and the oft-true relation
0 ≤ Q′

AB:C ≤ min{log2 dAB, log2 dC}. We indicate the
dimension of the Hilbert space corresponding to a system
denoted as X by dX .

The first term, PAB ≡ log
2
dAB−SAB

log
2
dAB

, on the left hand

side of ineq. (1) quantifies the purity of the system in
the AB part, i.e. of ρAB. We have normalized the quan-
tity so that it varies between 0 and 1. The second term,

QAB:C ≡ Q′
AB:C

min{log
2
dAB ,log

2
dC} , represents the normalized

non-classical correlation of the system in the AB : C
bipartition. Again, it has been normalized, and if we as-

sume that 0 ≤ Q′
AB:C ≤ min{log2 dAB , log2 dC} is true,

we once more have 0 ≤ QAB:C ≤ 1. Thus the trivial
upper bound of the quantity PAB +QAB:C is 2.
Eq. (1) can further be shuffled into

PAB +QAB:C ≤ 1, when dAB ≤ dC , (2)

while it reads

PAB +QAB:C ≤ 2− log2 dC
log2 dAB

, when dAB > dC (3)

and Q′
AB:C ≤ log2 dC .

For systems in Cd⊗Cd⊗Cd, the complementarity relation
reads

PAB +QAB:C ≤ 3

2
. (4)

Note that the right-hand-side is independent of dimen-
sion in this case. In particular, for three-qubit quantum
states, the bound is three-halves, and is saturated by
the Greenberger-Horne-Zeilinger state (|000〉+|111〉)/

√
2

[22]. As mentioned before, the complementarity holds
for several entanglement measures. It is natural to ask
whether the same holds for other quantum correlation
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measures including entanglement measures like negativ-
ity [23] and logarithmic negativity [23], and information
theoretic quantum correlations like quantum discord [20]
and quantum work-deficit [24]. If quantum discord is de-
fined by considering the measurement in its definition to
be in the first party, then its value for an arbitrary quan-
tum state in AB : C can be shown to be bounded above
by SAB [25], so that the complementarity relation (2) is
valid for the measure. Henceforth, we consider that the
quantum discord is defined by performing the measure-

ment in the second party. Numerical simulations by Haar
uniform generation of three-qubit states having different
ranks (ranging from 1 till 4) show that several correla-
tion measures indeed obey the above complementarity
(ineq. (4)). See Figs. 1 and 2 for depictions of the cases
of ranks 1 and 2. For higher ranks, the complementar-
ities become less and less tight. We will discuss in the
succeeding section about the tightness of these relations.
It is also clear that similar complementarities will hold
also when purity is quantified by utilizing Rényi [26] and
Tsallis [27] entropies.

FIG. 2. (Color.) The complementarity relation, again for three qubit systems, but for rank 2 states. The different panels
exhibit histograms for the sum of two quantities, viz. the normalized purity and a normalized correlation. The correlation
is the negativity in panel (a), logarithmic negativity in (b), quantum mutual information in (c), measured quantum mutual
information in (d), quantum discord in (e), and quantum work deficit in (f). All other considerations are the same as in Fig. 1.

The quantum mutual information [28, 29] of a bipartite
quantum state ̺XY , identified with the total correlation
in the state, is defined as I ′X:Y = SX +SY −SXY . Using
the Araki-Lieb triangle inequality [30], |SX−SY | ≤ SXY ,
it follows that

I ′X:Y ≤ 2min{SX , SY } ≤ 2min{log2 dX , log2 dY }. (5)

The Araki-Lieb inequality therefore helps us to obtain the
relations in (2) and (3) with the normalized correlation
Q replaced by the normalized quantum mutual informa-
tion, with the additional property that the parallel of the
condition Q′

AB:C ≤ log2 dC being automatically satisfied
here. More precisely, we have

PAB + IAB:C ≤ 1 when dAB ≤ dC , (6)

PAB + IAB:C ≤ 2− log2 dC
log2 dAB

when dAB > dC , (7)

where IAB:C =
I′
AB:C

2min{log
2
dAB ,log

2
dC} .

For quantum states of three qudits, we again have the
dimension-independent complementarity bound,

PAB + IAB:C ≤ 3

2
, (8)

and again for three qubits, the GHZ state saturates the
bound.
The (classical) mutual information [28] between two

observables X and Y of the systems X and Y is given by

Ĩ ′X :Y = H(X ) +H(Y)−H(X ,Y), (9)

where H(X ) = −
∑

i p
X
i log2 p

X
i is the Shannon entropy

of the observable X , with the observable X having been
measured in the state ̺XY and the outcomes xi obtained
with the Born probabilities pXi = trX(trY (̺XY )X ).
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H(Y) is similarly defined, and H(X ,Y) is the joint en-
tropy of the observable X⊗Y when measured in the state
ρXY . Now the classical mutual information is bounded
above by the quantum one [31], and so the relations for
the quantum mutual information derived above are also
true for the classical variety. We will use the notation

ĨX :Y =
Ĩ′
X :Y

2min{log
2
dX ,log

2
dY } .

Since quantum mutual information is non-increasing
under discarding of parties [29], and since classical mu-
tual information is a lower bound for the quantum one
[31], the quantum mutual information in the AB : C bi-
partition, in the complementarity, can be replaced by the
minimum of the quantum or classical mutual information
in A : C and B : C. Similarly, the quantum correlation
in the AB : C partition can be replaced by the mini-
mum of the quantum correlation in A : C and B : C, by
assuming that the quantum correlation is non-increasing

under discarding of parties.
As mentioned earlier, the complementarity relations

are also true for N -party systems in the following sense.
We envisage a quantum communication protocol of N−r
“legitimate” parties, and a further r “eavesdroppers”
who are trying to obtain some information from the le-
gitimate users. The entire system of N parties share a
quantum state ρ. It is now possible to obtain comple-
mentarities in this N -party system between purity of the
state of the N − r legitimate users and correlation in the
legitimate users versus eavesdroppers bipartition.
It is clear that the complementarity relations consid-

ered will also be true for P+min{QA:C ,QB:C}, provided
Q is non-increasing under discarding of subsystems. Nu-
merical analysis of this quantity for 104 Haar uniformly
generated states of three qubits, separately for rank-1,
2, and 3 states, reveals that it is indeed true for all the
correlation measures considered. See Fig. 3.

(a) rank-1 (b) rank-2 (c) rank-3

FIG. 3. (Color.) The quantity P+min{QA:C ,QB:C}. The different panels exhibit overlapping histograms, of three qubit states
of different ranks, for this quantity. The green (red) bars correspond to the cases when Q represents the normalized negativity
(normalized quantum mutual information). The panels (a), (b), and (c) are respectively for ranks 1, 2, and 3. For each rank,
we Haar uniformly generate 104 three qubit states of that rank. The vertical axis represents the relative frequency of occurence
of a randomly generated three-qubit state of the considered rank in the corresponding range of the sum of the two quantities
on the horizontal axis. All quantities are dimensionless.

III. TIGHTNESS OF THE

COMPLEMENTARITY RELATIONS

We now investigate how tight the complementarity re-
lations are for the different measures. To examine the
tightness of the relation, we compute the average perpen-
dicular distance of the points from the straight line repre-
senting the corresponding complementarity relation. The
average is performed over the uniform Haar distribution
for every considered rank, and over the corresponding
quantum state space (for that rank). In Table I, we
list the average perpendicular distances for the differ-
ent measures for states of different ranks. We see that
rank-1 (pure) quantum states satisfy the complementar-
ity relations quite tightly, while it becomes comparatively

weaker with the increase in the rank. See also Figs. 1
and 2 in this regard. Note that increasing the rank of the
density matrix, typically, increases its mixedness, driving
it towards the (normalized) identity matrix, for which
the sum of the purity and any of the correlation mea-
sures considered vanishes. It is therefore expected that
the average perpendicular distance would increase with
increasing rank, as also observed in Table I.



5

rank-1 rank-2 rank-3 rank-4

N 0.043 0.390 0.590 0.706
EN 0.013 0.338 0.531 0.651
I 0.093 0.354 0.509 0.612
J 0.093 0.296 0.481 0.605
D 0.093 0.412 0.536 0.619
△ 0.093 0.372 0.504 0.594

TABLE I. Average perpendicular distance of the point (P , Q̃)

from the line P + Q̃ = 3

2
, where Q̃ represents the normalized

versions of negativity (N ), or logarithmic negativity (EN ),
or quantum mutual information (I), or measured quantum
mutual information J , or quantum discord (D), or quantum
work-deficit (△). The different columns represent values for
different ranks of the three qubit states, while the different
rows are for different measures. For every rank, 104 states
are generated Haar uniformly.

IV. APPLICATION IN QUANTUM

CRYPTOGRAPHY

Let us now discuss whether the derived complementar-
ity relations can have implications in quantum informa-
tion protocols.
The QKD setup.– We consider the QKD protocol pro-

posed in Ref. [12] (see also [7]) that is a modification
of the Ekert 1991 protocol [4]. Suppose that Alice and
Bob share a two-party state, and Alice chooses between
the measurement settings A0, A1, and A2, while Bob
chooses between B1 and B2 on their respective portions
of the shared state. Each measurement is assumed to
have two outcomes. The measurement results of A0 and
B1 are used to obtain the raw key, and the correspond-
ing bit error rate is given by e = prob(a0 6= b1), where
a0 and b1 are the measurement results of A0 and B1. We
will now use the complementarity between purity and
quantum mutual information, as obtained above in Sec.
II, to establish the security of the protocol. Indeed, we
will obtain a bound on the secret key rate by using the
complementarity.
A potential eavesdropper, Eve, denoted by E, tries to

gather information about the key of Alice and Bob. To
this end, Eve plants ancillas near the channels carrying
the states of Alice and Bob, and consequently, the Alice-
Bob-Eve trio share the state ρABE .
Key rates.– The optimal key rate for individual attacks

and obtained via one-way communication is provided by
the Csiszár-Körner criterion [32], given by

rCK = Ĩ ′A0:B1
−min{Ĩ ′

A0:Ẽ
, Ĩ ′

B1:Ẽ
}, (10)

where we have used the notation Ẽ for the measure-
ment setting at Eve, and Ĩ ′A0:B1

= 1− h(e), with h(p) =
−p log2 p − (1 − p) log2(1 − p) being the binary entropy
for 0 ≤ p ≤ 1.
Writing the complementarity between purity and

quantum mutual information of ρABE as

PAB + IAB:E ≤ b, (11)

we have

I ′AB:E

2min{log2 dAB, log2 dE}
≤ b− PAB, (12)

following ineqs. (6) and (7). Now, quantum mutual infor-
mation is non-decreasing under discarding of subsystems
[29], so that I ′A:E ≤ I ′AB:E and I ′B:E ≤ I ′AB:E . Therefore,

min{I ′A:E , I
′
B:E} ≤ 2min{log2 dAB, log2 dE}(b− PAB).

(13)
Furthermore, classical mutual information is upper
bounded by the corresponding quantum mutual infor-
mation [31], i.e. Ĩ ′X:Y ≤ I ′X:Y , resulting in

min{Ĩ ′
A0:Ẽ

, Ĩ ′
B1:Ẽ

} ≤ 2min{log2 dAB, log2 dE}(b− PAB).

(14)
Therefore, we have

rCK ≥ 1− h(e)− 2min{log2 dAB , log2 dE}(b− PAB).
(15)

It is reasonable to allow the eavesdropper to be of a larger
dimension, so that we choose dAB ≤ dE , whence

rCK ≥ 1− h(e)− 2S(ρAB). (16)

To illustrate the rate obtained, consider that the le-
gitimate users of the key distribution channel share the
Werner state [33], given by ρW = p|φ+〉〈φ+|+(1−p)1

2
I2⊗

1
2
I2, where |φ+〉 = 1√

2
(|00〉 + |11〉), 0 ≤ p ≤ 1, and

I2 denotes the identity operator on the qubit Hilbert
space. In this case, e = 1

2
(1 − p), and the entropy

of the shared state between Alice and Bob is given by
H({ 1

2
e, 1

2
e, 1

2
e, 1− 3

2
e}), where H({pi}) = −

∑

i pi log2 pi
is the Shannon entropy of the probability distribution
{pi}. Consequently, the maximal bit error rate that is
allowed before the protocol becomes insecure is about
3.6%. The Shor-Preskill security proof provides a rate of
11% [2].
Let us note here that if Alice and Bob share a pure

state, then the quantum mutual information between
the Alice-Bob system and the eavesdropper vanishes. It
is therefore apparent that for large values of p, in the
shared Werner state, a stronger complementarity simi-
lar to PAB + IAB:E . 1 is active, and this is indepen-
dent of whether dAB ≤ dE is valid. Using this stronger
complementarity would provide a security proof without
the assumption dAB ≤ dE . We also note that there are
recent results on device independent protocols for esti-
mating entropies [34], which if possible to be used in
the present scenario, would provide the potential for a
device independent security proof of quantum cryptog-
raphy [7, 8] via information complementarity relations,
instead of Bell inequality violations. We mention here
that the Devetak-Winter result [19] also provides an en-
tropic bound on the secret key rate for collective attacks.
We however believe that the bound obtained here is via
methods that provide an independent perspective on the
Ekert protocol and its security, albeit for individual at-
tacks.
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V. CONCLUSION

To sum up, we have derived complementarity relations
in multiparty quantum systems connecting purity of a
part of the system with correlations – classical, quantum,
and total – between that part and the rest of the system.
We found that they have the potential to provide bounds
on the secret key rates in quantum cryptography.
A relation for three-party quantum states that has a

similar topology to the ones derived here is in Ref. [35],
where local measurement-induced changes in two-party
entanglement is related to the measurement-induced
changes in entanglement of those two parties with the
third party, in a three party system. See also Ref. [21].
Since the derived complementarity relations are rather

unalike to the previously existing ones, they are poten-
tially useful in getting perspectives, hitherto not known,
on protocols and phenomena involving many parties, in-
cluding e.g. the black hole information paradox [36].
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