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Abstract.

We investigate finite-size scaling of genuine multisiteaegtement in the ground state of
quantum spin-1/2 Heisenberg ladders. We obtain the grotatessof odd- and even-legged
Heisenberg ladder Hamiltonians and compute genuine rteléatanglement, the generalized
geometric measure (GGM), which shows that for even rungd\i@@reases for odd-legged
ladder while it decreases for even ones. Interestingly,giioeind state obtained by short-
range dimer coverings, under the resonating valence basatzarencapsulates the qualitative
features of GGM for both the ladders. We find that while thengit\aconverges to a single
value for higher legged odd- and even-ladders, in the agytingdimit of a large number of
rungs, the finite-size scaling exponents of the same tend/¢oge. The scaling exponent of
GGM is therefore capable to distinguish the odd-even dahgtin Heisenberg ladders, even
when the corresponding multisite entanglements merge.
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1. Introduction

The sequences of both odd and even numbers mathematicatlly ke same infinity. The
question is whether limits of functions of odd and even nurslieach the same limiting
function as the respective sequences tend to infinity. Inyaiaray physics, the dichotomy
between the physical properties of odd and even quantunehtegsg ladders is well known.
For example, the seminal work in Refl][shows that the spin gaps of odd and even
Heisenberg ladders exhibit different behavior, althoughvalues are expected to converge to
a single limiting value, with an increase in the number ofsleg the ladder. It may now
be asked whether one can identify a physical quantity thatldvbave different limiting
values depending on whether odd- or even-legged laddefslneed to reach the infinite 2D
square lattice. In this paper, we answer this question afikmly by identifying a quantum
information theoretic quantity that does the job.

From the perspective of quantum many-body physics, thergtstate of the Heisenberg
ladder [l-3] is an important physical system with a rich topologicale@rdThe significance
of these quantum spin ladders lie in their nontrivial intetiate properties between
one-dimensional (1D) and two-dimensional (2D) spin lalic For example, specific
characteristics of Heisenberg ladders do not extrapaoiaialty from the 1D Heisenberg chain
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to the 2D square lattice. This is due to the fact that odd awd éleisenberg ladders show
different physical properties: Even-legged ladders aie-gppped and have exponentially
decaying correlation lengths while odd-legged laddersgagless with power-law decay
[1-5]. Investigating the odd-even dichotomy and the scaling adperative properties in
large Heisenberg ladders remains an elusive propositiimapily due to the unavailability
of suitable analytical and numerical tools. Quantum catiehs B, 7] have been used as
a tool to detect cooperative phenomena and topological amdgound states of Heisenberg
ladders 8-15]. In recentyears, there have been studies to understaegi¢ineodd disparity in
terms of entropy area lawlLf], Rényi entropy 1L7], entanglement spectra§|, etc. However
investigating the odd-even dichotomy via the scaling ofpmyative multisite properties in
large Heisenberg ladders remains an elusive propositiimapily due to the unavailability
of suitable analytical and numerical tools.

In this work, we investigate the variation in ground stateparties of even versus odd
Heisenberg ladders by analyzing its genuine multisite regitanent. To characterize the
quantity in the ladder states, we use a computable measlieq the generalized geometric
measure (GGM) 19 (cf. [20]). The ground state of the Heisenberg ladder Hamiltonian
is obtained using exact diagonalization algorithia§, 2] for moderate system size. We
observe that the genuine multisite entanglement behavpsiitatively different ways for the
ground states of the odd- and even-legged Heisenberg lRddbus, detecting the odd-even
dichotomy present in the system. In particular, the GGMeases with increasing number of
ladder “rungs” for odd ladders while it decreases for eveldéas. We subsequently observe
that in terms of the behavior of GGM, the ground states ofégHadder Hamiltonians are
qualitatively similar to the ground states obtained frora VB ansatz. Simulating the
ground state of the Heisenberg ladders using RVB statewalls to analyze the finite-
size scaling of genuine multisite entanglement in relétil@rge spin lattices by employing
recursion methodslpB, 23,24]. We observe that although the behavior of the GGMs for
odd and even RVB ladders are qualitatively different, thepwerge to a single value in
the asymptotic limit. Therefore, for ladders with large rhanof rungs, as the number of
ladder “legs” are increased, the odd versus even demanciatiterms of GGM vanishes.
However, evaluation of the finite size scaling exponent oftisite entanglement for large
lattices reveals that the scaling exponents tenditergefor odd and even ladders, as the
number of legs are increased, even though the amount of memuiltisite entanglement
convergesn the asymptotic limit.

The paper is arranged as follows. In S&;.we characterize and compute the genuine
multisite entanglement in ground states of the Heisenleiddr. We introduce the RVB
ladder states in Sec3 and discuss the density matrix recursion method to obtalnaed
density matrices. In Sed, we compute GGM and study its finite-size scaling in RVB ladde
states. We end with a discussion in S&c.

2. Characterization of genuine multisite entanglement in Heisenberg ladders

The genuine multisite entanglement of a pure quantum sitebe computed using the
generalized geometric measure. Fornaparty pure quantum statg,, ), the GGM is defined
as the optimized fidelity distance of the given state from sbeof all states that are not
genuinely multiparty entangled:

g(|7/)n>) =1- A?nam(|wn>)7 (1)

whereA .« (¢, )) = max (x|, )| with |x) being ann- party state not genuinely multiparty
entangled. We note that a pure state is not genuinely mtiyigatangled if it is product
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across any bipartition. For anrparty pure quantum statg),, ), consisting of the partied,,
As,. .., A, Equation {) can be shown to be equivalent to the complete faté [

G=1-max{\%  |KUL={A;}",KNL=0} 2)

where) k., is the maximal Schmidt coefficients in the bipartite split L of |¢,,).

We note that all possible bipartition&; : L, of the system are considered in Eg),(
with the K subsystem in the above bipartition containing all possiblabinations of4;, for
1 =1,2,...,n. The computation of GGM depends on the efficient generatiarhtrary
reduced density matrices across all possible bipartitfotn® spin systemZ5]. For states
where the reduced density matrices can be efficiently gegbrthe GGM turns out to be a
computable measure of genuine multisite entanglementitiaddl leverage is obtained if the
state is known to be symmetric and the maximal Schmidt caesffics known to arise from a
selected subset of all possible bipartitions.

Let us now consider the GGM of the ground state of spid-Heisenberg ladders,
which have been intensively studied in strongly-correlgidysics in order to investigate
exotic quantum phenomena, like high-superconductivity 3], chiral Mott insulators 26]
etc. Such studies are also interesting in view of the fadtltesenberg models have been
implemented using several experimental settings, ranfjmg optical lattices to nuclear
magentic ressonanc@7-33]. The Hamiltonian of a quantum spin-1/2 Heisenberg model,
with nearest-neighbor (NN) interactions, can be writteitlag = % Z‘i_ﬂ:l g; - d;, where
J(J > 0) represents the NN antiferromagnetic (AFM) coupling comist&he indices; and
j, denote the sites of an arbitraf¢legged ladder, and; are the Pauli operators acting on
thei'” site. The notation — j| indicates that the corresponding summation is over NN.sites
Figurel, shows ar-legged ladder, with\ rungs.

M
S

B AE

Figure 1. Schematic diagram of afi-legged andM-rung ladder, with\/ (= M) and L (=£)
number of spin sites along the legs and rungs, respectiVélg.boundary condition is shown
by a solid line that connects the first and last sites on a Spéag.

The model can not be analytically approached beyond 24). [ Though various
approximate techniques such as density matrix renorntializgroup B5], quantum Monte-
Carlo [36], and RVB theory 87, 38] have been used to compute certain correlation and
bipartite entanglement properties, the characterizaifagenuine multisite entanglement in
large spin systems remains an extremely challenging tasketthese restrictions, we limit
our exact-diagonalization study to moderate-sized Héisanladders, upt®4 quantum spin-

1/2 particles, and examine the GGM for the one-, two-, andategged ladders. We apply
numerical algorithms, within the Lanczos meth@d,R2], in order to obtain the ground state
of the ladder Hamiltonian, and compute the GGM. The odd- amh-éegged Heisenberg
ladders show qualitatively distinct features if one coassdcorrelation length, energy gap
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etc. [2]. We will now see whether such contrast in behavior can ba $gemultipartite
entanglement measure.

2.1. Odd-legged ladders

We now consider the GGM of the one- and three-leggéd-(1 and 3) quantum spin-1/2
Heisenberg ladders as a function of number of rungs,Fig. 2(a) displays the GGMy, as a
function of number of runggy exhibits alternating behavior based on whether the number o
rungs, M, is odd or even. This feature can not be observed in the reistained via recursion
technique of the RVB theory, described later in the texthasRVB ansatz naturally requires
an even number of rungs. From Fig(a), it is evident that for both the laddefsincreases
with increasingM. As the number of rungs increases, the rate of incremegt ows down
rapidly. Interestingly note that the fluctuations@®between odd and even rungs reduces if
one increases number of legs which can be observed by camhs red linesf = 1) with

the blue ones/ = 3) in Fig. 2(a).
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Figure 2. Odd Heisenberg ladders: exact diagonalization vs. RVBtanséhe behavior of
GGM (G), with increasing even number of rungéA) for odd £-legged ladders, in ground
states obtained by (a) exact diagonalization of the Heignblamiltonian and (b) using
short-range RVB states. The solid lines show fits to the dataeg using Eq.19). The
dashed line serves as a guide to the eye. We observe siynitakiehavior between the exact
and RVB ground states with respect to behaviogakith increasingM. All quantities are
dimensionless.

2.2. Even-legged ladders

Similarly, we also consider the GGM of the two-legged lad@ér= 2), as a function of
number of rungsM (see Fig.3). We observeg decreases with the increase/r for even
rungs, while for odd rungs, it increases. However, as seam ffig. 3, the difference of
GGM between even and odd rungs decreases with the increasags, and for relatively
high values ofM, they both correspond to a single line following the saméspat The same
feature is obtained fof = 1 and£ = 3 in Fig. 2(a). Therefore, we conclude that with even
rungs,g increases for odd legged ladders while decreases for evas on

At this point, a question that arises is whether the distinalitative features obtained
for the GGM using exact numerical simulations of the Heisgglmodel can be modeled by
using the RVB ansatAJ/,38]. This is motivated by the fact that several studies haveoies!
the odd-even dichotomy in Heisenberg ladders using the RvBirgl states3d9]. It has
been noticed that frustrated quantum Heisenberg spin modemally possesses short-range
dimer states as their ground states. In particular, thergtstates of the/; — J> model both
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in 1D and 2D #0|, the J; — J2 — J3 AFM Heisenberg model4[1, 42], and the frustrated
AFM on the 1/5-depleted square latticeld], in certain parameter regimes, are the RVB
states. Parallely, a family of rotationally invariant sgif2 Klein Hamiltonians exhibiting
ground-state manifolds covered by NN valence bond states dlao been proposed. In

this direction, a more systematic approach was proposediichvdimer models in different
two-dimensional lattices like square, hexagonal, kagareintroduced whose exact ground
states are valence bond stat¢S][ Further supporting evidence for RVBs being ground states
of Heisenberg ladders are provided #6[47] and 4,48, 49]. Recent results in the tensor-
network formalism reveal that RVB states can be used effigiém simulate the ground state
properties of kagomé&[)] and theJ; — J; square Heisenberg modetl].
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Figure 3. Even Heisenberg ladders: exact diagonalization vs. RVEtansThe behavior
of GGM (G), with increasing number of rungsM) for the 2-legged ladder, in ground
states obtained by exact diagonalization of the HeisenHargiltonian. The inset shows the
behavior ofG in 2- and4-legged ladders using short-range RVB states. The sokd ldhow
fits to the data values using the equation given in E).(The dashed line serves as a guide to
the eye. Once again, we observe the qualitative similagtyben the exact and RVB ground
states with respect to the behaviorgivith increasing ever\. All axes are dimensionless.

In our work, we assume short-range RVB states, with NN dintedngs, as the
possible ground state of spin-1/2 Heisenberg ladders. Kuaaiénvestigation of the ground
state from exact diagonalization and the RVB theory, fon $adders upto 16 spins, provides
considerable support for the RVB ansatz from the evaluadibthe fidelity () and the
normalized relative difference in average enerdy) [52] between the exact ground states
and the RVB states. For example, for both the 2-leg and 3degiym spin ladders, upto 16-
spins,F as highas 0.9 and £’ as low as 0.04 are obtained. These numerical findings gives us
a good motivation for investigating the genuine multisi¢eeglement properties of the spin-
1/2 Heisenberg ladder using the RVB ansatz. Let us also orehtire that RVB theory has
been also popularized as a possible theoretical tool torstedel high?,. superconductivity
[3,53] and are important in investigating cooperative phenomanguantum many-body
systems 9, 10,54], and related to fault-tolerant quantum computatish [

3. Resonating valence bond ladders

Consider a quantum spin-1/2 ladder, with“legs” and M “rungs” on a bipartite lattice
(A, B), comprised ofM (= M) sites along the horizontal side afd= £) sites the vertical
side. The total number of sping, (= M.N), is always even, to allow for complete
dimer coverings. Now if the interactions between the spresrastricted to be short-ranged
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and isotropic, we assume that only NN dimer coverings amnvadl. The equal weight
superposition of all such possible dimer coverings on thteeéawould give us the so-called
RVB state, given by

) =" [|A1, B1) ® |42, Bo) ® ....|An, By)] (3)
c
whereC refers to a complete dimer covering of the lattice with theswation running over
all the coverings, andl4;, B;) refers to the dime%ﬂ Tol 4y = ( 4a)| 1)), formed
between spins at sitésandj, on the sublatticest and B, respectively. The RVB state))
is rotationally invariant and is always genuinely mulgséntangled state in the asymptotic
limit [ 24].

The RVB state in Eq.3) is unique. This is done by defining the RVB state on a bipartit
lattice (A, B). A bipartite lattice is formulated by dividing the spintiae into two sublattices
A and B, such that a spin in sublatticé has spins in sublatticB as its nearest neighbours,
and vice-versa. In our formalism, we require that all NN dirstates are directed from spins
on sublatticeA to spins on sublattic®&, which removes possible ambiguity in the sign of the
ground state, and ensures that the defined RVB state is unique

Let the RVB state, defined in EqB)( for a quantum spin ladder be denoted|¥, £),
with £ legs andM rungs. Now, let us consider the system containlidg= M + 2 spins
along the rungs, anfl = £ number of spins along the legs. For ev&rthe state with open
boundary condition can be generated recursivel\L8[, 24, 56|

IM+2,L) = M+ 1LY )mi2 + M, L)2)m+1,m+2
= |M7 £>|2>m+1,m+2 + |M - 17 £>
X |Q>m,m+1|1>m+2a (4)

where 2),,+1,m+2 and |1),,12 correspond to the RVB ladder statdg, £) and |1, L),
respectively, ant2),,, 1. m+2 = [2)m+1.m+2 — [1)m+1]|1)m2. Here, the subscripts denote
the rungindex. Since, for afrlegged ladder, the indeXis constant in the recursion relations,
without loss of generality, we can remove it in the state dpgon, so that the RVB state is
denoted bylM). Incorporation of the periodic boundary condition leadghe following
extension of Eq.4) [18,24]:

IM+2)7 = M+ 2)1mi2 + [IM)omi1|2)mi2.1, %)

where all the terms on the right can be calculated by using(&qfor RVB states with
open boundary condition. Hence, and hereafter, the suggrécwill indicate that periodic
boundary condition has been used for the corresponding. stéging the recursive relation
given in Eqg. 6) we obtain the density matrix characterizing the periodi@Radder system,
which is given by

Py = Pm+2) T MY Mlzmi1 @ [2)2l1ma2
+ (IM +2)(M|2,m41(2|m+2,1 + h.0), (6)

where, the termp((2) corresponds to the density matrix of the non-periodic RV&ikr,
computed using Eq4j.

As mentioned earlier, our main interest lies in the mukightanglement properties
of these RVB ladders. In order to explore this, we first neetiaee expressions for all
possible reduced density matrices of the system. The m&8aolanidt coefficients obtained
from these reduced density matrices allow us to compute Gkl @f the RVB ladder, using
Eq. ). As the number of spins in the RVB ladder increases, theaerapid growth of the
number of possible reduced density matrices. Howeverytimergtry of a periodic RVB state
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can be exploited to obtain the maximal Schmidt coefficierfticlv is required to compute
GGM in Eq. @), without considering all possible reduced states. Fomgta, extensive
numerical studies upto 16 spins confirm that for|an, £) ladder, optimization over the
restricted set of all reduced density matrices containgdimva reduce@ x £ block, say at
sitesm 4 1 andm + 2, is sufficient to obtain the maximum Schmidt coefficient fatctilating
the GGM. The symmetry and periodicity of the RVB ladder ersuhat all reduced x £
block, between any adjacent pair of sites in the lattice,tapelogically equivalent. This
reduces the computational difficulty in calculating the gjae multisite entanglement as the
optimization over all reduced states is now limited ta £ block, which can be analytically
derived using a recursion method as discussed in the falpaegments.

For an RVB ladder with open boundary, the reduced densityixnaita 2 x £ block is
obtained by tracing out all the spins except those at thesung 1 andm + 2, as given by

Pim+1,m+2) = Nml2) 2|t 1,ma2) + Na—1Pmt1
® [ (Uang2) + (12)mt1,mr2(Ums2(xmlm+1 +hc)  (7)
whereANy = (M| M) and
Pm+1 = trm(|§><§|m,m+1)a and 8
<XM|m+1 = <2|m,m+1 <M - 1|M> (9)

By using Eq. {) we obtain the reduced density matrix for the £ block at rungsn + 1
andm + 2, for the periodic RVB ladder statp(MH), given by Eq. 6). The reduced density
matrix is given by

Pl 1mt2) = Pt L2 + o [| M) (M2 11 (2) (2]1m 2]
+ (IM2,m4112)1,m42| (M + 2| + h.c),
= pmttm+2 T Emptmez T (Emitmiz +NC), (10)
where
T1n+l,m+2 = Nav-11) (Ums1 @ sz + Nat—20m+1
@ Ptz + (1) (xM=1lm+1) ® Pm+2 + h.c.),

(11)
Eitmrz = 2V matma2(Uma1 (Xmlma2 + [2)meat,me2
M
X Z Kilm+2(XMm—ilm+1 + Pms1 @ [1)ma2
1
X (XMlm+2 + /N1(IK) ma 1) ma2)
M
X <1|m+lz<lc|m+2j/{/lfl' (12)

i=1

Herejj{/[ = <M|M - 1> and <Ici|m+1 = m,m+1<?|ICi_1)m with |K:0>m = |1>m The
recursion relation for the inner produgt1| M) can now be expressed as

Nt = NNt + NoNpg—a + 2(=1)"™" 1Z%JM . (13)

whereN; = (2|2) and all they;’s can be calculated using the linear equation

_ e J2
(vi12)m,mt1 = (=1) 1Zj:j17j|7j>m+la (14)
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where|vy;) form an independent set of vectors consisting of certaiglsircombinations of
an(1, N + 2) spin system, e.gy;) = |1).

For oddZ, the recursion relations are much simpler as the numberasiple coverings
is lower. The recursion relation for the RVB ladder with jpelic boundary conditions is given

by
IM+2,L)p = M, L)1,m|2)m+1,m+2
+ M, LYo m+1]2)mr21- (15)
The reduced density matrix for tleex £ block, at sitesn + 1 andm + 2, corresponding to
the above state is given by

pz)m+1,m+2) = NM|2><2|m+1,m+2 + NM72pm+1 & Pm2

+ (120 m+1,m+2(E%[ms1,mr2 + heC) (16)

where
(€ mi1.mr2 = 2lm2(M]2mi1|M)1.m, and (17)
Pm+1 = trm(|2><2|m,m+l) (18)

Hence, using Egs.1() and (6) for even- and odd-legged RVB ladders, respectively, one
can obtain the reduced density matrices for the L block necessary to compute the
generalized geometric measure. We note that the maximahi@tlcoefficient is obtained
by considering the reduced states within the £ block. It is observed that the maximum
Schmidt coefficients are typically obtained from therest or thel : rest bipartitions where
the reduced spins are nearest neighbors, though there dbessem to be any distinctive
pattern that can systematically differentiate betweerntytpial bipartitions in odd and even
ladders. Moreover, no systematic pattern is observed irctwtopologically inequivalent
reduced states provide the same maximum Schmidt coefficient

We subsequently compare the GGM of the RVB state with thahefground state of
the Heisenberg ladder obtained by exact diagonalizatioate Mere that although we use
the above method for calculating the GGM, the same recursitnbe used to calculate
other system properties like magnetization, susceptipitlassical correlators, bipartite
entanglement and other quantum correlations, etc. A mowelalged exposition and
formalism for the density matrix recursion method can beiietd in Refs. 18, 24].

4. Diverging scaling with conver ging multisite entanglement

Applying the recursion technique, we can investigate theabi®r of genuine multisite
entanglement of the RVB state in large quantum spin latti¢es example, one can study
the finite-size scaling of GGM if-legged ladders with large number of rungs and investigate
the odd-even dichotomy in the asymptotic limit. For oddged RVB ladders, the GGM
initially increases with increasing number of even runlys, before approaching a constant
value at largeM (see Fig.2(b)), while for even-legged ladders, the GGM decreases with
increasingM, before flattening to a constant for larger number of rungshasvn in the inset
of Fig. 3. Note that the DMRM approach is not possible to access an adtbar of rungs.
Importantly, we find that the behavior of genuine multisiteamglement of the ground state
of the Heisenberg ladder with even- and odd-legged laddegsalitatively similar to results
obtained with the RVB ansatz. This is clearly seen by conmggfig. 2(a) with 2(b), and the
main with inset in Fig3.

The similarity between the two methods, viz. exact diagiaatibn of the Heisenberg
ladder and RVB ansatz on the same lattice, motivates us forpefinite-size scaling analysis
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of GGM, by using RVB theory, wherein we can handle largedatsizes. The analysis would
shed light on the finite-size behavior of multiparty entamgént of the original Heisenberg
ladder. The finite-size scaling of GGM in a pure quantum spougd state|), can be
analyzed through the scaling relatigi{|y)) ~ G.(|¢)) +kn~", wheren is the total number
of spins,§. is an estimated value of GGM at high andx is the “scaling exponent” with
which the GGM approaches its asymptote at latgEor anL-legged RVB ladder, written as
|£, M), the finite-size scaling is given by the relation,

G(IL, M) = Go(L) £ kn~=(), (19)

Using the DMRM method, we have computed the GGM for RVB laddgito£ < 8, with
M = 20. Once can easily extend the computation for higher valtidd.

G(c)

Q4L ]
0.1 =l 14
T
0 L L L \L L
1 2 3 4 5 6 7
L

Figure 4. Diverging scaling with converging multisite entanglemefithe behavior of the
asymptotic GGM @.(£)) and the scaling exponent(£)) with increasingC. We observe
that even though, thé.(£) for odd- and even-legged ladders, converge with increaSirtbe
scalingz (L) diverge. All axes are dimensionless.

Fig. 4 shows the values dJ.(£) andx(L), for different values of, where the GGM
is scaled uptoM = 20 rungs for an RVB ladder of legs. We observe that asincreases,
the G.(£) for the odd- ladders converges to that for the even ones. i§hisnsistent since
the pseudo-2D spin ladders slowly approaches the squalet@€e, and in the asymptotic
limit, one cannot distinguish whether the system was oaifjrgenerated by increasingjin
an odd- or even-legged ladder. However, we find that thersga&kponentz (L), for odd
and even ladders, converges dlifferentvalues with increase of (see inset of Figd). We
therefore have a diverging scaling exponent for odd- and4ésgged ladders, even though
the corresponding multisite entanglement converge. Thergingx (L), therefore, shows
that the finite-size scaling of GGM for RVB ladders can hightithe odd-even dichotomy at
large£. The results show that the GGM for odd RVB ladders converlpeges than that for
even ladders at lowZ, which is reversed ag is increased and holds even at lajewhere
G.(L) for odd and even RVB ladders are indistinguishable.

Therefore, we observe that although the value of genuindisitalentanglement can
not distinguish the odd-legged ladders from the even-ldgmes for large lattice size, the
corresponding finite-size scaling exponents are capaliletetting the difference.

5. Discussion

To summarize, we investigate the behavior of genuine nartifje entanglement of the
ground state in odd- and even- Heisenberg ladders. Eveglihguch models have immense
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fundamental and practical importance, owing in partictitathe dissimilarities on the two
sides of the odd-versus-even divide, they are not anallytieacessible. In this work, we

began our investigation through exact diagonalizatiomnapes to find that the genuine
multisite entanglement, as quantified by the GGM, of the gdostate obtained from the
odd-legged ladder, increases with the number of rungs. Ppegte is true in the even-
legged ladder. This feature is in good qualitative agree¢mih the assumption that ground
states of odd and even Heisenberg ladders are RVB stateseifigerp scaling analyses of the
RVB states on ladders of large system sizes by employing MBI, and find that while the

GGM of the RVB states on large ladders converges to a sindle vadependent of the odd-
even parity of the ladders, their scaling exponents divéia each other. While the study
reported is for the isotropic Heisenberg model, we haveeduaut parallel studies for the
gquantumX X Z model. We observed qualitative similarity of the resultsagted for values

of the zz vs. xa anisotropy up to approximately 1.4.
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