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Violation of a Bell inequality guarantees the existence of quantum correlations in a quantum
state. A pure bipartite quantum state, having nonvanishing quantum correlation, always violates a
Bell inequality. Such correspondence is absent for multipartite pure quantum states. For a shared
multipartite quantum state, we establish a connection between the monogamy of Bell inequality
violation and genuine multi-site entanglement as well as monogamy-based multiparty quantum cor-
relation measures. We find that generalized Greenberger-Horne-Zeilinger states and another single-
parameter family states which we refer to as the “special Greenberger-Horne-Zeilinger” states have

the status of extremal states in such relations.
I. INTRODUCTION

Over the last couple of decades, quantum entangle-
ment [1] was shown to be an useful resource due to its
vast applicability in quantum computational [2, 3], and
communicational tasks [4-7] as well as in other infor-
mation processing protocols [8-10]. In a large number
of cases, entangled states turn out to be more advan-
tageous in performing the job than the states without
entanglement. On the other hand, Bell had constructed
a mathematical inequality derived from locality and real-
ity assumptions, and showed it to be violated by certain
entangled quantum mechanical states [11, 12].

Violations of Bell-like inequalities [13] form necessary
and sufficient criteria to detect entanglement in pure bi-
partite states [14]. The case of bipartite mixed states
is more involved, and, for example, Werner states, [15]
for certain parameter ranges, do not violate the Clauser-
Horne-Shimony-Holt Bell inequality [12]. Similarly, in
multipartite systems, there are examples of pure entan-
gled states which do not violate multipartite correlation
function [16] Bell inequalities with two measurement set-
tings at each site [17]. For multiparty quantum states,
entanglement as well as Bell inequality violation of bipar-
tite reduced states are constrained by certain monogamy
relations [18-21]. It is therefore natural to ask whether
these concepts are inter-related.

In this paper, we address this query, and in particular,
we establish a quantitative relation between a measure
of nonlocal correlations quantified by the monogamy re-
lation for the violation of Bell inequalities, called Bell
inequality violation monogamy score (BVM) with sev-
eral quantum correlation measures like the 3-tangle [19],
and quantum discord as well as quantum work deficit
monogamy scores [22-24]. Interestingly, note that Bell
inequality violation can be seen as a signature of quan-
tum correlation stronger than entanglement while quan-
tum discord [25] and work deficit [26] quantify weaker
versions of quantum correlations beyond entanglement
[27, 28]. We also establish relations between BVM score
and a genuine multiparty entanglement measure quan-
tified by the generalized geometric measure (GGM) [29]
(cf. [30]). For 3-qubit pure states, we identify the gener-

alized Greenberger-Horne-Zeilinger (gGHZ) states and a
one-parameter family of gGHZ-like states, which we refer
to as “special GHZ” states, for which the BVM scores at-
tain minima, in different scenarios, among arbitrary pure
tripartite states having the same amount of multiparty
quantum correlations. Similar connections hold also for
4-qubit pure states. We prove analytically that among
all N-qubit symmetric states having the same GGM, the
¢GHZ state possess the lowest BVM.

The paper is organised in the following way. In Sec.
II, we briefly discuss about the Clauser-Horne-Shimony-
Holt (CHSH) inequality and then define the BVM in Sec.
ITA. In Sec. III, we establish the relations between var-
ious quantum correlation measures and BVM score. In
particular, Sec. III A deals with the connection between
BVM score and genuine multiparty entanglement mea-
sures while in Sec. IIIB, we connect BVM score with
monogamy-based measures. Finally, we conclude in Sec.
IV.

II. BELL VIOLATION PARAMETER AND BELL
MONOGAMY SCORE

Based on locality and reality assumptions, one can de-
rive mathematical relations, the CHSH-Bell inequalities
[11, 12], which can be shown to be violated by several
quantum mechanical bipartite states. A bipartite state,
p12, of two spin—% particles ,for which a local hidden vari-
able model exists, can be shown to satisfy

(Bceusw)pi| <2, (1)

where Bopgsy = a.6 @ (b+V).6+ad .60 (b-V).¢
with four dichotomic observables, represented by four ar-
bitrary directions, a, a' and l;, v and with the measure-
ments for the observables corresponding to a,a’ being
performed by observer 1 and the remaining by observer
2. Here & = (0y,04,0;), with the o, being Pauli spin
matrices, and <BCHSH>p12 e Tr(p12BCHSH)-

The Hilbert-Schmidt decomposition of a two-qubit
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quantum state pio is given by
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where I is an identity operator, tpm = Tr (p120), ® 02,)
are classical correlators and u; and v; are the magnetiza-
tions. Let us denote the 3 x 3 matrix formed by t,,, as
T,, and call it the correlation matrix .

For a two-qubit state pi2, the maximum of
{BcrusH)p,| was found to be 24/M (p12), where M (p12)
is sum of the two largest eigenvalues of the symmetric
matrix 7,'7, [31]. Therefore, the quantum state vio-
lates local realism, when M (p12) > 1. For example,
M(|p™)) = 2, with [¢7) = —5(|00) — [11)), giving the
maximum violation.

For our purposes, let us consider a quantity, the Bell
inequality violation parameter (BVis), for a two-qubit
state p12, given by

BV12 = max[2 M(plg) — 2, 0] (3)
If the state p12 violates a CHSH-Bell inequality, then
BVis5 is nonvanishing, and otherwise it vanishes. The
above quantity will help us to write the Bell monogamy
relation for a multiparty state which will be discussed in
the subsection below.

A. Bell Violation Monogamy Score

For an arbitrary N-party quantum state, pi2.. n, the
monogamy score [23] of any bipartite measure, My =
M(p12), is defined as

N
5./\/1 - Ml:rcst - ZMl:i7 (4)

=2

where M.t and My.; denote the bipartite measure
in the 1 : rest bipartition and the same for two party
reduced density matrices, p1;, i = 2,..., N, of the multi-
party state pis...n. Here the quantity, ¢, quantifies the
distribution of a given bipartite measure in a multiparty
system with respect to party 1, and we call 1 as the nodal
observer. One can also define monogamy score by con-
sidering any other party as the nodal one. The measure
M is monogamous if d,¢ > 0, for arbitrary states, and
otherwise it is nonmonogamous. While certain bipartite
measures are monogamous, there are others that are not
[18, 19, 22-24]. We now write the monogamy score for
Bell inequality violation i.e., we replace M by BV. For
an arbitrary N-qubit state p, it reads

N
5BV - B‘/l:rcst - Z BVl:i . (5)

=2

In this paper, we use d gy as a quantification of the nonlo-
cal nature present in multiparty states. Importantly, one
should stress here that the choice of a such monogamy-
based measure, results in a readily computable measure
for arbitrary multiqubit states, which is in general not
easy for multipartite Bell inequalities [16].

IIT. RELATION BETWEEN BELL INEQUALITY
VIOLATION MONOGAMY AND SEVERAL
QUANTUM CORRELATION MEASURES

In this section, we are going to establish relations be-
tween the Bell inequality violation monogamy score and
various multiparty quantum correlation measures. We
choose two types of multiparty quantum correlation mea-
sures — a distance-based measure, generalized geometric
measure (GGM), and several monogamy-based measures
of quantum correlations. The GGM (€), a genuine multi-
party entanglement measure, is defined as the minimum
distance of the given state from a non-genuinely multi-
party entangled state [29]. We consider the concurrence
squared monogamy score, known as 3-tangle [19], and
quantum discord and quantum work deficit monogamy
scores [23, 24] as monogamy-based measures. It is known
that although 3-tangle is always monogamous [19], quan-
tum discord and quantum work deficit monogamy scores
can be both non-negative and negative [22].

A. Bell inequality Violation Monogamy with
GGM

Let us begin by establishing the connection between
BVM score and GGM for arbitrary N-qubit pure states.
As we have already discussed, there exists a class of gen-
uinely multiparty entangled states with £ # 0 which
does not violate two-setting correlation function multi-
partite Bell inequalities [17]. This may lead one to be-
lieve that there is no relation between Bell inequality
and genuinely multiparty entanglement in a multiparty
pure state regime. We will however establish a universal
relation between the monogamy-based Bell inequality vi-
olation score and &, for arbitrary 3-qubit pure states. In
particular, we find that for a fixed GGM, dpy can not
take an arbitrary value — it has a GGM-dependent lower
limit, and thus there exists an inaccessible region in the
GGM-Bell inequality monogamy score plane.

In this investigation, there exists two one-parameter
families of N-qubit quantum states which play important
roles in determining the relevent boundaries, given by

|9GHZ)n = al00...0)x + V1 —a2e™®|11...1)n, (6)

known as generalized Greenberger-Horne-Zeilinger state
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which we call the special GHZ state. Here, , 3 € [0, 1],
and ¢, 6 are phases. Before presenting the results for 3-
qubit pure states, let us first consider the N-qubit sym-
metric pure states, [¢)°Y™)y, and we have the following
theorem.

Theorem 1: If GGM of an arbitrary symmetric N-qubit
pure state is equal to the GGM of the generalized GHZ
state, then the Bell inequality violation monogamy score
of an arbitrary symmetric state is higher or equal to that
of the gGHZ state, i.e., for arbitrary N,

v ([0 N) =2 dpv([gGHZ) N), (8)

whenever E(|¢%V™)y) = E(JgGHZ) N ), for a symmetric
N-qubit pure state [¢%¥™)n.

Proof: The GGM of arbitrary symmetric state and
|gGHZ) are respectively given by

E(lYy™)) =1 — max[{e;n}] and 9)

IsSGHZ)n = (|00. Oy +

E(lgGHZ)N) =1~ a, (10)
where the set, {e;,}, represents all the maximum eigen-
values of the non-repetitive marginal density matrices of
the state [°¥™) n, and without loss of generality, we as-
sume o > % Equating the GGMs of two states, we get
a = max[{en}].

We now move to calculate dgy. We write the Schmidt
decomposition of [1*¥™)y, in the 1 :rest bipartition,
which is given by

[N = VX)) N1+ V1 - )\1|XL>1|§L>N(—17)
11
where Ay is the Schmidt coefficient in the 1 : rest bipar-
tition, and we also assume A\; > % It immediately gives
BVl;rest(l’t/JSym>N) =21+ 4)\1(1 — )\1) — 2. (12)
It was shown [21] that among all {BVy.;}Y,, at most
one can be non-zero. Since we deal with symmetric
states, all two party reduced density matrices are the
same and hence can not violate any two settings Bell in-
equality. Therefore, in this case, dpy (|£*¥™) ) reduces
t0 BV1.rest (|90%9™) ). For the |gGHZ) y state, we have
Oopv(|gGHZYN) = 2¢/1 + 4a(l — a) — 2. (13)
To obtain the relation between Eqgs. (12) and (13), we
consider two cases.
Case 1: Suppose that the GGM of [¢*¥™)y comes
from the single-site density matrix. So, we have \; =

max[{en}] = «, which leads us to dpy(|*¥™)n) =
opv(l9GHZ)N).
Case 2: If the maximum eigenvalue in the GGM comes
from a reduced density matrix that corresponds to more
than a single site, then we have A\; < «a. Now, since
dpv(|¥*¥™)N) is a monotonically decreasing function of
A, we get

dpv([VY")N) 2 v (IgGHZ) N ). (14)
Hence the proof. |

The above result on symmetric states leads to the fol-

lowing corollary.
Corollary 1: If the GGM of an arbitrary N-qubit state,
coincides with that of the gGHZ state, then the Bell in-
equality violation monogamy score for the arbitrary N-
qubit state is bounded below by that of the gGHZ state
provided all the two-party reduced states with the nodal
observer do not violate CHSH inequalities.

It is known that multiparty states for which all two-
party reduced states with certain observer satisfy the
CHSH Bell inequalities, exist. In any monogamy rela-
tion with its score, given in Eq. (4), if we find that all
My; = 0V i, then it implies that the given state has
no distribution of M between the nodal observer and
the other single sites. We refer to such states as “non-
distributive” states for that measure and that nodal ob-
server. In this paper, in several occasions, we will fo-
cus on the properties of such multiqubit quantum states,
whose bipartite reduced states do not violate any CHSH
Bell inequalities. Examples include the |gGHZ) state.
Let us now move to the case of 3-qubit pure states. We
will now lift the assumptions on the symmetry property
of the state and we have the following theorem.
Theorem 2: If mazimum eigenvalue required in GGM
of an arbitrary 3-qubit pure state, |1))123, comes from the
1 : rest bipartition, then both the two-party reduced states
of the tripartite state, having the observer 1 as a party do
not show any violation of the CHSH Bell inequalities

Proof: Let us assume that Ay > A3, A3 where \;, for
i =1,2,3, are the maximum eigenvalues of the reduced
density matrices, p;, i = 1,2,3 of |[¢))125. From Eq. (3),
we know that BV will be non zero only when M (py;) >
1, ¢ = 2,3. For any tripartite state, |¢))123, after some
algebra, we get

M (p12) — M(p2s) = 8{A1(1 — A1) — As(1 — A3)}. (15)

One can easily check that the function z(1—2x) is a mono-
tonically decreasing function in = € [1,1], and thus we
have

M (p12) < M(p23). (16)
But by using the monogamy of Bell inequality violation
[21], we know that at most one of p12 and pa3 can violate
the CHSH Bell inequalities, and from Eq. (16), therefore,
we get BVio = 0. By replacing 2 by 3 in Eq. (16), one
can also show that BVj3 = 0. Hence the proof. |
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FIG. 1. (Color.) Plot of Bell inequality violation monogamy
score (6pv) vs. GGM (&) for 3-qubit pure states. dpv is plot-
ted along the ordinate while £ is along the abscissa. We sepa-
rately generate 10° states from two distinct classes, the GHZ
class (green dots) and the W class (magenta dots), and find
that for both the classes of states, the special GHZ state (red
solid line) gives the lower boundary. The blue dotted curve
corresponds to the generalized GHZ state, which gives the
boundary for those states whose maximum eigenvalue comes
from the nodal part. All axes are dimensionless.

From Theorem 2, we can immediately establish a rela-
tion between the genuine multiparty entanglement mea-
sure, GGM and monogamy score for CHSH Bell inequali-
ties for 3-qubit pure states. In particular, if the maximum
eigenvalue in GGM is obtained from the single-site den-
sity matrix of the nodal observer, i.e., if for a 3-qubit pure
state, the GGM is &(|¢))123) = 1 — A1, then from Theo-
rem 2, we have BVio = BVi3 = 0. By using Eq. (12), we
have dpy (|t)123) = 24/1 +4E(1 — ) — 2. By applying
Theorems 1 and 2, we also obtain that for three-qubit
pure states for which E(|1)123) =1— X\ = E(|gGHZ)3),
dpv(|¥)123) = dpv(|gGHZ)3) irrespective of the sym-
metry property of [¢)23.

Let us now consider arbitrary 3-qubit pure states,
[t))123, both symmetric as well as asymmetric states,
and like in Theorem 1, we try to find whether there ex-
ists some lower bound on dpy (|$h)123) for a given value
of GGM. Towards that search, we numerically generate
2 x 10° 3-qubit pure states, and calculate £ and épy .
The results are plotted in Fig. 1. Green and magenta
dots represent two SLOCC-inequivalent classes, the GHZ
class and the W class [33], of 3-qubit pure states respec-
tively, and for each class, 10° states are generated Haar
uniformly. As shown in the figure, the entire plane of
d0py — &€ is not spanned by the 3-qubit pure states.

Observation: For a fixed &, there indeed exists a
lower boundary on dgy. The lower boundary is given by
|sGHZ)3 (red line in Fig. 1). In this respect, one should
stress here that [gGH Z)3 (blue dotted line) does not give
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FIG. 2. (Color online.) dpy (ordinate) against £ (abscissa) of
arbitrary 4-qubit pure states. We separately generate 5 x 10°
4-qubit states for all the nine classes. We find that |sGH Z)4
(red solid line) gives the lower boundary. The dotted blue line
represents the |gGH Z)4 state. All axes are dimensionless.

the lower boundary. Therefore, the symmetric states and
the entire class of states possess different boundary lines
of dpy for a fixed GGM.

We may now seek answers for two questions — 1) does
such a lower bound exist even when one increases the
number of qubits; 2) does the one-parameter family of
states which gives the lower boundary remains intact
even if one changes the quantum correlation measure.
We will answer the second question in the next subsec-
tion. To answer the first one, we plot in Fig. 2, iy
against GGM when 4-qubit pure states are generated
Haar uniformly. Such simulation contains all the nine
4-qubit classes, given in Ref. [34]. Like 3-qubit pure
states, |sGHZ), again gives the lower boundary. And
hence we are tempted to conjecture that for arbitrary
N qubit pure states, if E(|sGHZ)n) = E(|Y)n), then
Spv([¥)n) = v (|sGHZ)N).

B. Bell inequality Violation Monogamy score with
Monogamy-based Quantum Correlations

In the preceding section, we establish a connection be-
tween multiparty entanglement and Bell inequality vi-
olation monogamy score. In this section, we address
the question whether such feature is generic. Specifi-
cally, we now quantify multiparty quantum correlations
by monogamy scores, viz. 3-tangle, and quantum discord
as well as quantum work deficit monogamy scores and
ask: Does dpy still possess any non-trivial lower bound?
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FIG. 3. (Color online.) dpy (y-axis) vs. dp2 (x-axis) for 3-
qubit non-distributive pure states (green dots) with BVis =
BVi3 = 0. All the points lies above the [gGH Z)3 state (blue
dotted line). Both the axes are dimensionless.

1. Connection between Bell inequality monogamy
and N-Tangle

We will now show that the N-tangle and §py are con-
nected by the following Theorem, when N-qubit states
possess a certain symmetry. The N-tangle [19] is defined
as

N
5C2 = C]Q.:rest - 2612@7 (17)

where C represents the concurrence [35], which is defined
in the Appendix.
Theorem 3: If the N-tangle of an arbitrary N-qubil pure
state is same as that of a |gGHZ) N state, then the Bell
inequality violation monogamy score of the former is al-
ways bounded below by the same of the |gGHZ) N state,
provided all two party reduced states with the nodal party
of the arbitrary N-qubit state satisfy the CHSH-Bell in-
equality.

Proof: The concurrence squared monogamy score,
dcz, of |gGHZ) N state is given by 4a(l — «), while for
an arbitrary pure state, |¢)y, it reads

N

de2(|)n) = 4M(1 = M) =D C(pra),  (18)

=2

where A; is the maximum eigenvalue of p; =
tra. N (|Y)N(]).  Both the states having the same
amount of dc2 implies

4)\1(1 - )\1) Z 40((1 - Oé). (19)

Now the Bell inequality violation monogamy score of
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FIG. 4. (Color online.) Plot of dpy (ordinate) with dg2 (ab-

cissa) for randomly generated 3-qubit GHZ class states. All

the points lies above the |sGH Z)3 state (red solid line). Both
axes are dimensionless.

|1) N is given by

(5gv(|’g[1>N)— 1+4)\1(1—)\1)—
>2y/1+4a(l —a) —2=90pv(|gGHZ)N),
(20)
where we assume dpv(p1;) =0,7i=2,3,...,N. |

Theorem 3 mimics the result of symmetric states for
dcz, given in Theorem 1 and the results for 3-qubit pure
states in Theorem 2. Fig. 3 depicts the behavior of
dpv with ¢z, for 10° randomly generated 3-qubit non-
distributive pure states. The blue dotted line represents
the |gGHZ)3 state.

Let us now lift the constraint of BV (py;) = 0. By nu-
merically generating 10° tripartite pure states, from the
GHZ class (green dots) by using Haar measure, we ob-
serve that like for the GGM, the |sGH Z)5 state has a spe-
cial status, and we find dpy ([)123) > dpv ([sGHZ)123),
when ¢z (|10)123) = d¢2(|SGH Z)123), as shown in Fig. 4.

2. Bell inequality Monogamy with quantum Discord
and quantum Work deficit monogamy

Upto now, we found that the relations between Bell in-
equality violation monogamy and the entanglement are
independent of the choice of measure of the entangle-
ment. We will now go beyond entanglement and find
whether such relation holds or not. Specifically, in-
stead of entanglement, we now consider quantum discord
monogamy [22, 23], and quantum work deficit monogamy
scores [24], denoted respectively by dp and dwp. Note
that both quantum discord, and quantum work deficit in-
volve local measurements on one of the subsystems of the
bipartite state. For pis, if for defining quantum discord,
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FIG. 5. (Color.) Bell violation monogamy score (6py) vs. quantum discord monogamy scores dp for 3-qubit pure states. dpv
is in the ordinate while dp is along the abscissa. Two distinct classes of 3-qubit pure states, the GHZ class (green dots) and
the W class (magenta dots) of states, are separately generated. In Fig (a), we make the measurements on the nodal part, and
observe that all the points are bounded below by |[sGHZ)s, (red solid curve), while the blue dotted line corresponds to the
|gGH Z)3 state that lies above it. On the other hand, Fig (b), for dp, i.e. when the measurement in discord are performed on
the non-nodal observers, the [gGH Z)3 state gives the boundary (dotted blue line). Units in abscissae are in bits while dpv is

dimensionless.

measurement is performed on party 2, we denote discord

by D and corresponding monogamy score as 5%. 53 rep-
resents the monogamy score when the measurement is on
the party 1. Similarly, we have ¢, and d;53 .

For an arbitrary 3-qubit pure state, we find that both
the information-theoretic monogamy scores follow simi-
lar relations as obtained in Theorems 2 and 3, irrespec-
tive of the party chosen for measurement. However, the
one-parameter family of the boundary states changes, de-
pending on the choice of the party in which measure-
ments are performed. In particular, when measurement
has been done on the nodal part, i.e. 1 in our case,
|sGHZ)3 gives the lower boundary while the [¢GHZ)s
gives the lower boundary when measurements have been
carried out on the other parties i.e. 2 or 3. These results
are depicted in Figs 5 (a) and (b).

Theorem 4: The Bell inequality violation monogamy
scores of arbitrary non-distributive N-qubit pure states,
having the same quantum discord as well as quantum
work deficit monogamy scores, are bounded below by those
of the |gGHZ) N states.

Proof: Quantum discord monogamy score of the
N-qubit [gGHZ) state is given by 0z (lgGHZ)n) =
o5([gGHZ)N) = H(a), where H(a) is the binary en-
tropy having the form

H(a) = —alogy(a) — (1 — a)logs (1 — a), (21)
for 0 < a < 1. On the other hand, (57—5 for an non-
distributive arbitrary pure state, [1))n, is given by

53(1)x) = S(p1) = > D(pr)

< H(M), (22)

where we have used the fact that B > 0, for all the bi-
partite states, and S(p1) = H(A1) is the von-Neumann
entropy of the marginal density matrix of the nodal part.
Also, 65 ([Y)n) < H(M). Equating d¢5(|gGHZ) N) with
65(|1/)>N), we obtain « > \;, assuming o, \; > % Now
from Eqgs. (12) and (13), we conclude dpy (|Y)n) >
dpv(|JgGHZ)N) for non-distributive states.

Now for the quantum work deficit monogamy score,
one can also show that 053 (|¢)n) < H(A1), as well as
that 04775 (|¢) ) < H (M), and using similar argument as
above, for non-distributive states, we have dpy (|¢)n) >
dpv(|gGHZ) ). Hence the proof.

We again numerically generate 10° arbitrary 3-qubit
pure states, both from the GHZ class as well as from
the W class states, and plot dpy with respect to é3 and
645 in Figs. 5 (a) and 5 (b) respectively. As already
mentioned, the choice of party in which measurements
are performed play an important role in determining the
boundary line of the scattered points.

IV. CONCLUSION

In summary, we considered the relation between a
monogamy-based measure of multipartite nonlocal cor-
relations and several monogamy-based neasures of mul-
tipartite quantum correlations, for multiparty quantum
states. Here “nonlocal correlations” have to be under-
stood as correlations that violate local realism. We also
established a connection between the multipartite nonlo-
cal correlations and a measure of genuine multiparty en-
tanglement. We found that the generalized GHZ states
and a single-parameter family of states, which we call



“special GHZ” states play important roles in these rela-
tions.
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APPENDIX

We now briefly define all the multiparty quantum
correlation measures that were required in this work.
We first discuss about the distance-based genuine mul-
tiparty entanglement measure and then we focus on the
monogamy-based quantum correlation measures.

Genuine Multiparty Entanglement Measure

For an arbitrary N-party pure state, ), the GGM
(&) [29] (cf. [30]) is obtained as the minimum distance
from a pure state which is not genuinely multiparty en-
tangled and reads as

E(lY)n) = min [1—[(x|¢¥n)[?] (23)

Ix)es
Here the minimization is taken over the set, S, of all non-
genuinely multiparty pure states. Eq. (23) reduces to a

simplified form which makes the measure computable for
arbitrary number of parties and is given by

E(|Y)n) = 1-max{Aa.g|AUB ={1,2,..,N}, AN B =0},

(24)
where \4.p is the maximum eigenvalue of the marginal
density matrices of 1) .

Monogamy-based Quantum Correlations

Let us now discuss about the monogamy-based quan-
tum correlation measures of an N-partite quantum states.
In Eq. (4) of Sec. ITA, we introduced the monogamy
scores daq, for an arbitrary quantum correlation mea-
sure M. We used the monogamy scores for concurrence
squared, quantum discord and quantum work deficit. We
will now briefly define these bipartite measure.

Concurrence

Concurrence is a bipartite entanglement measure in-
troduced by Bennett et. al. [35], for 2 ® d system. It is
a monotonic function of entanglement of formation and

an entanglement monotone under local operations and
classical communication. For an arbitrary 2-qubit mixed
state, p12, concurrence (C) is defined as

C(p12) = max {0, A1 — A — Az — Ay} (25)
where )\; are the square root of the eigenvalues of the
non-Hermitian operator pi2p12, in descending order, and
p12 = (0y ® gy)pis(oy ® o) is the spin flipped state.
This expression can be simplified for arbitrary 2-qubit
pure states |¢)12), and is given by 2/det(p;), where p; =
tra([1h12) (v12]) [18, 19].

The N-tangle or the concurrence squared monogamy
score is obtained from Eq. (4), by replacing M by C?
[35]. For 3-qubit pure states, the 3 tangle vanishes for
the W class states.

Quantum Discord

Quantum discord of an arbitrary bipartite quantum
state, p12, is defined as the difference between the total
correlation and the classical correlation present in the
state. For pis, the total correlation is quantified as the
minimum amount of noise required to make pis into a
product state of the form p; ® p2 [36], where p; and pa,
are the marginal density matrices.

I(p12) = S(p1) + S(p2) — S(p12),

where S(p) = —tr(plog, p) is the von-Neumann entropy
of p. I(p12) is also known as the quantum mutual infor-
mation of p15. In a similar spirit, the classical correlation
is quantified as the amount of noise that has to be intro-
duced to make py2 classically correlated [36], and is given
by

(26)

J(p12) = S(p1) — S(p1)2),

where S(pyj2) is the conditional entropy, defined as
S(p1j2) = mingppzy 35 piS(p1ji), with the minimum be-

ing taken over all rank one projectors {Hf}, acting on
%(Il ® [} pr2l' @ H?)
Here p; = tr(I' ® Hf p1al' ® Hf ). Quantum discord is
then defined as [25]

(27)

the subsystem 2, and py; =

D(p12) = I(pr2) — T (pr2). (28)

The left arrow in D indicates that the measurement is
performed on the second party 2. Similarly, we can have

, when measurement occurs on the first party.

Quantum Work deficit

Like quantum discord, quantum work deficit of a bipar-
tite state p12o, is the difference between two quantities, the



extractable work from a quantum state under “closed op-
erations” (CO) and “closed local operations and classical
communication” (CLOCC) [26]. The operations in CO
include (i) global unitary operations, and (ii) dephasing
of p12 by the projective operators defined in the Hilbert
space of p12, while CLOCC involves (i) local unitary op-
erations, (ii) dephasing by local measurements on the
subsystem 1 or 2, and (iii) communicating the dephased
subsystem to the complementary subsystem 2 or 1, over
a noiseless quantum channel. Under CO, the amount of
extractable work from po, is

Ico(pi2) = log(dimH) — S(p12), (29)

with dim? being the dimension of the Hilbert space of
p12, while under CLOCC, it is given by

Icrocc(piz) = log(dimH) — %gl 5(0,12) (30)

i

where ply = 32, 1" @ [[7 pral' @ [T; Now the quantum
work deficit is given by

V%(pm) = Ico(p12) — IlcLocc(piz)- (31)

Similarly one can have Wﬁ(plg), by changing the sub-
system at which the measurement is performed.
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