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Computing entanglement of an arbitrary bipartite or multipartite mixed state is in general not an easy task
as it usually involves complex optimization. Here we show that exploiting symmetries of certain multiqudit
mixed states, we can compute a genuine multiparty entanglement measure, the generalized geometric measure,
for these classes of mixed states. The chosen states have different ranks and consist of an arbitrary number of
parties.

I. INTRODUCTION

Characterization and quantification of quantum entangle-
ment [1] lies at the heart of quantum information theory, since
its early recognition as “spooky action at a distance” [2] in the
Einstein-Podolsky-Rosen article [3]. Moreover, it has been
successfully identified as a key resource in several quantum
communication protocols including superdense coding [4],
teleportation [5], and quantum cryptography [6]. Entangle-
ment has been shown to be a necessary ingredient in studying
quantum state tomography [7], quantum metrology [8], coop-
erative quantum phenomena in many body systems like quan-
tum phase transitions [9], etc. Quantification of entanglement
is also essential for characterization of successful preparations
of quantum states, both in two party and multiparty domains,
in the laboratories [10].

The notion of entanglement is rather well-understood in the
bipartite regime, especially for pure states [11–15]. While
several entanglement measure can be computed for bipartite
pure states, the situation for mixed states is difficult, andthere
are only few entanglement measures which can be computed
efficiently. The logarithmic negativity [14] can be obtained
for arbitrary bipartite states, while the entanglement of for-
mation [12, 13] can be computed for all two-qubit states.
The situation becomes complicated even for the pure states
when the number of parties increase. However, there have
been significant advances in recent times to quantify multi-
partite entanglement of pure quantum states in arbitrary di-
mensions [1]. They are broadly classified in two catagories−
distance-based measures [16–19] and monogamy-based ones
[6, 11, 20, 21]. On the other hand, quantifying entanglement
for arbitrary multiparty mixed states is still an arduous task.
Recently, experiments by using photon polarization [22] and
ions [23] have been reported in which multiparty states of the
order of ten parties have been created successfully. Such phys-
ical implementations demand a general tool to compute mul-
tiparty entanglement measures for arbitrary mixed states.Re-
cently there have been notable advancements in this direction
[24]. Moreover, when an entanglement measure can only be
evaluated for pure states, the entanglement-assisted study of
cooperative phenomena becomes restricted to only a system
which is at zero temperature.

We address here the question of computing the generalized
geometric measure (GGM) [19], a genuine multiparty entan-
glement quantifier, for mixed states. The GGM of pure states
has already been computed efficiently in several systems for
arbitrary number of parties [25]. In this paper, we define the

GGM for mixed states via the convex roof. To deal with the
obstacle of evaluating the convex roof extension, we use sym-
metry properties of certain multiparty quantum states and sim-
plify the evaluation of GGM for these classes of mixed states,
as prescribed in Refs. [26–28] (cf. [29]). Exploiting such
symmetries, we are able to compute the GGM of different
paradigmatic classes of mixed states having different ranks. In
particular, we first present the exact value of GGM for certain
classes of rank 2 and rank 3 mixed states with arbitrary num-
ber of qubits. We then compute the GGM for a specific class
of states which is a mixture of Greenberger-Horne-Zeilinger
(GHZ) [30] and all the Dicke states [31], having a variety of
ranks. The common property that all these classes possesses
is that they remain invariant under the action of same sym-
metric local unitary operators on each qubit. Moreover, we
find the GGM of a class of tripartite states of rank 4 which re-
mains unaltered under different local unitaries on each party.
Finally, we show that such symmetry properties can lead to
an exact expression of GGM for a class of multiqudit states
having varied ranks.

The paper is organized in the following manner. In Sec.II ,
we review the definition and the various properties of the gen-
eralized geometric measure for pure states. In sectionIII , we
define GGM for mixed states via the convex roof construction.
Here, we also discuss the Terhal-Vollbrecht-Werner technique
of exploiting the symmetry of a quantum state for simplify-
ing the evaluation of a convex roof extension. The same sec-
tion also contains the computation of the GGM for different
classes of mixed states. We present a summary in Sec.IV.

II. GENERALIZED GEOMETRIC MEASURE

A pure state is said to be genuinely multiparty entangled if
it is not product in any bipartition. The generalized geometric
measure (GGM) [19] (cf. [16]) of anN -party pure quantum
state,|ψN 〉, is a computable entanglement measure that can
quantify genuine multiparty entanglement. It is defined as an
optimized distance of the given state from the set of all states
that are not genuinely multiparty entangled. Mathematically,
it is given by

E(|ψN 〉) = 1− Λ2
max(|ψN 〉), (1)

whereΛmax(|ψN 〉) = max |〈χ|ψN 〉|, with the maximization
being over all|χ〉 that are not genuinely multiparty entangled.
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An equivalent form of the above equation is [19]

E(|ψn〉) = 1−max{λ2I:L|I∪L = {A1, . . . , AN}, I∩L = ∅},
(2)

whereλI:L is the maximal Schmidt coefficient in the bipartite
split I : L of |ψN 〉.

Let us enumerate some properties of the GGM which estab-
lish it as a bona fide measure of genuine multiparty entangle-
ment [19]. E(|ψN 〉) ≥ 0, for all |ψN 〉, E(|ψN 〉) = 0 iff |ψN 〉
is not genuinely multiparty entangled, andE(|ψN 〉) is nonin-
creasing under local quantum operations at theN parties and
classical communication between them.

III. GGM FOR MIXED STATES

We can now define the GGM of a general mixed quantum
state, in terms of the convex roof construction. For an arbitrary
N -party mixed state,ρN , the GGM can be defined as

G(ρN ) = min
{pi,|ψi

N
〉}

∑

i

piE(|ψiN 〉), (3)

where the minimization is over all pure state decompositions
of ρN i.e., ρN =

∑

i pi|ψiN 〉〈ψiN |. It is difficult to find the
optimal decomposition and the computation of GGM is in
general impossible even for moderate-sized systems. How-
ever, the situation is different if the mixed quantum state un-
der consideration possesses some symmetry [17, 27–29]. In
Ref. [27], Vollbrecht and Werner have provided a general
method to compute an entanglement measure, defined via the
convex roof extension, of a class of mixed states which are
invariant, on average, under a group of local unitaries. Be-
low we briefly outline the same. Supposeρ′N = (U1 ⊗ U2 ⊗
. . . ⊗ UN)ρN (U †

1 ⊗ U
†
2 ⊗ . . . ⊗ U

†
N ), whereUi are the local

unitary operators, acting on Hilbert spacesHi. The GGM of
ρN andρ′N are the same. If it happens thatρN = ρ′N , then
(U1⊗U2⊗ . . .⊗UN) is called a local symmetry ofρN . LetG
be a group of unitary operatorsU = (U1⊗U2⊗. . .⊗UN ) and

P be a twirl operator, such that,A
P−→
∫
dU UAU † ≡ P(A),

where the integral is carried out Haar uniformly. In case of
a mixed stateρN , if there exist a twirl operatorP such that
P(ρN ) = ρN , then the entanglement,G(ρN ), can be obtained
from a pure|ψ〉 which satisfies

P(|ψ〉〈ψ|) = ρ. (4)

In principle, one can have a set of pure states,{|ψ〉} = MρN ,
which satisfies Eq. (4), and it is sufficient to perform the op-
timization over this set. A further step is needed where we
convexify the optimized quantity over the parameters inρN ,
if it is not already convex.

We now show that this method can be utilized to evaluate
the GGM for several classes of multiparty states with arbi-
trary number of parties having certain symmetries. We present
these classes according to their ranks.
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FIG. 1. (Color online.) GGM ofρ2N(x) = x|ψN 〉〈ψN | + (1 −
x)|ψ⊥

N〉〈ψ⊥

N | against x. All the quantities are dimensionless.

A. Classes of rank 2 multiqubit states

The rank 2 mixed state, which we are now going to consider
is a mixture of two orthogonalN -party pure states, given by

ρ2N (x) = x|ψN 〉〈ψN |+ (1− x)|ψ⊥
N 〉〈ψ⊥

N |, (5)

where the subscript and superscript ofρ represent the number
of qubits and rank respectively. Here,|ψN 〉 and |ψ⊥

N 〉 lie in
two orthogonal mutually complementary subspaces of the N-

party Hilbert spaceH⊗N . |ψN 〉 =∑⌊N
2 ⌋

i=0 ai|D2i
g 〉, with

|Dk
g 〉 =

(Nk)∑

j=1

bkj | 00...0︸ ︷︷ ︸

N−k
11..1
︸︷︷︸

k

〉, (6)

where |Dk
g 〉’s are the generalized Dicke states [31] with k

number of excitations i.e. they are the general superpositions
of pure states with all permutations of(N − k) |0〉’s andk
|1〉’s. And

|ψ⊥
N 〉 =

⌊N
2 ⌋−1
∑

i=0

a′i|D2i+1
g 〉. (7)

We have chosen the coefficients in all pure and mixed states
such that there are properly normalized.

For ρ2N (x), we can find a group of local unitary op-
erators consisting of two unitaries,U1 = I, and U2 =
σz, which, on average, keepρ2N (x) invariant. Here,I
is the identity operator on the qubit Hilbert space and
σx, σy , and σz are the Pauli operators. One can check
that ρ2N (x) =

∑2
k=1 U

⊗N
k |ψ2

N (x)〉〈ψ2
N (x)|U †⊗N

k , where
|ψ2
N (x)〉 =

√
x|ψN 〉 + eiφ

√
1− x|ψ⊥

N 〉 is the only class of
pure states that is twirled toρ2N(x) by applying the twirl oper-
ator corresponding to those unitaries. Hence, by followingthe
recipe in [27], we can calculate the GGM ofρ2N (x). Since it
involves several parameters, for illustration, we choose fully
symmetric states, i.e, when all the coefficients of|ψN 〉 and
|ψ⊥
N 〉 are equal. The GGM ofρ2N (x, sym) is the convex hull
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FIG. 2. (Color online.) A plot of the GGM ofρ33(x1, x2) =
x1 |GHZ+

3 〉〈GHZ+

3 | + x2 |D1〉〈D1| + (1 − x1 − x2)|D2〉〈D2|
with the state parametersx1 andx2. All the axes are dimensionless.

of the GGM of the pure states|ψ2
N (x, sym)〉 =

√
x|ψN 〉 +√

1− xeiφmin |ψ⊥
N 〉. Here the phase,φmin, gives the mini-

mum GGM among all the GGM with differentφ values. We
then find that GGM reaches its minimum forφmin = 0.
Therefore, the GGM ofρ2N (x, sym) is given by

G(ρ2N (x, sym)) =
1

2
(1− 2

√
x
√
1− x), (8)

since the right hand side is already convex as depicted in
Fig. 1. An important point to note here that the GGM of
ρ2N (x, sym), given in Eq. (8), is independent of number of
parties,N .

B. Classes of rank 3 multiqubit states

We now calculate the GGM for different classes of mixed
states, of rank 3.

1. Case 1

Let us now consider a three-qubit rank 3 mixed state,
ρ33(x1, x2) [17], which is a mixture of known|GHZ+

3 〉, |D1〉,
and |D2〉. Here, |GHZ+

3 〉 = 1√
2
(|000〉 + |111〉) [30], and

|D1〉 and|D2〉 are given by|D1
g〉 and|D2

g〉 of Eq. (6) respec-
tively, with bkj = 1√

3
for all j. It reads as

ρ33(x1, x2) = x1 |GHZ+
3 〉〈GHZ+

3 |+ x2 |D1〉〈D1|
+ (1− x1 − x2)|D2〉〈D2|. (9)

Note that|D1〉 is the well-known W-state [32]. The mix-
ture is invariant under local unitaries given byU1 = I,

U2 =

(
1 0

0 e
2πi
3

)

, andU3 =

(
1 0

0 e
−2πi

3

)

, when they act on

each qubit [17]. The corresponding pure state which after lo-
cal unitary transformations, leads toρ33(x1, x2), can be written
as

|ψ3
3(x1, x2)〉 =

√
x1|GHZ+〉+√

x2e
iφ1 |D1〉

+
√
1− x1 − x2e

iφ2 |D2〉.(10)
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FIG. 3. (Color online.) Plot corresponds to GGM of|ψ3,g
3 〉 vs. the

mixing parametersx1 andx2. Here,α = 0.55 for the |gGHZ3〉
state. Both convex and nonconvex regions are seen. The convex part
corresponds to the GGM ofρ3,g3 (x1, x2). All quantities are dimen-
sionless.

The minimum of GGM among{φ1, φ2} is again obtained
when φ1 = φ2 = 0. By computing the Hessian matrix,
we find both analytically and numerically that the GGM of
|ψ3

3(x1, x2)〉 is convex with respect tox1 andx2. Therefore,
the GGM ofρ33(x1, x2) is given by

G
(
ρ33(x1, x2)

)
=

1

6

(

3−
{

1− 5x21 − 12x2(x2 − 1) +

8
√
6x1x2

(

1 +
√

x2(1− x1 − x2)− x1 − x2

)

+

4x1

(

1 + 3
√

x2(1− x1 − x2)− 3x2

)}
1
2
)

, (11)

and is depicted in Fig.2.

2. Case 2

Let us now move to a more general state while keeping the
rank fixed. Precisely, we consider a class of mixed states of
the form

ρ
3,g
3 (x1, x2) = x1|gGHZ3〉〈gGHZ3|+ x2|D1

g〉〈D1
g |

+(1− x1 − x2)|D2
g〉〈D2

g |, (12)

where|gGHZ3〉 = α|000〉+
√
1− α2|111〉 is the generalized

Greenberger-Horne-Zeilinger state with0 ≤ α ≤ 1. The set
of local unitaries that keepρ33(x1, x2) invariant, also keep the
stateρ3,g3 (x1, x2) invariant, and the class of pure state that are
projected toρ3,g3 (x1, x2) is given by

|ψ3,g
3 (x1, x2)〉 =

√
x1|gGHZ3〉+ eiφ1

√
x2|D1

g〉
+eiφ2

√
1− x1 − x2|D2

g〉. (13)

In this case, we have ρ
3,g
3 (x1, x2) =

∑3
j=1 U

⊗3
j |ψ3,g

3 (x1, x2)〉〈ψ3,g
3 (x1, x2)|U †⊗3

j , where
{Uj, j = 1, 2, 3} is the same as in Case 1.
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FIG. 4. (Color.) Plot corresponds to GGM of|ψ3,g
3 〉 vs. x1, for two

values ofr = x2
1−x1

. Here,α = 0.55 for the |gGHZ3〉 state. These
are given by the dotted lines. The straight lines corresponds to the
convexified quantities. All quantities are dimensionless.

Numerical simulation guarantees that the minimum of
E(|ψ3,g

3 (x1, x2)〉) occurs forφ1 = φ2 = 0. However, un-
like the previous cases, we find thatE(|ψ3,g

3 (x1, x2)〉) is not
convex for all values ofx1 andx2. In particular, we plot
E(|ψ3,g

3 (x1, x2)〉) in Fig. 3, whenα = 0.55 and when the
coefficients in|D1

g〉 and |D2
g〉 are all equal. For certain re-

gions of the parameter space, the figure is already convex,
and hence the GGM of|ψ3,g

3 (x1, x2)〉) in that region is the
GGM of ρ3,g3 (x1, x2). On the other hand, for the remain-
ing regions, a convexification has to be carried out to obtain
the GGM of ρg3(x1, x2). Specifically,E(|ψ3,g

3 (x1, x2)〉) 6=
G(ρ3,g3 (x1, x2)), whenx1 is high whilex2 is low. To obtain
the GGM in that region, the convexification is required. To
illustrate the process, we introduce a new variable,r = x2

1−x1
,

and let us consider cases wherer = 0.96 and0.98. The con-
vexification of the curves so generated are depicted in Fig.4.

3. Case 3

Let us move to a class of states which is a multiqubit gen-
eralization ofρ33(x1, x2). It is given by

ρ3N (x1, x2) = x1 |GHZ+
N 〉〈GHZ+

N |+ x2 |D1〉〈D1|
+(1− x1 − x2)|DN−1〉〈DN−1|,(14)

where|GHZ+
N 〉 = 1√

2
(|0〉⊗N+|1〉⊗N ), and|DN−1〉 is given

by |DN−1
g 〉 of Eq. (6) with bkj = 1

√

(Nk)
. Again, we have

ρ3N (x1, x2) =
∑3

j=1 U
⊗N
j |ψ3

N (x1, x2)〉〈ψ3
N (x1, x2)|U †⊗N

j ,
where|ψ3

N (x1, x2)〉 is given in Eq. (10) with |D2〉 being re-
placed by|DN−1〉, for the same set of unitaries, given in Case
1. Hence, we can compute the GGM of|ψ3

N (x1, x2)〉 and
check its convexity. Forφ1 = φ2 = 0 which gives the lowest
GGM, Fig. 5 shows the GGM of|ψ3

5(x1, x2)〉 with respect to
the parameters,x1 andx2 with N = 5. From the figure, it
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FIG. 5. (Color online.) The plot of GGM forρ35(x1, x2) =
x1 |GHZ+

5 〉〈GHZ+

5 | + x2 |D1〉〈D1| + (1 − x1 − x2)|D4〉〈D4|
againstx1 andx2 whenever it is convex. All axes are dimensionless.

is clear that for example the GGM of|ψ3
5(x1, x2)〉 is convex

for 0.64 ≤ x1 ≤ 1.0 and0.0 ≤ x2 ≤ 0.36 and hence in that
region, we have the GGM ofρ35(x1, x2). In the rest of the
region, to obtain the GGM ofρ35(x1, x2), we have to find the
convex hull ofE(|ψ3

5(x1, x2)〉).

C. Higher rank multiqubit states

We now consider classes of mixed states with rank more
than three. First, we explore a class of multiparty states which
can be dealt with symmetric unitaries. In other words, this
class of states remain invariant, when the same unitary actson
all the parties, i.e.ρNN =

∑

j U
⊗N
j ρNNU

†⊗N
j . We will then

find another class of states for which symmetric unitaries do
not work.

1. Symmetric unitary case

Let us now consider a class of mixed states with arbitrary
number of parties, which can be obtained by generalizing
ρ33(x1, x2). The state,ρNN(x1, x2, . . . , xN−1), is a mixture of
generalized GHZ and all the Dicke states. It reads as

ρNN (x1, x2, . . . , xN−1) = (1−
∑

i

xi)|gGHZN 〉〈gGHZN |

+

N−1∑

i=1

xi|Di
g〉〈Di

g|,(15)

with |gGHZN〉 = α|0〉⊗N +
√
1− α2|1〉⊗N . Rank of the

above state spans the integers in[1, N ]. One can check that

ρNN (x1, . . . , xN−1) =

N∑

j=1

U⊗N
j ρNN(x1, . . . , xN−1)U

†⊗N
j ,

(16)
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FIG. 6. (Color online.) GGM ofρ55 = x1P [GHZ+

5 ]+ x2
2
(P [D1]+

P [D2]) + 1−x1−x2
2

(P [D3] + P [D4]). All axes are dimensionless.

where the set of local unitaries,{Uj}Nj=1 consists ofI and
(
1 0

0 e
2πij
N

)

with j = 1, . . . , (N − 1). We have to now show

that

ρNN (x1, x2, . . . , xN−1) =
∑

j

U⊗N
j |ψNN (x1, . . . , xN−1)〉

〈ψNN (x1, . . . , xN−1|U †⊗N
j , (17)

where |ψNN (x1, . . . , xN−1)〉 =
√
1−∑i xi|gGHZN〉 +

∑N−1
i=1

√
xi|Di

g〉. To prove this, the we note the actions of lo-
cal unitaries on each off-diagonal terms which e.g. are given
by

U⊗N
j |Dq

g〉〈Dr
g|U †⊗N

j = e
2πi(q−r)

N |Dq
g〉〈Dr

g |. (18)

We use the identity
∑

j e
2πi(q−r)

N = δqr in the analysis. Simi-
larly,

∑

j

U⊗N
j |Dq

g〉〈gGHZN |U †⊗N
j = e

2πiq

N |Dq
g〉〈gGHZN | = 0.

(19)
All off-diagonal terms therefore vanish. We can now cal-
culate the GGM of|ψNN (x1, . . . , xN−1)〉 and check whether
E(|ψNN (x1, . . . , xN−1)〉) is convex or not. If it is convex, then
E(|ψNN (x1, . . . , xN−1)〉) = G(ρNN (x1, . . . , xN−1)). Other-
wise, we have to perform convexification to obtain the exact
value ofG(ρNN (x1, . . . , xN−1)). To illustrate this example, we
consider a five-qubit state which is of the form

ρ55 = x1|GHZ+
5 〉〈GHZ+

5 |+ x2

2
(|D1〉〈D1|+ |D2〉〈D2|)

+
1− x1 − x2

2
(|D3〉〈D3|+ |D4〉〈D4|).

(20)

Following the aforementioned prescription, we compute

FIG. 7. (Color online.) Plot of GGM ofρ43 with respect to the pa-
rameters,x andy. The GGM of the corresponding unique pure state,
|ψ4

3(x, y)〉 =
√
x|ζ1〉 − i

√

y/2(|ζ2〉 − |ζ3〉) +
√
1− x− y|ζ4〉 has

a kink along the lines shown on the surface, in the plot. The GGM of
the pure state is non-convex around these lines, and hence convexifi-
cations are required thereat.

E(|ψ5
5(x1, x2)〉) with

|ψ5
5(x1, x2)〉 =

√
x1|GHZ+

5 〉+
√
x2

2

2∑

k=1

eiφk |Dk〉

+

√

1− x1 − x2

2

4∑

k=3

eiφk |Dk〉. (21)

Forφk = 0, k = 1, . . . , 4 which gives the infimum of GGM,
E(|ψ5

5(x1, x2)〉) is plotted withx1 andx2 in Fig. 6. By using
the Hessian technique, we find that it is convex for the entire
range ofx1 andx2. Therefore,G(ρ55) is obtained for allx1
andx2 and is given by

G(ρ55) =
1

2

(

1−
(

1− 4

{
2x1 + 4x2 + 3

10

7− 2x1 − 4x2
10

−

(
√
x1x2

20
+

√

x1(1− x1 − x2)

20
+

2x2

5
√
2
+

2(1− x1 − x2)

5
√
2

+
3

10

√

x2(1 − x1 − x2)
)2
}) 1

2

)

. (22)

Comparing Figs.5 and6 with the situations obtained before,
it seems that higher rank states, for a fixed total number of
qubits of the entire systems, have a greater affinity for being
convex, when their GGMs are considered.

2. Asymmetric unitary case

Until now, we have considered the states which remain un-
altered under local symmetric unitaries of the formU⊗N

i .
Let us now illustrate a class of three-qubit mixed states

which remains unchanged under the local unitaries of the form
Ui ⊗ Uj ⊗ Uk. The class of mixed state having rank 4, reads

ρ43 =
∑

i

xi|ζi〉〈ζi|, (23)
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where

|ζ1〉 =
1

2
(|001〉+ |010〉 − |100〉+ |111〉),

|ζ2〉 =
1

2
(−i|000〉 − i|011〉+ |100〉+ |111〉),

|ζ3〉 =
1

2
(i|000〉+ i|011〉+ |100〉+ |111〉),

and |ζ4〉 =
1

2
(|001〉+ |010〉+ |100〉 − |111〉).

It is invariant under{Ui, i = 1, . . . 4}, which are given by

U1 = I ⊗ I ⊗ I,

U2 = iσy ⊗H ′ ⊗H ′,

U3 = I ⊗ σy ⊗ σy,

andU4 = −iσy ⊗H ′T ⊗H ′T ,

with H ′ = 1√
2

(
1 1
−1 1

)

. Note that these unitaries form a

closed group. The only pure states that are twirled to the
above mixed states are of the form|ψ4

3〉 =
∑

i

√
xie

iφi |ζi〉.
We compute the GGM of|ψ4

3〉 and minimize it overφi’s. The
GGM of ρ34 is given by the minimum of theE(|ψ4

3〉) for dif-
ferent values ofφis provided the quantity is convex itself.

To visualize its GGM, let us consider,x2 = x3 = y

2 , i.e.
the state is of the form

ρ34 = x |ζ1〉 〈ζ1|+
y

2
(|ζ2〉 〈ζ2|+ |ζ3〉 〈ζ3|)

+(1− x− y) |ζ4〉 〈ζ4| . (24)

In this case, we find that the minimum GGM of|ψ4
3(x, y)〉 for

different values ofφi’s is obtained whenφ1 = − φ2 = −π
2

andφ3 = 0. We find the GGM ofρ43(x, y) by convexifying
the GGM of|ψ4

3(x, y)〉).

D. Cases of multiqudit states

In the previous sections, we have evaluated the GGM of
certain multiqubit systems. We will now show that a similar
method can be extended to obtained the analytical expression
of GGM of multiqudit mixed states. Specifically, we consider
anN -qudit mixed state of rankd, in the Hilbert spaceH⊗N

d ,
of the form

ρdN,d =

d∑

k=1

pk|Ψ〉k〈Ψ|k, (25)

where |Ψ〉k =
∑

{j} qj1j2...jN |j1j2...jN 〉(k) and
(
∑

m jm)(mod d) = k. Our aim is to evaluate the
GGM of the stateρdN,d. Therefore, like previous cases, we
construct a twirling operator, consisting of unitary operators
Zd which ared-dimensional, non-hermitian generalization of
theσz and given by

Zd =

d−1∑

j=0

e
2πij
d |j〉〈j|. (26)

Here, each of the unitary operators act locally and
symmetrically on ρdN,d as Z⊗N

d . Note that the set
{

Id, Z
⊗N
d ,

(

Z⊗N
d

)2

, ..,
(

Z⊗N
d

)d−1
}

forms a group and the

corresponding twirling operator keepsρdN,d invariant. Now,
we have to find the set of all pure states|Ψ〉dN,d that
are projected toρdN,d under the action of the aforemen-
tioned twirling operator. It can be easily checked that
|Ψ〉dN,d =

∑d

k=1 e
iφk |Ψ〉k are the only class of pure states

that are mapped toρdN,d under the twirling operator, i.e.,
∑d−1
q=0

(

Z⊗N
d

)q

|Ψ〉dN,d〈Ψ|dN,d
(

Z
†⊗N
d

)q

= ρdN,d. In this case

also, the minimum of the GGM’s of|Ψ〉dN,d over the phases
{φk} gives the GGM ofρdN,d provided the minimum GGM is
already a convex function of the state parameters. Otherwise
one has to convexify the function to obtain the GGM ofρdN,d.

Until now, we have considered systems with the same di-
mensions of the local Hilbert spaces. However, this formal-
ism can be further extended where the local Hilbert spaces’
dimensions are not equal, i.e., for quantum systems belonging
in Hd1⊗Hd2⊗. . .⊗HdN , with d1 6= d2 6= ...dN . In that case,
we have two different scenarios. Firstly,a1d1 = a2d2 = ... =
dN , where{ai}N−1

i=1 ∈ I+. Without loss of generality,dN is
taken to be the largest dimension and the corresponding uni-
taries are of the formZd1 ⊗ Zd2 ..⊗ ZdN with its subsequent
powers uptodN − 1, such that the composite unitary matri-
ces form a group. Evidently, the case of equal dimensions is
a special case of this. Thus, the pure states over which we
have to perform the minimization still have the same form,
with a slightly different version of the condition given by
∑

m jm(moddN ) = k. The second one is the situation when
all the dimensions are prime to each other, and in this case,
we have to take unitaries upto the power of

(
d1d2...dN

)
− 1,

where the form of pure states remain the same, with the mod-
ified condition,

∑

m jm
(
modd1d2...dN

)
= k. Therefore, in

general, we have to take the maximum power of the unitaries
which is the lowest common multiple ofd1, d2, ..., dN to ap-
ply the similar prescription. In the next paragraph, we illus-
trate this with an example.

For simplicity, we consider the following three-qutrit
state, ρ33,3 =

∑2
k=0 xk|Ψ〉k〈Ψ|k, where |Ψ〉k =

∑

j qj1j2j3 |j1j2j3〉(k) and j1 + j2 + j3(mod 3) = k. The
exact form of the pure states{|Ψk〉}2k=0 reads as

|Ψ0〉 =
1

3
(

2∑

i=0

|iii〉+
∑

perm

|012〉),

|Ψ1〉 =
1

3
(
∑

perm

|001〉+
∑

perm

|022〉+
∑

perm

|112〉),

and |Ψ2〉 =
1

3
(
∑

perm

|011〉
∑

perm

|002〉+
∑

perm

|122〉). (27)

For this case, the unitaries which construct the twirling op-
erators are given as{I3, Z3, Z

2
3}. Note that the unitaries of

the formZi3 ⊗ Zi3 ⊗ Zi3 form a group fori ranging from0
to 2 andρ33,3 is evidently invariant under the corresponding
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FIG. 8. (Color online.) Plot of GGM ofρ33,3 againstx1 andx2. The
GGM of the corresponding unique pure state,|Ψ3

3,3〉 =
√
x1|Ψ〉1 +

eiφ2
√
x2|Ψ〉2 + eiφ3

√
1− x1 − x2|Ψ〉3 is plotted withφ1 = φ2 =

0. The GGM of the pure state is convex everywhere, as evident from
this plot and henceE(|Ψ3

3,3〉) = G(ρ33,3).

twirling operator. The pure state that is mapped toρ33,3 un-
der the action of the aforesaid twirling operator is of the form
|Ψ3

3,3〉 =
√
x1|Ψ〉1+eiφ2

√
x2|Ψ〉2+eiφ3

√
1− x1 − x2|Ψ〉3.

It can be easily found that minimum GGM of|Ψ3
3,3〉 is ob-

tained forφ2 = φ3 = 0 and it is a convex function of the
parametersx1 andx2. Hence, the GGM ofρ33,3 is given by

G(ρ33,3) = 2
3{1−

√
x1x2 −

√

x1{1− x1 − x2}
−
√

x2{1− x1 − x2}}.

G(ρ33,3) is depicted in Fig.8 and the convexity of the function
can be visualized from the same.

IV. CONCLUSION

Computing entanglement of an arbitrary mixed state is a
formidable task. The entanglement of mixed states is gen-
erally defined by constructing the convex roof over all pos-
sible pure states which is practically impossible to compute
in most of the cases. Although there exists a few bipartite
measures which can be obtained for arbitrary states, the eval-
uation of entanglement for a mixed state in multiparty domain
is still a challenging task. In this paper, we have computed a
genuine multiparty entanglement measure known as general-
ized geometric measure of some classes of mixed states with
arbitrary number of parties and dimensions by using certain
symmetries. We evaluate the measure for several classes of
multiqubit and multiqudit states having different ranks. The
method, we exploited, uses a pure state that contains the same
amount of entanglement as the given mixed state, and leads to
the mixed state by action of a certain twirling operation.

Note added: The present work is based on a poster pre-
sentation [33] at the International Workshop on Quantum In-
formation (IWQI-2012), Harish-Chandra Research Institute,
Allahabad, India. We thank J. Solomon Ivan for pointing out
during a discussion over the poster that the same method as
followed here can be used to evaluate the GGM for an arbi-
trary mixture of|GHZ+

N 〉 and|GHZ−
N 〉, where|GHZ±

N〉 =
1√
2
(|0〉⊗N ± |1〉⊗N). We thank Otfried Gühne for informing

us about their independent work on evaluating multipartiteen-
tanglement [34], by a method that is different from the one
followed in the present work.
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