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Generalized Geometric M easure of Entanglement for Multiparty Mixed States
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Computing entanglement of an arbitrary bipartite or maltijje mixed state is in general not an easy task
as it usually involves complex optimization. Here we showat txploiting symmetries of certain multiqudit
mixed states, we can compute a genuine multiparty entamgiemeasure, the generalized geometric measure,
for these classes of mixed states. The chosen states hamwulifranks and consist of an arbitrary number of
parties.

I. INTRODUCTION GGM for mixed states via the convex roof. To deal with the
obstacle of evaluating the convex roof extension, we use sym

Characterization and quantification of quantum entangleMetry Properties of certain multiparty quantum states émel s
ment [1] lies at the heart of quantum information theory, sinceP!i'y the evaluation of GGM for these classes of mixed states
its early recognition as “spooky action at a distanc@ifi the ~ S Prescribed in Refs.26-28] (cf. [29]). Exploiting such
Einstein-Podolsky-Rosen articlg][ Moreover, it has been Symmetries, we are able to compute the GGM of different
successfully identified as a key resource in several quantuf@radigmatic classes of mixed states having differentsaimk
communication protocols including superdense codifig [ particular, we first present the e_xactvalue of_GGMforcertal
teleportation §], and quantum cryptographg]l Entangle- classes of.rank 2 and rank 3 mixed states with arbnrg_ry num-
ment has been shown to be a necessary ingredient in studyirﬁ’?r of qubits. We then compute the GGM for a specific class
quantum state tomography[ quantum metrologyd], coop- ~ © states which is a m|x§ure of Greenberg.er-Horne.-ZelIrnge
erative quantum phenomena in many body systems like qua®HZ) [30] and all the Dicke states3[l], having a variety of
tum phase transition®], etc. Quantification of entanglement "anks. The common property that all these classes possesses
is also essential for characterization of successful pegjpms 'S that they remain invariant under the action of same sym-

of quantum states, both in two party and multiparty domainsMetric local unitary operators on each qubit. Moreover, we
in the laboratories]0)]. find the GGM of a class of tripartite states of rank 4 which re-

The notion of entanglementis rather well-understood in th iﬁg}ls u\?vilt;r]igvutﬂgtersgfherse%:gg?rl unrlz)a”eerzeosnci%c%ggrto
bipartite regime, especially for pure statddf15]. While Y y y prop

several entanglement measure can be computed for biparti exact expression of GGM for a class of multiqudit states
pure states, the situation for mixed states is difficult, tuede aving vaned. ranks. ) ) )

are only few entanglement measures which can be computed The paper is organized in the following manner. In Sec.
efficiently. The logarithmic negativityl4] can be obtained We review the def_lnltlon and the various properties of the gen
for arbitrary bipartite states, while the entanglementat f €ralized geometric measure for pure states. In sediome
mation [L2, 13] can be computed for all two-qubit states. define GGMfor_m|xed states via the convex roofconstruct!on.
The situation becomes complicated even for the pure statd3€re, we also discuss the Terhal-Vollbrecht-Werner tegieni
when the number of parties increase. However, there ha@f exploiting the symmetry of a quantum state for simplify-
been significant advances in recent times to quantify multiind the evaluation of a convex roof extension. The same sec-
partite entanglement of pure quantum states in arbitrary gition also contains the computation of the GGM for different
mensions]. They are broadly classified in two catagories ~ classes of mixed states. We present a summary iniSec.
distance-based measurd$f19] and monogamy-based ones

[6, 11, 20, 21]. On the other hand, quantifying entanglement

for arbitrary multiparty mixed states is still an arduouskta 0
Recently, experiments by using photon polarizatiag pnd

ions [23] have been reported in which multiparty states of the ) _ ) ) )
order of ten parties have been created successfully. Syshph A pure state is said to be genuinely multiparty entangled if
ical implementations demand a general tool to compute multt is not product in any bipartition. The generalized geamet
tiparty entanglement measures for arbitrary mixed states. measure (GGM)I9 (cf. [16]) of an N-party pure quantum
cently there have been notable advancements in this directi State, [¢n), is a computable entanglement measure that can
[24]. Moreover, when an entanglement measure can only bguantify genuine multiparty entanglement. It is definedras a
evaluated for pure states, the entanglement-assisteyl sfud Optimized distance of the given state from the set of alestat
cooperative phenomena becomes restricted to only a systeffiat are not genuinely multiparty entangled. Mathemagical

GENERALIZED GEOMETRIC MEASURE

which is at zero temperature. itis given by
We address here the question of computing the generalized )
geometric measure (GGMY9], a genuine multiparty entan- E(lYn)) =1 = A5, (1¥n), (1)

glement quantifier, for mixed states. The GGM of pure states
has already been computed efficiently in several systems favhereA .« (|¥'n)) = max |{(x|¥n)|, with the maximization
arbitrary number of partiep)]. In this paper, we define the being over allx) that are not genuinely multiparty entangled.
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An equivalent form of the above equation 19] 0.5
E(|[Yn)) = 1—max{\?., |[TUL = {A;,..., Ax}, INL = (}, 04

) \
where) . is the maximal Schmidt coefficient in the bipartite 0.3} ;
split I : L of [¢n). G /

Let us enumerate some properties of the GGM which estab-  “g.2|
lish it as a bona fide measure of genuine multiparty entangle-
ment [19]. £(|¢x)) > 0, for all [ih), £(|w)) = 0 ff [y) 01l ™
is not genuinely multiparty entangled, aéi¢l¢)x)) is nonin- o
creasing under local quantum operations at¥hparties and 0 ‘ \\ /{,«ﬂ/ ‘
classical communication between them. 0 0.2 0.4 X 0.6 0.8 1
I1l. GGM FOR MIXED STATES FIG. 1. (Color online.) GGM ofp% () = x|tw)(¢n| + (1 —

x)|y) (x| against x. All the quantities are dimensionless.

We can now define the GGM of a general mixed quantum
state, in terms of the convex roof construction. For an eabyjt

N-party mixed statep, the GGM can be defined as A cl of rank 2 multiqubit states

. i The rank 2 mixed state, which we are now going to consider
G(pn) =  min Zpig(WN»’ (3)  is a mixture of two orthogonaV-party pure states, given by

{pi:lvn)}

R » piv(@) = 2w ) (Y| + (1= 2)[Yn) (W], )
where the minimization is over all pure state decomposstion
of pyv i.e., py = X, piltly) (| Itis difficult to find the ~ where the subscript and superscrippakpresent the number
optimal decomposition and the computation of GGM is inof qubits and rank respectively. Her;y) and|yy) lie in
general impossible even for moderate-sized systems. Howiwo orthogonal mutually complementary subspaces of the N-
ever, the situation is different if the mixed quantum state U party Hilbert spacé{®". [)x) = ZlL_%OJ a;| D2, with
der consideration possesses some symmeéffyd7-29. In

Ref. [27], Vollbrecht and Werner have provided a general (M)
method to compute an entanglement measure, defined via the IDF) = Z br;]00...011..1) (6)
convex roof extension, of a class of mixed states which are g e

. . > j=1 N—k k
invariant, on average, under a group of local unitaries. Be-

low we briefly outline the same. Supposg = (U1 ® U> @  where|Dk)'s are the generalized Dicke statedd] with &
B UN)pN(UlT ® UZ,T ®...® U;(,), whereU; are the local number of excitations i.e. they are the general superpositi
unitary operators, acting on Hilbert spadés The GGM of  of pure states with all permutations @V — k) |0)’s and &

pn andp’y are the same. If it happens that = oy, then  |1)’s. And

(Uh®@Us;®...@Uy) is called a local symmetry gfy. LetG

be a group of unitary operatois= (U; @ U2 ®. . .@Uy) and N 151 i

P be a twirl operator, such that, [dUUAUT = P(A), [¥n) = a;|Dg"™ ). @)
where the integral is carried out Haar uniformly. In case of =0

a mixed statey, if there exist a twirl operatoP such that  Wwe have chosen the coefficients in all pure and mixed states
P(pn) = pn, then the entanglemerii(py ), can be obtained  such that there are properly normalized.

from a pure+)) which satisfies For p%(x), we can find a group of local unitary op-
erators consisting of two unitarieg/; = I, andUy; =
P(|v)(®]) = p. (4) 0., which, on average, keep% (z) invariant. Here, I

is the identity operator on the qubit Hilbert space and
In principle, one can have a set of pure sta{és)} = M,,, oz, oy, and o, are the Pauli operators. One can check
which satisfies Eq.4), and it is sufficient to perform the op- that p%. () = S.i_, UM% () (0% (2)|U[®N, where
timization over this set. A further step is needed where W3 (2)) = /T|N) + ewmwﬂ is the only class of
convexify the optimized quantity over the parameterpin  pure states that is twirled i@, () by applying the twirl oper-
if it is not already convex. ator corresponding to those unitaries. Hence, by followfirey

We now show that this method can be utilized to evaluateecipe in R7], we can calculate the GGM ¢f3, (). Since it

the GGM for several classes of multiparty states with arbiinvolves several parameters, for illustration, we choasly f
trary number of parties having certain symmetries. We pitese symmetric states, i.e, when all the coefficients©f ) and
these classes according to their ranks. lv5;) are equal. The GGM gf%; (z, sym) is the convex hull



FIG. 2. (Color online.) A plot of the GGM op3(z1,x2) = FIG. 3. (Color online.) Plot corresponds to GGM|gf;?) vs. the

21 |GHZIWGHZT | + z2 |DYY(DY + (1 — 21 — x2)|D*)(D?  mixing parameters:; andzs. Here,a = 0.55 for the |¢G'H Z5)

with the state parameters andz-. All the axes are dimensionless. state. Both convex and nonconvex regions are seen. Thexcpave
corresponds to the GGM gf9 (21, z2). All quantities are dimen-
sionless.

of the GGM of the pure statgg% (z, sym)) = /z|n) +

V1 —zemin|pi). Here the phasepi,, gives the mini-

mum GGM among all the GGM with differemt values. We  The minimum of GGM amond ¢, ¢2} is again obtained

then find that GGM reaches its minimum far,;,, = 0. when¢; = ¢ = 0. By computing the Hessian matrix,

Therefore, the GGM 0p%; (z, sym) is given by we find both analytically and numerically that the GGM of
1 |v3 (21, 22)) is convex with respect te; andxz,. Therefore,
G(px (z, sym)) = S = 2vVzV1 — ), (8)  the GGM ofp3(z1,z9) is given by

since the right hand side is already convex as depicted in_ 1 )
Fig. 1. An important point to note here that the GGM of G (p3(21,22)) = G (3 - {1 —5z7 — 12xs(w2 — 1) +
p% (z, sym), given in Eq. B), is independent of number of

parties,N. 8v6x1x9 (1 + V(1 —xy —a9) — a1 — (Eg) +

44 (1+3 xg(l—xl—xg)—?):vg)} ), (11)

Nl=

B. Classesof rank 3 multiqubit states
We now calculate the GGM for different classes of mixedand is depicted in Fig2.
states, of rank 3.

2. Case2
1. Casel
Let us now move to a more general state while keeping the

Let us now consider a three-qubit rank 3 mixed statefank fixed. Precisely, we consider a class of mixed states of
p3(x1, 22) [17], which is a mixture of knowdGH Z;), |D'), ~ theform
and|D?). Here,|GHZ]) = —2-(|000) + [111)) [30], and

D7), Rere|GllZ; ) = (000) + [111)) 139 3 (a1,22) = 1 |gGH Z4) (gGH Zs| + 22| D}) (D))

|D') and|D?) are given by D;) and|D?) of Eq. (6) respec- . D2D?. (12
tively, with by; = % forall 5. It reads as (1 =21 —22)|Dg)Dy|, (12)

p3(x1,22) = @1 |GHZY(GHZE| + x5 DYDY where|gGH Z3) = a|000)++v/1 — o?|111) is the generalized
+ (1= 1 — 22)|D2)(D?| ) Greenberger-Horne-Zeilinger state with< o« < 1. The set
1 2 ’ of local unitaries that keeps (1, z2) invariant, also keep the

Note that|D") is the well-known W-state32. The mix-  stateps?(z;, z2) invariant, and the class of pure state that are
ture is invariant under local unitaries given By = I, projected tqog-,g(xl 25) is given by

1 0 1 0
Uy = ~ |, andUs = -2m |, When they act on ,
: o m> : ’ (ode?) ) yh oo, 8 @n2) = VEIGGHZ) + ¢ /alDy)
each qubit17]. The corresponding pure state which after lo- i T 21 — 3| D2
cal unitary transformations, leadsgg(z1, 2 ), can be written +e V1 —x - x2|Dg>' (13)
as , . In this case, we have p3?(z1,12) =
W3 (21, 22)) = VEI|GHZT) + /226" | DY) S UPS S (w1, w0)) (0 (w1, w2) U], where

+V1 =21 — 22€'%2|D?).(10)  {U;,j = 1,2,3} is the same as in Case 1.
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FIG. 4. (Color.) Plot corresponds to GGM |@zﬁ§’9> vs. z1, for two FIG. 5. (Color online.) The plot of GGM fop:(x1,22) =
values ofr = 22—, Here,a = 0.55 for the|[gGH Zs) state. These a1 |GHZS)(GHZS |+ x2 [D') (D' + (1 — 1 — x2)|D*)(D*|

are given by the dotted lines. The straight lines correspdadhe  againstz; andzs whenever it is convex. All axes are dimensionless.
convexified quantities. All quantities are dimensionless.

is clear that for example the GGM 0f3 (21, z2)) is convex

Numerical simulation guarantees that the minimum offor 0.64 < z; < 1.0 and0.0 < 25 < 0.36 and hence in that
E(|¢37 (21, x2))) occurs forg; = ¢o = 0. However, un-  region, we have the GGM Q#2(x1,22). In the rest of the
like the previous cases, we find thét|y5? (1, x))) is not  region, to obtain the GGM of (1, 2), we have to find the
convex for all values ofz; andz,. In particular, we plot convex hull of€ (|42 (1, x2))).
E([939(x1,22))) in Fig. 3, whena = 0.55 and when the
coefficients in|D}) and |D?) are all equal. For certain re-
gions of the parameter space, the figure is already convex, C. Higher rank multiqubit states
and hence the GGM g9 (x1, x5))) in that region is the

3, H . . .

GGM of py?(z1,22). On the other hand, for the remain-  \ye now consider classes of mixed states with rank more
Ing regions, aqconveX|f|cat|on has to be cggrled out to obtaifyan three. First, we explore a class of multiparty statesfwh
the 3GGM of p3(x1,z2). Specifically, £(|¢5"(z1,22))) #  can be dealt with symmetric unitaries. In other words, this
G(p3? (w1, 72)), whenz, is high whilez, is low. To obtain  class of states remain invariant, when the same unitaryacts
the GGM in that region, the convexification is required. To g the parties, i.epN = S USN NUTEN | we will then
illustrate the process, we introduce a new variable, —=2— ; | X de d g i itari

pro J Tz’ find another class of states for which symmetric unitaries do
and let us consider cases where- 0.96 and0.98. The con- ot work.
vexification of the curves so generated are depicted in&ig.

1. Symmetric unitary case

3. Case3 . . . .
Let us now consider a class of mixed states with arbitrary

number of parties, which can be obtained by generalizing
pa(z1,m2). The statepl(z1,22,...,25-1), is @ mixture of
generalized GHZ and all the Dicke states. It reads as

Let us move to a class of states which is a multiqubit gen
eralization ofp3(z1, z2). Itis given by
3 + + 1 1
pn(T1,22) = 21 |GHZG)(GHZY | + 22 |D")(D"| N
s T, .., on_1) = (1 — i) |gGHZ GHZ
+(1 -1 _x2)|DN—1><DN—1|7(14) pn (21,72 rN-1) = ( Xl:x g N){g N

N-1

i=1

where|GH Z};) = \%(|O>®N+|1>®N), and/DVN~1) is given

by [DY~1) of Eq. () with by; = ﬁ Again, we have
PR (x1,22) = Z?:l UJ®N|¢§’V($1,ZC2)><¢?V(I1,I2)|U;-f®N, with |[gGHZy) = a|0)®N 4+ /1 —a2|1)®V. Rank of the
where|)3; (x1, x2)) is given in Eq. (0) with |D?) being re-  above state spans the integerglinV]. One can check that
placed byl DN 1), for the same set of unitaries, given in Case

1. Hence, we can compute the GGM [ef}; (1, x2)) and N
check its convexity. Fop; = ¢» = 0 which gives the lowest PN (21, .-, 2N 1) = Z UPNpN (1, an—1)UEY,
GGM, Fig. 5 shows the GGM ofy2(z1, x2)) with respect to j=1

the parametersy; andxs with N = 5. From the figure, it (16)
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FIG. 7. (Color online.) Plot of GGM op3 with respect to the pa-
rametersg andy. The GGM of the corresponding unique pure state,
Wi, y)) = Val) — iv/y/2(1¢) = [¢)) + VI — @ — g|¢a) has

. 5 1, 2 1 a kink along the lines shown on the surface, in the plot. ThéG®
FIG.26. (C?Ig Ojll'ne') GBGM ops n ©1PIGHZ] + _22 (P[_D I+ the pure state is non-convex around these lines, and hengexif-
P[D?]) + —=—=2(P[D"] + P[D"]). All axes are dimensionless. ations are required thereat.

where the set of local unitarie$[/;} 1", consists off and  £(|¢3(z1,22))) with

10\
(0 eszj> with j = 1,..., (N — 1). We have to now show ) . — k
that 2 (21, m2)) = VI |GHZT) + \/;,;emm )

4
pn (@ @a, . ano) =Y UPN N (@, an) 4 /L;_‘T? 3¢ |Dk).  (21)
J k=3

N TON
(W (@, ev U7, (A7) Forés = 0,k = 1,...,4 which gives the infimum of GGM,

E(|Y2(z1,22))) is plotted withz, andz» in Fig. 6. By using
Whjsrel |¢%($1_= —oan-1)) = 1=22wilgGHZN) + the Hessian technique, we find that it is convex for the entire
> i—1 VZi|Dy). To prove this, the we note the actions of lo- range ofz; andz,. ThereforeG(p2) is obtained for alkr;
cal unitaries on each off-diagonal terms which e.g. arergive andz, and is given by

by
1 2$1+4I2+3 7—2I1—4$2
s 2mwi(qg—r) r g(pg) - - <1 - (1 — 4{ —
UPN|DIYDUTEN = ™5 |DIV(Dr|. (18) 2 10 10
. . 2milg—r) . . o X1T9 xl(l — 1 — .IQ) 2{E2 2(1 — X1 — IQ)
Xa\/ﬁyuse the identity >, e~ ~ = §,, in the analysis. Simi- (\/ 50 TV 20 + 52 + 52
t 2 1
omi +— $2(1 — T — xg)) }> ) (22)
> UPNIDIgGH Zn|UT*Y = ™% |D8) (9GH Zy| = 0. 10

! (19) Comparing Figs5 and6 with the situations obtained before,
All off-diagonal terms therefore vanish. We can now cal-it seems that higher rank states, for a fixed total number of
culate the GGM of ¥ (z1,...,zy_1)) and check whether qubits of the entire systems, have a greater affinity fordein
E(|YN (z1,...,zx_1))) is convex or not. If it is convex, then convex, when their GGMs are considered.
E(WN(1,. . an-1))) = G(pN(z1,...,2n-1)). Other-
wise, we have to perform convexification to obtain the exact
value ofG(p¥(z1, ..., zn—1)). Toillustrate this example, we 2. Asymmetric unitary case
consider a five-qubit state which is of the form
Until now, we have considered the states which remain un-
P2 =z |GHZIWGHZ | + %(|D1><D1| + |D?)(D?) altered under local symmetric unitaries of the fdiffi .
1 — Let us now illustrate a class of three-qubit mixed states
=T T T2 D3y (D3| + | DMYVDA)). which remains unchanged under the local unitaries of thra for
2 (20) U; ® U; ® Uy. The class of mixed state having rank 4, reads

pa =D milG) (G, (23)

Following the aforementioned prescription, we compute



where
G1) = %(|oo1> +1010) — [100) + |111)),
G2) = %( i[000) — [011) + [100) + [111)),
G3) = %( 000) 4 #[011) 4 [100) 4 [111)),
and [¢y) = 1(|001)+|010>+|100> 111Y).

Itis invariantundef{U;,i =1, ..
Ub=1I®1I®I1,
Uy =io, ® H @ H',
Us=1®0,® oy,
andU, = —io, @ H'" @ H'",
with H' =

11
f -1 1)
closed group. The only pure states that are twirled to the
above mixed states are of the fote) = >, /z:e|(;).
We compute the GGM df5) and minimize it over;’s. The
GGM of p3 is given by the minimum of th&€(|¢3)) for dif-
ferent values of;s provided the quantity is convex itself.
To visualize its GGM, let us consider, = z3 = %, i.e.
the state is of the form

pi =) (G + 2

.4}, which are given by

Note that these unitaries form a

(|<2> (Cal +1¢3) (G3l)

T =z —y) ) (Gl (24)
In this case, we find that the minimum GGM |gf} (z, v)) for
different values ofp;’s is obtained wher; = — ¢2 = — 5

and¢s; = 0. We find the GGM ofp3(z, y) by convexifying
the GGM of |43 (z,y))).

D. Casesof multiqudit states

Here,
symmetrically on p¢, , as Z?N.

2 d—1
{Id, zZ5N, (Z?N) . (Z?N) } forms a group and the

corresponding twirling operator keep%, 4 invariant. Now,
we have to find the set of all pure stat¢®)¢ %.q that

are projected tOpN_’d under the action of the aforemen—
tioned twirling operator. It can be easily checked that
W)%a = S0, €% |W), are the only class of pure states
that are mapped t@Nd under the twirling operator, i.e.,

Sos (Z®N) |\IJ)Nd<\I/|Nd(ZT®N) = p% 4 Inthis case
also, the minimum of the GGM’s af¥")¢, %.q Over the phases

{¢1} gives the GGM o, %.q Provided the minimum GGM is
already a convex function of the state parameters. Otherwis
one has to convexify the function to obtain the GGMgf .

Until now, we have considered systems with the same di-
mensions of the local Hilbert spaces. However, this formal-
ism can be further extended where the local Hilbert spaces’
Gimensions are not equal, i.e., for quantum systems beigngi
iNHag, QHa,®...@Ha,,Withdy # do # ...dy. Inthat case,
we have two different scenarios. Firstiy,d; = axds =
dn, where{a; f\’zjl € Z™. Without loss of generality]y is
taken to be the largest dimension and the corresponding uni-
taries are of the forn¥;, ® Z,,.. ® Z4, with its subsequent
powers uptaly — 1, such that the composite unitary matri-
ces form a group. Evidently, the case of equal dimensions is
a special case of this. Thus, the pure states over which we
have to perform the minimization still have the same form,
with a slightly different version of the condition given by
> Jm(moddy) = k. The second one is the situation when
all the dimensions are prime to each other, and in this case,
we have to take unitaries upto the power(dfd,...dy) — 1,
where the form of pure states remain the same, with the mod-
ified condition,>", jn,(moddids...dy) = k. Therefore, in
general, we have to take the maximum power of the unitaries
which is the lowest common multiple @f , do, ..., dy to ap-
ply the similar prescription. In the next paragraph, westlu

each of the unitary operators act locally and
Note that the set

In the previous sections, we have evaluated the GGM offate this with an example.

certain multiqubit systems. We will now show that a similar
method can be extended to obtained the analytical expressi@tate, P3 3

For S'mP“CIty, we consider the following three-qutrit
Yo k| W)k(W]s,  where [),

of GGM of multiqudit mixed states. Specifically, we con3|derz qm2j,§|]1]233>(’“) andj; + j2 + js(mod3) = k. The

an N-qudit mixed state of ranl, in the Hilbert spacé{®
of the form

d
P‘Jiv,dzzpk|‘1’>k<‘1’|k7 (25)

k=1

where |\I/>k = Z{J} Qjyjs...5n |j1]2]N>(k) and
(>, dm)(mod d) k. Our aim is to evaluate the
GGM of the statep$, ;. Therefore, like previous cases, we
construct a twirling operator, consisting of unitary opera
Z4 which ared-dimensional, non-hermitian generalization of

theo, and given by

d—1
Zd = Z e
3=0

2mij
d

(26)

exact form of the pure statd$l,)}7_ reads as

2
wo) = 5 (>l + 3 [012))
1=0 perm
|W,) = %(Z 001) + 3 [022) + > [112))
and |U,) = %(Z 011) > j002) + > [122)).  (27)

For this case, the unitaries which construct the twirling op
erators are given afls, Z3, Z3}. Note that the unitaries of
the form 23 ® Zi @ Z% form a group fori ranging from0

to 2 and p373 is evidently invariant under the corresponding



FIG. 8. (Color online.) Plot of GGM op;?, againstz; andzs. The
GGM of the corresponding unique pure staﬁeg,;;) =T1|¥)1 +
6i¢2\/5|\11>2 + e'?s vV1—x1 — $2|\I’>3 is plotted With¢1 = o =
0. The GGM of the pure state is convex everywhere, as evident fr
this plot and hencé (| V35 3)) = G(p3 3).

twirling operator. The pure state that is mappe(;b%g un-
der the action of the aforesaid twirling operator is of thexfo
(03 5) = Va1 0)1 +e2 T2 T)a + e /T =21 — 22| V)3,

It can be easily found that minimum GGM ¢¥3 ) is ob-
tained for¢g, = ¢3 = 0 and it is a convex function of the
parameters; andz,. Hence, the GGM of)gg is given by

G(p33) =3{1 — ym132 — /2 {1 — 21 — 23}
— \/ZCQ{l—Il —IQ}}

G(p3 ) is depicted in Fig8 and the convexity of the function
can be visualized from the same.

IV. CONCLUSION

Computing entanglement of an arbitrary mixed state is a
formidable task. The entanglement of mixed states is gen-
erally defined by constructing the convex roof over all pos-
sible pure states which is practically impossible to coraput
in most of the cases. Although there exists a few bipartite
measures which can be obtained for arbitrary states, tHe eva
uation of entanglement for a mixed state in multiparty domai
is still a challenging task. In this paper, we have computed a
genuine multiparty entanglement measure known as general-
ized geometric measure of some classes of mixed states with
arbitrary number of parties and dimensions by using certain
symmetries. We evaluate the measure for several classes of
multiqubit and multiqudit states having different ranksheT
method, we exploited, uses a pure state that contains the sam
amount of entanglement as the given mixed state, and leads to
the mixed state by action of a certain twirling operation.

Note added: The present work is based on a poster pre-
sentation B3] at the International Workshop on Quantum In-
formation (IWQI-2012), Harish-Chandra Research Insgitut
Allahabad, India. We thank J. Solomon Ivan for pointing out
during a discussion over the poster that the same method as
followed here can be used to evaluate the GGM for an arbi-
trary mixture of GH Z3;) and|GHZy), where|GHZ%) =
%(|O>®N +|1)®). We thank Otfried Guihne for informing
us about their independent work on evaluating multipaetite
tanglement 34], by a method that is different from the one
followed in the present work.
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