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Abstract.
We investigate finite-size scaling of genuine multisite entanglement in the ground state of

quantum spin-1/2 Heisenberg ladders. We obtain the ground states of odd- and even-legged
Heisenberg ladder Hamiltonians and compute genuine multisite entanglement, the generalized
geometric measure (GGM), which shows that for even rungs, GGM increases for odd-legged
ladder while it decreases for even ones. Interestingly, theground state obtained by short-
range dimer coverings, under the resonating valence bond ansatz, encapsulates the qualitative
features of GGM for both the ladders. We find that while the quantity converges to a single
value for higher legged odd- and even-ladders, in the asymptotic limit of a large number of
rungs, the finite-size scaling exponents of the same tend to diverge. The scaling exponent of
GGM is therefore capable to distinguish the odd-even dichotomy in Heisenberg ladders, even
when the corresponding multisite entanglements merge.
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1. Introduction

The sequences of both odd and even numbers mathematically reach the same infinity. The
question is whether limits of functions of odd and even numbers reach the same limiting
function as the respective sequences tend to infinity. In many-body physics, the dichotomy
between the physical properties of odd and even quantum Heisenberg ladders is well known.
For example, the seminal work in Ref. [1] shows that the spin gaps of odd and even
Heisenberg ladders exhibit different behavior, although the values are expected to converge to
a single limiting value, with an increase in the number of legs of the ladder. It may now
be asked whether one can identify a physical quantity that would have different limiting
values depending on whether odd- or even-legged ladders arefollowed to reach the infinite 2D
square lattice. In this paper, we answer this question affirmatively by identifying a quantum
information theoretic quantity that does the job.

From the perspective of quantum many-body physics, the ground state of the Heisenberg
ladder [1–3] is an important physical system with a rich topological order. The significance
of these quantum spin ladders lie in their nontrivial intermediate properties between
one-dimensional (1D) and two-dimensional (2D) spin lattices. For example, specific
characteristics of Heisenberg ladders do not extrapolate trivially from the 1D Heisenberg chain
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to the 2D square lattice. This is due to the fact that odd and even Heisenberg ladders show
different physical properties: Even-legged ladders are spin-gapped and have exponentially
decaying correlation lengths while odd-legged ladders aregapless with power-law decay
[1–5]. Investigating the odd-even dichotomy and the scaling of cooperative properties in
large Heisenberg ladders remains an elusive proposition, primarily due to the unavailability
of suitable analytical and numerical tools. Quantum correlations [6, 7] have been used as
a tool to detect cooperative phenomena and topological order in ground states of Heisenberg
ladders [8–15]. In recent years, there have been studies to understand theeven-odd disparity in
terms of entropy area law [16], Rényi entropy [17], entanglement spectra [18], etc. However
investigating the odd-even dichotomy via the scaling of cooperative multisite properties in
large Heisenberg ladders remains an elusive proposition, primarily due to the unavailability
of suitable analytical and numerical tools.

In this work, we investigate the variation in ground state properties of even versus odd
Heisenberg ladders by analyzing its genuine multisite entanglement. To characterize the
quantity in the ladder states, we use a computable measure, called the generalized geometric
measure (GGM) [19] (cf. [20]). The ground state of the Heisenberg ladder Hamiltonian
is obtained using exact diagonalization algorithms [21, 22] for moderate system size. We
observe that the genuine multisite entanglement behaves inqualitatively different ways for the
ground states of the odd- and even-legged Heisenberg ladders – thus, detecting the odd-even
dichotomy present in the system. In particular, the GGM increases with increasing number of
ladder “rungs” for odd ladders while it decreases for even ladders. We subsequently observe
that in terms of the behavior of GGM, the ground states of these ladder Hamiltonians are
qualitatively similar to the ground states obtained from the RVB ansatz. Simulating the
ground state of the Heisenberg ladders using RVB states allows us to analyze the finite-
size scaling of genuine multisite entanglement in relatively large spin lattices by employing
recursion methods [18, 23, 24]. We observe that although the behavior of the GGMs for
odd and even RVB ladders are qualitatively different, they converge to a single value in
the asymptotic limit. Therefore, for ladders with large number of rungs, as the number of
ladder “legs” are increased, the odd versus even demarcation in terms of GGM vanishes.
However, evaluation of the finite size scaling exponent of multisite entanglement for large
lattices reveals that the scaling exponents tend todivergefor odd and even ladders, as the
number of legs are increased, even though the amount of genuine multisite entanglement
convergesin the asymptotic limit.

The paper is arranged as follows. In Sec.2, we characterize and compute the genuine
multisite entanglement in ground states of the Heisenberg ladder. We introduce the RVB
ladder states in Sec.3 and discuss the density matrix recursion method to obtain reduced
density matrices. In Sec.4, we compute GGM and study its finite-size scaling in RVB ladder
states. We end with a discussion in Sec.5.

2. Characterization of genuine multisite entanglement in Heisenberg ladders

The genuine multisite entanglement of a pure quantum state can be computed using the
generalized geometric measure. For ann-party pure quantum state,|ψn〉, the GGM is defined
as the optimized fidelity distance of the given state from theset of all states that are not
genuinely multiparty entangled:

G(|ψn〉) = 1− Λ2
max(|ψn〉), (1)

whereΛmax(|ψn〉) = max |〈χ|ψn〉| with |χ〉 being ann- party state not genuinely multiparty
entangled. We note that a pure state is not genuinely multiparty entangled if it is product
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across any bipartition. For ann-party pure quantum state,|ψn〉, consisting of the partiesA1,
A2,. . ., An, Equation (1) can be shown to be equivalent to the complete form [19]

G = 1−max{λ2K:L|K ∪ L = {Ai}
n
i=1,K ∩ L = ∅}, (2)

whereλK:L is the maximal Schmidt coefficients in the bipartite splitK : L of |ψn〉.
We note that all possible bipartitions,K : L, of the system are considered in Eq. (2),

with theK subsystem in the above bipartition containing all possiblecombinations ofAi, for
i = 1, 2, . . . , n. The computation of GGM depends on the efficient generation of arbitrary
reduced density matrices across all possible bipartition of the spin system [25]. For states
where the reduced density matrices can be efficiently generated, the GGM turns out to be a
computable measure of genuine multisite entanglement. Additional leverage is obtained if the
state is known to be symmetric and the maximal Schmidt coefficient is known to arise from a
selected subset of all possible bipartitions.

Let us now consider the GGM of the ground state of spin-1/2 Heisenberg ladders,
which have been intensively studied in strongly-correlated physics in order to investigate
exotic quantum phenomena, like high-Tc superconductivity [3], chiral Mott insulators [26]
etc. Such studies are also interesting in view of the fact that Heisenberg models have been
implemented using several experimental settings, rangingfrom optical lattices to nuclear
magentic ressonance [27–33]. The Hamiltonian of a quantum spin-1/2 Heisenberg model,
with nearest-neighbor (NN) interactions, can be written asHint =

J
4

∑

|i−j|=1 ~σi · ~σj , where
J(J > 0) represents the NN antiferromagnetic (AFM) coupling constant. The indices,i and
j, denote the sites of an arbitraryL-legged ladder, and~σi are the Pauli operators acting on
theith site. The notation|i− j| indicates that the corresponding summation is over NN sites.
Figure1, shows anL-legged ladder, withM rungs.

Figure 1. Schematic diagram of anL-legged andM-rung ladder, withM (=M) andL (=L)
number of spin sites along the legs and rungs, respectively.The boundary condition is shown
by a solid line that connects the first and last sites on a specific leg.

The model can not be analytically approached beyond 1D [34]. Though various
approximate techniques such as density matrix renormalization group [35], quantum Monte-
Carlo [36], and RVB theory [37, 38] have been used to compute certain correlation and
bipartite entanglement properties, the characterizationof genuine multisite entanglement in
large spin systems remains an extremely challenging task. Under these restrictions, we limit
our exact-diagonalization study to moderate-sized Heisenberg ladders, upto24 quantum spin-
1/2 particles, and examine the GGM for the one-, two-, and three-legged ladders. We apply
numerical algorithms, within the Lanczos method [21,22], in order to obtain the ground state
of the ladder Hamiltonian, and compute the GGM. The odd- and even-legged Heisenberg
ladders show qualitatively distinct features if one considers correlation length, energy gap
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etc. [2]. We will now see whether such contrast in behavior can be seen by multipartite
entanglement measure.

2.1. Odd-legged ladders

We now consider the GGM of the one- and three-legged (L = 1 and 3) quantum spin-1/2
Heisenberg ladders as a function of number of rungs,M. Fig.2(a) displays the GGM,G, as a
function of number of rungs.G exhibits alternating behavior based on whether the number of
rungs,M, is odd or even. This feature can not be observed in the resultobtained via recursion
technique of the RVB theory, described later in the text, as the RVB ansatz naturally requires
an even number of rungs. From Fig.2(a), it is evident that for both the laddersG increases
with increasingM. As the number of rungs increases, the rate of increment forG slows down
rapidly. Interestingly note that the fluctuations ofG between odd and even rungs reduces if
one increases number of legs which can be observed by comparing the red lines (L = 1) with
the blue ones (L = 3) in Fig.2(a).
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Figure 2. Odd Heisenberg ladders: exact diagonalization vs. RVB ansatz. The behavior of
GGM (G), with increasing even number of rungs (M) for oddL-legged ladders, in ground
states obtained by (a) exact diagonalization of the Heisenberg Hamiltonian and (b) using
short-range RVB states. The solid lines show fits to the data values using Eq. (19). The
dashed line serves as a guide to the eye. We observe similarity in behavior between the exact
and RVB ground states with respect to behavior ofG with increasingM. All quantities are
dimensionless.

2.2. Even-legged ladders

Similarly, we also consider the GGM of the two-legged ladder(L = 2), as a function of
number of rungs,M (see Fig.3). We observe,G decreases with the increase inM for even
rungs, while for odd rungs, it increases. However, as seen from Fig. 3, the difference of
GGM between even and odd rungs decreases with the increase ofrungs, and for relatively
high values ofM, they both correspond to a single line following the same pattern. The same
feature is obtained forL = 1 andL = 3 in Fig. 2(a). Therefore, we conclude that with even
rungs,G increases for odd legged ladders while decreases for even ones.

At this point, a question that arises is whether the distinctqualitative features obtained
for the GGM using exact numerical simulations of the Heisenberg model can be modeled by
using the RVB ansatz [37,38]. This is motivated by the fact that several studies have observed
the odd-even dichotomy in Heisenberg ladders using the RVB ground states [39]. It has
been noticed that frustrated quantum Heisenberg spin models normally possesses short-range
dimer states as their ground states. In particular, the ground states of theJ1 − J2 model both
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in 1D and 2D [40], the J1 − J2 − J3 AFM Heisenberg model [41, 42], and the frustrated
AFM on the 1/5-depleted square lattice [43], in certain parameter regimes, are the RVB
states. Parallely, a family of rotationally invariant spin-1/2 Klein Hamiltonians exhibiting
ground-state manifolds covered by NN valence bond states have also been proposed [44]. In
this direction, a more systematic approach was proposed in which dimer models in different
two-dimensional lattices like square, hexagonal, kagomé, are introduced whose exact ground
states are valence bond states [45]. Further supporting evidence for RVBs being ground states
of Heisenberg ladders are provided in [46, 47] and [4, 48, 49]. Recent results in the tensor-
network formalism reveal that RVB states can be used efficiently to simulate the ground state
properties of kagomé [50] and theJ1 − J2 square Heisenberg models [51].
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Figure 3. Even Heisenberg ladders: exact diagonalization vs. RVB ansatz. The behavior
of GGM (G), with increasing number of rungs (M) for the 2-legged ladder, in ground
states obtained by exact diagonalization of the HeisenbergHamiltonian. The inset shows the
behavior ofG in 2- and4-legged ladders using short-range RVB states. The solid lines show
fits to the data values using the equation given in Eq. (19). The dashed line serves as a guide to
the eye. Once again, we observe the qualitative similarity between the exact and RVB ground
states with respect to the behavior ofG with increasing evenM. All axes are dimensionless.

In our work, we assume short-range RVB states, with NN dimer coverings, as the
possible ground state of spin-1/2 Heisenberg ladders. Numerical investigation of the ground
state from exact diagonalization and the RVB theory, for spin ladders upto 16 spins, provides
considerable support for the RVB ansatz from the evaluationof the fidelity (F ) and the
normalized relative difference in average energy (∆E) [52] between the exact ground states
and the RVB states. For example, for both the 2-leg and 3-leg quantum spin ladders, upto 16-
spins,F as high as 0.9 and∆E as low as 0.04 are obtained. These numerical findings gives us
a good motivation for investigating the genuine multisite entanglement properties of the spin-
1/2 Heisenberg ladder using the RVB ansatz. Let us also mention here that RVB theory has
been also popularized as a possible theoretical tool to understand high-Tc superconductivity
[3, 53] and are important in investigating cooperative phenomenain quantum many-body
systems [9,10,54], and related to fault-tolerant quantum computation [55].

3. Resonating valence bond ladders

Consider a quantum spin-1/2 ladder, withL “legs” andM “rungs” on a bipartite lattice
(A,B), comprised ofM(= M) sites along the horizontal side andL(= L) sites the vertical
side. The total number of spins,n (= M.N), is always even, to allow for complete
dimer coverings. Now if the interactions between the spins are restricted to be short-ranged
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and isotropic, we assume that only NN dimer coverings are allowed. The equal weight
superposition of all such possible dimer coverings on the lattice would give us the so-called
RVB state, given by

|ψ〉 =
∑

C

[

|A1, B1〉 ⊗ |A2, B2〉 ⊗ ....|AN , BN〉
]

C , (3)

whereC refers to a complete dimer covering of the lattice with the summation running over
all the coverings, and|Ai, Bj〉 refers to the dimer 1√

2
(| ↑i〉| ↓j〉 − (| ↓i〉| ↑j〉), formed

between spins at sitesi andj, on the sublatticesA andB, respectively. The RVB state|ψ〉
is rotationally invariant and is always genuinely multisite entangled state in the asymptotic
limit [ 24].

The RVB state in Eq. (3) is unique. This is done by defining the RVB state on a bipartite
lattice (A,B). A bipartite lattice is formulated by dividing the spin lattice into two sublattices
A andB, such that a spin in sublatticeA has spins in sublatticeB as its nearest neighbours,
and vice-versa. In our formalism, we require that all NN dimer states are directed from spins
on sublatticeA to spins on sublatticeB, which removes possible ambiguity in the sign of the
ground state, and ensures that the defined RVB state is unique.

Let the RVB state, defined in Eq. (3), for a quantum spin ladder be denoted by|M,L〉,
with L legs andM rungs. Now, let us consider the system containingM = M + 2 spins
along the rungs, andL = L number of spins along the legs. For evenL, the state with open
boundary condition can be generated recursively as [18,23,24,56]

|M+ 2,L〉 = |M+ 1,L〉|1〉m+2 + |M,L〉|2̄〉m+1,m+2

= |M,L〉|2〉m+1,m+2 + |M− 1,L〉

× |2̄〉m,m+1|1〉m+2, (4)

where |2〉m+1,m+2 and |1〉m+2 correspond to the RVB ladder states,|2,L〉 and |1,L〉,
respectively, and|2̄〉m+1,m+2 = |2〉m+1,m+2 − |1〉m+1|1〉m+2. Here, the subscripts denote
the rung index. Since, for anL-legged ladder, the indexL is constant in the recursion relations,
without loss of generality, we can remove it in the state description, so that the RVB state is
denoted by|M〉. Incorporation of the periodic boundary condition leads tothe following
extension of Eq. (4) [18,24]:

|M+ 2〉P = |M+ 2〉1,m+2 + |M〉2,m+1|2̄〉m+2,1, (5)

where all the terms on the right can be calculated by using Eq.(4) for RVB states with
open boundary condition. Hence, and hereafter, the superscript P will indicate that periodic
boundary condition has been used for the corresponding state. Using the recursive relation
given in Eq. (5) we obtain the density matrix characterizing the periodic RVB ladder system,
which is given by

ρP(M+2) = ρ(M+2) + |M〉〈M|2,m+1 ⊗ |2̄〉〈2̄|1,m+2

+ (|M+ 2〉〈M|2,m+1〈2̄|m+2,1 + h.c), (6)

where, the termρ(M+2) corresponds to the density matrix of the non-periodic RVB ladder,
computed using Eq. (4).

As mentioned earlier, our main interest lies in the multisite entanglement properties
of these RVB ladders. In order to explore this, we first need tohave expressions for all
possible reduced density matrices of the system. The maximal Schmidt coefficients obtained
from these reduced density matrices allow us to compute the GGM of the RVB ladder, using
Eq. (2). As the number of spins in the RVB ladder increases, there isa rapid growth of the
number of possible reduced density matrices. However, the symmetry of a periodic RVB state
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can be exploited to obtain the maximal Schmidt coefficient, which is required to compute
GGM in Eq. (2), without considering all possible reduced states. For example, extensive
numerical studies upto 16 spins confirm that for an|M,L〉 ladder, optimization over the
restricted set of all reduced density matrices contained within a reduced2 × L block, say at
sitesm+1 andm+2, is sufficient to obtain the maximum Schmidt coefficient for calculating
the GGM. The symmetry and periodicity of the RVB ladder ensures that all reduced2 × L
block, between any adjacent pair of sites in the lattice, aretopologically equivalent. This
reduces the computational difficulty in calculating the genuine multisite entanglement as the
optimization over all reduced states is now limited to a2×L block, which can be analytically
derived using a recursion method as discussed in the following segments.

For an RVB ladder with open boundary, the reduced density matrix of a 2 × L block is
obtained by tracing out all the spins except those at the rungsm+ 1 andm+ 2, as given by

ρ(m+1,m+2) = NM|2〉〈2|(m+1,m+2) +NM−1ρ̄m+1

⊗ |1〉〈1|(m+2) + (|2〉m+1,m+2〈1|m+2〈χM|m+1 + h.c.) (7)

whereNM = 〈M|M〉 and

ρ̄m+1 = trm(|2̄〉〈2̄|m,m+1), and (8)

〈χM|m+1 = 〈2̄|m,m+1〈M− 1|M〉. (9)

By using Eq. (7) we obtain the reduced density matrix for the2×L block at rungsm+1
andm+ 2, for the periodic RVB ladder state,ρP(M+2), given by Eq. (6). The reduced density
matrix is given by

ρP(m+1,m+2) = ρm+1,m+2 + tr1···m
[

|M〉〈M|2,m+1|2̄〉〈2̄|1,m+2

]

+ (|M〉2,m+1|2̄〉1,m+2|〈M + 2|+ h.c.),

= ρm+1,m+2 + ξ1m+1,m+2 + (ξ2m+1,m+2 + h.c.), (10)

where

ξ1m+1,m+2 = NM−1|1〉〈1|m+1 ⊗ ρ̄m+2 +NM−2ρ̄m+1

⊗ ρ̄m+2 + (|1〉〈χM−1|m+1)⊗ ρ̄m+2 + h.c.),

(11)

ξ2m+1,m+2 = |2〉m+1,m+2〈1|m+1〈χM|m+2 + |2〉m+1,m+2

×
M
∑

1

〈Ki|m+2〈χM−i|m+1 + ρ̄m+1 ⊗ |1〉m+2

× 〈χM|m+2 + 1/N1(|K1〉m+1|1〉m+2)

× 〈1|m+1

M
∑

i=1

〈K|m+2J
1
M−1. (12)

HereJ 1
M = 〈M|M − 1〉 and 〈Ki|m+1 = m,m+1〈2̄|Ki−1〉m with |K0〉m = |1〉m. The

recursion relation for the inner product〈M|M〉 can now be expressed as

NM = N1NM−1 +N ′
2NM−2 + 2(−1)m−1

∑

i

γ1i JM−1, (13)

whereN ′
2 = 〈2̄|2̄〉 and all theγi’s can be calculated using the linear equation

〈γi|2̄〉m,m+1 = (−1)m−1
∑j2

j=j1
γj |γj〉m+1, (14)
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where|γj〉 form an independent set of vectors consisting of certain singlet combinations of
an(1,N + 2) spin system, e.g|γ1〉 = |1〉.

For oddL, the recursion relations are much simpler as the number of possible coverings
is lower. The recursion relation for the RVB ladder with periodic boundary conditions is given
by

|M+ 2,L〉P = |M,L〉1,m|2〉m+1,m+2

+ |M,L〉2,m+1|2〉m+2,1. (15)

The reduced density matrix for the2 × L block, at sitesm+ 1 andm+ 2, corresponding to
the above state is given by

ρP(m+1,m+2) = NM|2〉〈2|m+1,m+2 +NM−2ρm+1 ⊗ ρm+2

+
(

|2〉m+1,m+2〈ξ
3|m+1,m+2 + h.c.

)

, (16)

where

〈ξ3|m+1,m+2 = 〈2|1,m+2〈M|2,m+1|M〉1,m, and (17)

ρm+1 = trm(|2〉〈2|m,m+1) (18)

Hence, using Eqs. (10) and (16) for even- and odd-legged RVB ladders, respectively, one
can obtain the reduced density matrices for the2 × L block necessary to compute the
generalized geometric measure. We note that the maximal Schmidt coefficient is obtained
by considering the reduced states within the2 × L block. It is observed that the maximum
Schmidt coefficients are typically obtained from the2 : rest or the4 : rest bipartitions where
the reduced spins are nearest neighbors, though there does not seem to be any distinctive
pattern that can systematically differentiate between thetypical bipartitions in odd and even
ladders. Moreover, no systematic pattern is observed in which topologically inequivalent
reduced states provide the same maximum Schmidt coefficient.

We subsequently compare the GGM of the RVB state with that of the ground state of
the Heisenberg ladder obtained by exact diagonalization. Note here that although we use
the above method for calculating the GGM, the same recursioncan be used to calculate
other system properties like magnetization, susceptibility, classical correlators, bipartite
entanglement and other quantum correlations, etc. A more developed exposition and
formalism for the density matrix recursion method can be obtained in Refs. [18,24].

4. Diverging scaling with converging multisite entanglement

Applying the recursion technique, we can investigate the behavior of genuine multisite
entanglement of the RVB state in large quantum spin lattices. For example, one can study
the finite-size scaling of GGM inL-legged ladders with large number of rungs and investigate
the odd-even dichotomy in the asymptotic limit. For odd-legged RVB ladders, the GGM
initially increases with increasing number of even rungs,M, before approaching a constant
value at largeM (see Fig.2(b)), while for even-legged ladders, the GGM decreases with
increasingM, before flattening to a constant for larger number of rungs asshown in the inset
of Fig. 3. Note that the DMRM approach is not possible to access an odd number of rungs.
Importantly, we find that the behavior of genuine multisite entanglement of the ground state
of the Heisenberg ladder with even- and odd-legged ladders is qualitatively similar to results
obtained with the RVB ansatz. This is clearly seen by comparing Fig.2(a) with 2(b), and the
main with inset in Fig.3.

The similarity between the two methods, viz. exact diagonalization of the Heisenberg
ladder and RVB ansatz on the same lattice, motivates us to perform finite-size scaling analysis



Diverging scaling with converging multisite entanglement 9

of GGM, by using RVB theory, wherein we can handle large lattice sizes. The analysis would
shed light on the finite-size behavior of multiparty entanglement of the original Heisenberg
ladder. The finite-size scaling of GGM in a pure quantum spin ground state,|ψ〉, can be
analyzed through the scaling relation,G(|ψ〉) ≈ Gc(|ψ〉)±kn−x, where,n is the total number
of spins,Gc is an estimated value of GGM at highn, andx is the “scaling exponent” with
which the GGM approaches its asymptote at largen. For anL-legged RVB ladder, written as
|L,M〉, the finite-size scaling is given by the relation,

G(|L,M〉) ≈ Gc(L)± kn−x(L). (19)

Using the DMRM method, we have computed the GGM for RVB ladders uptoL < 8, with
M = 20. Once can easily extend the computation for higher valuesof M.
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Figure 4. Diverging scaling with converging multisite entanglement. The behavior of the
asymptotic GGM (Gc(L)) and the scaling exponent (x(L)) with increasingL. We observe
that even though, theGc(L) for odd- and even-legged ladders, converge with increasingL, the
scalingx(L) diverge. All axes are dimensionless.

Fig. 4 shows the values ofGc(L) andx(L), for different values ofL, where the GGM
is scaled uptoM = 20 rungs for an RVB ladder ofL legs. We observe that asL increases,
theGc(L) for the odd- ladders converges to that for the even ones. Thisis consistent since
the pseudo-2D spin ladders slowly approaches the square-2Dlattice, and in the asymptotic
limit, one cannot distinguish whether the system was originally generated by increasingL in
an odd- or even-legged ladder. However, we find that the scaling exponent,x(L), for odd
and even ladders, converges todifferentvalues with increase ofL (see inset of Fig.4). We
therefore have a diverging scaling exponent for odd- and even-legged ladders, even though
the corresponding multisite entanglement converge. The divergingx(L), therefore, shows
that the finite-size scaling of GGM for RVB ladders can highlight the odd-even dichotomy at
largeL. The results show that the GGM for odd RVB ladders converges slower than that for
even ladders at lowL, which is reversed asL is increased and holds even at largeL, where
Gc(L) for odd and even RVB ladders are indistinguishable.

Therefore, we observe that although the value of genuine multisite entanglement can
not distinguish the odd-legged ladders from the even-legged ones for large lattice size, the
corresponding finite-size scaling exponents are capable ofdetecting the difference.

5. Discussion

To summarize, we investigate the behavior of genuine multipartite entanglement of the
ground state in odd- and even- Heisenberg ladders. Even though such models have immense
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fundamental and practical importance, owing in particularto the dissimilarities on the two
sides of the odd-versus-even divide, they are not analytically accessible. In this work, we
began our investigation through exact diagonalization techniques to find that the genuine
multisite entanglement, as quantified by the GGM, of the ground state obtained from the
odd-legged ladder, increases with the number of rungs. The opposite is true in the even-
legged ladder. This feature is in good qualitative agreement with the assumption that ground
states of odd and even Heisenberg ladders are RVB states. We perform scaling analyses of the
RVB states on ladders of large system sizes by employing the DMRM, and find that while the
GGM of the RVB states on large ladders converges to a single value independent of the odd-
even parity of the ladders, their scaling exponents divergefrom each other. While the study
reported is for the isotropic Heisenberg model, we have carried out parallel studies for the
quantumXXZ model. We observed qualitative similarity of the results obtained for values
of thezz vs.xx anisotropy up to approximately 1.4.
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