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Adiabatic freezing of long-range quantum correlations in spin chains
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We consider a process to create quasi long-range quantum discord between the non-interacting end spins of a
quantum spin chain, with the end spins weakly coupled to the bulk of the chain. The process is not only capable
of creating long-range quantum correlation but the latter remains frozen, when certain weak end-couplings
are adiabatically varied below certain thresholds. We termthis phenomenon as adiabatic freezing of quantum
correlation. We observe that the freezing is robust to moderate thermal fluctuations and is intrinsically related
to the cooperative properties of the quantum spin chain. In particular, we find that the energy gap of the system
remains frozen for these adiabatic variations, and moreover, considering the end spins as probes, we show that
the interval of freezing can detect the anisotropy transition in quantumXY spin chains. Importantly, the adiabatic
freezing of long-range quantum correlations can be simulated with contemporary experimental techniques.

I. INTRODUCTION

Quantum correlation [1, 2] is one of the principal charac-
teristics that separates the quantum domain from its classical
counterpart. The properties and phenomena that arise from it
are neither reproducible nor simulatable in classical systems.
The amount of quantum correlation that exists between two
subsystems of a pure quantum state is completely captured
by entanglement [1]. However, for mixed states, local mea-
surements may reveal nonclassical features, that are present
even in non-entangled or separable states [2]. Measures that
capture quantum correlations beyond entanglement, such as
quantum discord (QD) [3], have been instrumental in inves-
tigating several protocols of quantum information and com-
putation (QIC) [4–6], quantum phase transitions [7], many-
body dynamics [8, 9], quantum biology [10], and metrology
[11, 12] (see [2], for a review).

Methods to create long-range entanglement have attracted a
lot of attention due to their importance in several protocols in
QIC [13–20]. Such investigations led to the discovery of pro-
cesses like entanglement swapping [13] and repeaters [14],
and concepts like localizable entanglement [15]. In the last
decade, there have been several instances where quantum cor-
relation measures such as QD were claimed to be important
[2, 4–12]. For example, it provides an interesting perspective
on the dynamics of open quantum systems [21], where entan-
glement is fragile. In quantum systems subject to noisy envi-
ronments, for both Markovian and non-Markovian evolution,
QD is more robust than entanglement [22, 23]. Interestingly,
for certain types of quantum states under dephasing, QD ex-
hibits a qualitatively different robustness. It remainsfrozen for
finite evolution times [24], even though entanglement suffers
sudden death. In recent times, a significant amount of research
has been undertaken to characterize the phenomena of freez-
ing of quantum correlations [25–27], including entanglement
[28].

In this letter, we report quasi long-range QD between the
end spins of a finite quantum spin chain, when the end spins
are weakly coupled to the bulk of the spins. The work is mo-
tivated by the desire to investigate the quantum correlation
properties of the end spins due to the collective effect of the
bulk spins that act as a reservoir for the end spins, thus giving
rise to interesting long-range quantum phenomena. In partic-

ular, we find that the long-range QD of the ground state can
exhibit non-temporal freezing, while the weak end-couplings
are varied. We term the freezing as “adiabatic”, as the phe-
nomenon is observed while the weak end-couplings are adia-
batically varied. No such freezing behavior is observed forthe
long-range entanglement. The observed phenomena makes
long-range QD a robust resource, against moderate thermal
fluctuations and variations in certain system parameters, for
implementing quantum protocols between distant spin qubits.

Interestingly, and in contradistinction to temporal freezing
[24–27], the observed adiabatic phenomenon is characteristic
of the quantum system rather than an external environment,
and is intrinsically related to the many-body properties ofthe
quantum spin chain. For instance, in an experimental setting,
one may consider the two end-spins to beprobe sites weakly
coupled to asystem consisting of a spin chain [17–19], where
the weak end-couplings can be controlled. The long-range
QD between the probe spins can then be shown to identify the
nature of interaction in the system. Specifically, the freezing
interval of long-range QD can be used to define an order pa-
rameter that detects the “anisotropy transition” in the system
considered. Further, one can show that the adiabatic freezing
phenomena is not limited to long-range quantum correlations
but is also manifested in other cooperative properties of the
quantum spin chain, such as the energy gap.

We note that there are recent experimental proposals and
techniques to generate and characterize long-range quan-
tum correlation in quantum spin systems [29–31] (also see
Refs. [32]). In this light, we investigate the effect of ther-
mal fluctuations in the spin system, which is important for
potential experimental implementations, and find that the adi-
abatic freezing is stable below a critical temperature. Hence,
our results show that in an experimentally accessible regime
of weak end-couplings and low-temperature, high quasi-long
range quantum correlations can be adiabatically frozen forap-
plications in various quantum information protocols.

II. METHODOLOGY

Let us consider an anistropicXY quantum spin chain con-
tainingN spins with a closed end. The Hamiltonian for such
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a system can be written as

H =

N
∑

i

κ

4
(Ji σ

x
i σ

x
i+1 +Ki σ

y
i σ

y
i+1), (1)

whereσx(y)
N+1 = σx(y)

1 . Ji andKi are the dimensionless inter-
action strengths.κ(> 0) has the unit of energy.σi, i = x, y, z,
are the Pauli spin matrices. The open-end case is obtained by
settingJN andKN equal to zero.

The quantum correlation between two arbitrary sites, in
the ground and thermal equilibrium state of the Hamiltonian
can be obtained by deriving the two-site reduced density ma-
trix, following the seminal work in [33]. The symmetry of
the Hamiltonian ensures that all (single-site) magnetizations
〈σα

i 〉, ∀ α = (x, y, z) vanish in the absence of any external
fields. The only non-vanishing two-site terms are〈σx

i σ
x
j 〉,

〈σy
i σ

y
j 〉, and 〈σz

i σ
z
j 〉. Hence, any two-site reduced density

matrix, for arbitrary sitesi and j, can be written asρij =
1/4(I+

∑

α=x,y,z T
αα
ij σα

i ⊗ σα
j ), whereTαα

ij = 〈σα
i σ

α
j 〉 are

the two-site correlation functions andI is the two-qubit iden-
tity matrix. Tαα

ij can be analytically derived by solving the
Hamiltonian in Eq. (1) [33, 34].

Sinceρij is Bell-diagonal, its QD [3] can be analytically
obtained [35]. The eigenvalues ofρij , in terms ofTαα

ij , is
given by {ei} equal to1/4(1 ± (T xx

ij + T yy
ij ) − T zz

ij ) and
1/4(1 ± (T xx

ij − T yy
ij ) + T zz

ij ), for i = 1 to 4. The quan-
tum mutual information is given by the relation,I(ρij) =
∑

i ei log2(4ei), and the classical correlation, obtained after
optimization over measurements on a single-party, is givenby
C(ρij) =

∑2
k=1 xk log2(2xk), wherexk = (1 + (−1)k x)/2

(k = 1,2), andx = max{|T xx
ij |, |T yy

ij |, |T zz
ij |}. The QD is

then given by the relation,D(ρij) = I(ρij) − C(ρij) =
∑4

i=1 ei log2(4ei) −
∑2

k=1 xk log2(2xk). Similarly, the en-
tanglement, using concurrence [36], between any two sites
can be analytically derived in terms of the correlation func-
tion Tαα

ij [34]: E(ρij) = max [0, 2max[{ei}]− 1] .

III. ADIABATIC FREEZING OF QUANTUM DISCORD

Let us consider anN -spin non-periodic quantum spin
chain, with nearest neighbor interactions, where the two spins
at the edge of the chain (end spins) are weakly coupled to the
remaining bulk ofN − 2 spins. The Hamiltonian for the spin
is given byH = (κ/4) (Hbulk +Hend), where

Hbulk =
∑N−2

i=2 (Ji σ
x
i σ

x
i+1 +Ki σ

y
i σ

y
i+1), (2)

Hend = λ1(σ
x
1σ

x
2 + σx

N−1σ
x
N ) + λ2(σ

y
1σ

y
2 + σy

N−1σ
y
N ).(3)

The above Hamiltonian can be exactly solved to calculate the
quantum correlation between any two spins in the chain. The
cases for whichλ1 = λ2 ≤ Ji,Ki, ∀i = 2, ..., N − 2, will be
referred to as “balanced” weak-coupling. It is known that for
λ1(= λ2) → 0, the two end spins in the ground state of the
chain are maximally entangled. Denoting concurrence [36]
by EL, we haveEL → 1 in that limit. This gives rise to quasi
long-range entanglement, interestingly, in a quantum system

with very short-range interaction [16, 17]. In the balanced
case,EL decreases monotonically with increasingλ1(= λ2),
and the rate of decay increases with system size. Also,EL
may exhibit non-temporal sudden death (cf. [9]).
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FIG. 1. (Color online.) Adiabatic freezing of quasi long-range quan-
tum discord (DL). The bulk is anXX spin chain. For each non-zero
value ofλ2, freezing ofDL takes place for adiabatic change ofλ1.
The behavior of entanglement is given in the inset. All quantities
are dimensionless, except QD (in bits) and entanglement (inebits).
Here,N = 10.

Let us now consider the case whereHbulk represents an
ordered,XX spin chain, such thatJi = Ki = 1, ∀ i =
2, ..., N − 2, and the coupling strengths at the ends are such
thatλ1, λ2 < Ji. Whenλ1 6= λ2, we refer to it as “unbal-
anced” weak-coupling. Under such coupling, the behavior of
EL and long-range QD (DL) i.e., the QD of the reduced den-
sity matrix of the end spins,ρ1N , of the ground state, are qual-
itatively different. Specifically, for fixed values ofλ2 and on
slowly increasing the parameterλ1, from approximately0 to
1,DL freezes, i.e., remains unchanged in value for the range 0
< λ1 ≤ λ2. The value of the frozenDL (Df

L) is dependent on
the fixedλ2 and the size of the spin chain,N . However, the
freezing interval (lf ), i.e., the region on theλ1-axis over which
DL remains frozen, is equal toλ2. Asλ1 is increased beyond
λ2, i.e., for the rangeλ1 > λ2, the freezing ofDL ceases and
it decays exactly similar to the balanced case. Interestingly,
the behavior of entanglement does not distinguish the regimes
0 < λ1 ≤ λ2 andλ1 > λ2. In particular,EL decays in a
similar fashion in both the regimes, though the maximumEL
atλ1 ≈ 0 and the value ofλ1 at the non-temporal death (i.e.,
λD1 , such that for allλ1 ≥ λD1 , EL = 0), both decrease with
increasingλ2. Figure1 shows the freezing of long-range QD
in anN = 10 spinXX chain for different values of the fixed
weak coupling,λ2, with the variation ofλ1. We call such phe-
nomenon as “adiabatic freezing” since it can be observed in
the adiabatic evolution obtained by slow variation of the weak
couplingλ1. The phenomenon of adiabatic freezing can be
explained by observing the behavior of the two-site correla-
tion functions that are obtained by solving the Hamiltonianin
Eq. (3). Note that the freezing ofDL observed in the present
context is purely a property of the quantum spin chain, and
not a conjunction of the system and an environment.

We note that bothEL andDL are quasi long-range [17], i.e.,
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their value decreases with increase in system-sizeN . Hence,
for a fixedλ2, the frozen discord value,Df

L, decreases asN
grows larger. However, fixing the weak-end couplings to low
values, sayλ1/Ji ≈ 0.001, for N=200, a reasonably high
Df

L ≈ 0.93 can be obtained, and frozen upto one order higher,
i.e., lf = λ2 = 0.01. Moreover, even symmetric quantum cor-
relation measures, such as symmetric QD [37], exhibits adia-
batic freezing forλ1 6= λ2.
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FIG. 2. (Color online.) Variation ofI(ρ1N ), C(ρ1N), andTαα
1N with

increase in the end couplingλ1, for a fixedλ2 = 0.2, and forN = 20
spins, where the bulk is anXX chain.DL is frozen forλ1 ≤ λ2. Df

L

= 0.322 andlf = 0.2. All quantities used are dimensionless except
DL, I(ρ1N ), andC(ρ1N), which are in bits. The inset magnifies the
red-encircled region.

The analysis of two-site correlation functions between the
end spins,Tαα

1N , can shed light on the observed adiabatic freez-
ing of QD. From Fig.2, for N = 20 spins withλ2 = 0.2, we
observe thatTαα

1N < 0, and|Tαα
1N | < 1, ∀ α. Since,T zz

1N =
− T xx

1N T yy
1N [33, 34], thereforeT xx

1N andT yy
1N are the only in-

dependent variables, with|T zz
1N | ≤ |T xx

1N | and|T zz
1N | ≤ |T yy

1N |.
Moreover, it is seen thatT xx

1N is constant during the adiabatic
evolution. Hence, the quantum mutual information (I(ρ1N ))
is an entropic function of1 ± T yy

1N . Since,|T yy
1N | ≥ |T xx

1N | ≥
|T zz

1N | for λ1 ≤ λ2, the classical correlation (C(ρ1N )) is also a
function of1 ± T yy

1N . Hence,I(ρ1N ) andC(ρ1N ) decay with
identical rates leading to a constant long-range QD. However,
for λ1 > λ2, |T xx

1N | > |T yy
1N | ≥ |T zz

1N | andC(ρ1N ) is now a
function of1 ± T xx

1N . Since,T xx
1N is constant during the evo-

lution, C(ρ1N ) freezes forλ1 > λ2, in contrast toI(ρ1N ) in
that range. Hence, the freezing of the long-rangeDL(ρ1N )
disappears forλ1 > λ2. As λ2 → {0, λ1}, there is no freez-
ing of DL(ρ1N ), asC(ρ1N ) is always constant. In contrast,
for entanglement, no adiabatic freezing occurs. In Fig.2,
since 0< |Tαα

1N | < 1, ∀ α, EL is given by the relation,EL
= max [0, 1/2(g1N − h1N )], where,g1N = |T xx

1N + T yy
1N |, and

h1N = 1 − |T xx
1N ||T yy

1N | > 0. As λ1 increasesg1N andh1N
decreases, due to decreasing|T yy

1N |, and constant|T xx
1N |. For

g1N > h1N , EL decreases withλ1, and atg1N ≤ h1N , EL =
0 (sudden death). Forλ1 = λ2, we haveT xx

1N = T yy
1N = z (say).

Therefore,EL = max
[

0, 1/2(z2 + 2|z| − 1))
]

[34].
The observed behavior ofI(ρ1N ) andC(ρ1N ) is consistent

to what is observed in the freezing of QD, first observed in
dephasing quantum systems [24], that heralded a substantial

amount of research in recent years [25–27]. However, we note
that the freezing ofDL(ρ1N ) observed in the present context
is purely a property of the long-range correlations in the spin
chain and is devoid of any external decoherence, in contrastto
conventional freezing phenomena.

IV. DETECTING ANISOTROPY TRANSITION

The adiabatic freezing of the quasi long-range QD (DL) in
spin chains, with Hamiltonians of the form given by Eq. (3),
can be used to investigate certain intrinsic properties of the
bulk Hamiltonian, such as the anisotropy transition. Though
there exist methods to detect anisotropy in quantum spin sys-
tems [38], our results provide an information-theoretic per-
spective to investigate these quantum properties in an experi-
mentally viable manner.

Let Hbulk be an orderedXY spin chain withJi = 1 + γ
andKi = 1 − γ, ∀ i = 2, ..., N − 2, with γ(6= 0) being the
finite anisotropy present inHbulk. The end-coupling is unbal-
anced, such thatλ1 6= λ2. We focus on the parameter regime
λ1, λ2 ≤ 1, where the relevant physics under consideration
is clearly observed. Let us now consider the adiabatic freez-
ing ofDL in the above spin chain, with possible anisotropy in
Hbulk, by varying the weak end-couplings. The presence of
anisotropy introduces changes in the freezing characteristics
of DL. For instance,Df

L increases withγ upto a certain fixed
value that depends onN , and then decreases. See inset of
Fig.3. Interestingly, the freezing interval,lf undergoes a tran-
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FIG. 3. (Color online.) Detecting the anisotropy (γ) transition. The
order parameter,λ2− lf is plotted againstγ, with fixedλ2. The inset
shows thatDf

L can be substantially increased for positiveγ, below a
threshold value. The anisotropy transition can also be seenfrom the
change in the curvature (convexity to concavity) ofD

f

L with respect
to γ, where theN -dependent critical values approachγ = 0 through
negativeγ. All quantities are dimensionless, except QD (in bits).

sition that can detect the anisotropy transition atγ = 0 in the
bulk spin system. This allows us to define an anisotropy tran-
sition order in terms of the system parameters and the freezing
interval lf . This can be seen as follows. We evaluatelf for
different values ofλ1, and a fixedλ2. By usingλ2 − lf as the
order parameter, one can detect theγ–transition in the sys-
tem atγ = 0, driven by changes in the anisotropy parameter.
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The order parameterλ2 − lf is finite for anisotropic systems
and vanishes atγ = 0. Further, one observes thatλ2 − lf
sharply decreases asγ is increased beyond anN -dependent
threshold value (γNc ). It is observed that asN is increased
upto certain values, the critical parameterγNc → 0. Hence,
for large but finiteN , transition inλ2 − lf atγNc captures the
γ–transition of the class of quantum spin models described by
the Hamiltonian in Eq. (3). The observed transition is shown
and described in Fig.3.

In an experimental setting, one may consider the end spins
to be probe sites at the edge of a quantum spin chain con-
sisting of the bulk spins. The two end-spins can be defects
or scattering particles in a spin chain [17, 39], and the weak
end-coupling can be experimentally controlled. Under such
conditions, the anisotropy ofHbulk can be detected using the
order parameterλ2 − lf , where the desired quantities are ob-
served from the freezing of long-range QD between the two
probe spins. Hence, the quantityλ2−lf can serve as a suitable
order parameter in many-body simulations. The advantage of
the approach lies in the fact that all performed measurements
and tuning of interactions are associated only with the probe
spins that weakly interact with the quantum spin chain. The
detection of the intrinsic anisotropy in the bulk spin chainis
achieved without disturbing the system. This provides an in-
teresting role for adiabatic freezing of discord in investigating
many-body phenomena.

V. FREEZING OF ENERGY GAP

Another interesting phenomenon that connects adiabatic
freezing of long-range quantum correlations to the coopera-
tive properties of the quantum spin chain, is the freezing ofen-
ergy gap. For the considered model, the weak end-couplings
between the bulk and end spins introduces a finite energy gap.
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FIG. 4. (Color online.) Adiabatic freezing of the energy gap. Nu-
merically obtained values of∆g is plotted againstλ1, for different
fixed values ofλ2. The spin model is the same as in Fig.1, but
for N = 20 (red) and 30 (black). Forλ1 ≥ λ2, ∆g is frozen. The
difference in frozen∆g for differentN , marked in one case with a
double-headed arrow, increases withλ2. All quantities plotted are
dimensionless. Note that the behavior of∆g andDL with response
to λ1, for fixedλ2, is complementary.

The energy gap is an intrinsic property of a quantum spin

system that can be obtained from the excitation energy spec-
trum or the dispersion relation of the function∆k [33, 34].
Let us consider the system, whereHbulk in Eq. (2), represents
an orderedXX spin chain. The only anisotropy in the system
arises from the coupling strengths at the end spins. Solving
the Hamiltonian, one can obtain the excitation spectrum,∆k.

For the balanced case,λ1 = λ2 = λ, the dispersion relation
of the excitation energy is given by∆k = cos(k), wherek are
the quasimomenta modes. These modes satisfy the eigenvalue
equation [16], µ cot(k)[cot((N − 1)k/2)]µ = λ2/(2 − λ2),
for λ 6= 1, with µ = ±1 being the eigenstate parity. Consid-
eringµ = 1, the energy gap is then given byk′, which min-
imizes∆k′ = cos(k′), while satisfying the above eigenvalue
equation. ForN ≫ 1, atk′ = π/2 − δ, whereδ → 0, an an-
alytical expression for the energy gap (∆g) is obtained [17],
where∆g ≈ (π/2N)[(1+ 2/(N(λ2/(2− λ2) + 2)] = f(λ).
Numerical analysis shows that for the case,λ1 6= λ2, the
quasimomentak′ corresponding to the energy gap satisfies the
eigenvalue equation forλ = min[λ1, λ2]. Therefore, the en-
ergy gap is given by the relation,∆g = min[f(λ1), f(λ2)],
where f(λ), defined above, is a monotonically decreasing
function ofλ. The adiabatic freezing of the numerically es-
timated energy gap, is shown in Fig.4. Using the above
relation for∆g and monotonicity of the functionf(λ), it is
obvious that∆g freezes forλ2 ≤ λ1, since in this region,
f(λ2) ≤ f(λ1) and∆g is thus independent ofλ1.
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FIG. 5. (Color online.) Variation of the analytically and nu-
merically estimated values of the energy gap with increasing size
of the spin chain. The analytical expression is given by∆g =
min[f(λ1), f(λ2)] (blue-square), and is observed to be consistent
with numerically obtained values of∆g (red-circle) at largeN , for
λ1 = 0.4 andλ2 = 0.6 (and,λ1 = 0.6 andλ2 = 0.4). The inset shows
DL (maroon-diamonds) with increasingN . The figure shows that at
largeN , ∆g andDL scale as1/N .

The adiabatic freezing of∆g is complementary to that of
DL, in terms of the variation of weak end-couplings. Figs.1
and4 show that whileDL freezes forλ1 ≤ λ2, ∆g is constant
for λ1 ≥ λ2. Moreover, while the frozen value ofDL de-
creases with increase inλ2, it does the opposite for∆g. Fig-
ure 5 shows the agreement between the analytically and nu-
merically obtained values of∆g, at largeN . We observe that
at largeN , the frozen values of both∆g andDL scale with
1/N [34]. The behavior of∆g shows that the phenomenon of
adiabatic freezing is manifested through the intrinsic proper-
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ties of the quantum spin chain.

VI. RESPONSE TO THERMAL FLUCTUATIONS

In the previous sections, the phenomena of freezing is ob-
served for the ground state of the quantum spin chain under
consideration. For small thermal fluctuations, the system is
no longer in the ground-state, but a mixed state in equilibrium
at some small temperature (T ). To obtain the reduced two-
site density matrix of the thermal equilibrium state of the spin
system, at temperatureT , one must find the thermal two-site
correlation functionsTαα

ij (β) [33, 34]. Here,β = 1/kBT ,
wherekB is the Boltzmann constant.
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FIG. 6. (Color online.) Response of freezing to thermal fluctuations.
We plot the ratio of the thermal freezing interval (lβf ) and the ground
state freezing interval (lf ) as a function of temperature. Here,λ2=
0.2. We observe that for everyN , there exists a critical temperature
(TN

c ) beyond which adiabatic freezing disappears for finite chains.
TN
c decreases linearly withN , as shown in the inset. The solid

green line, in the inset, is the linear fit,y = 19.72 − 0.184x. All
quantities plotted are dimensionless.The abscissae in thefigure and
the ordinates in the inset are multiplied by104.

We observe that adiabatic freezing persists at finiteT ,
below a critical temperatureTN

c , that also depends on the
system-sizeN . The value of frozen discordDf

L is constant
for temperatures belowTN

c , though the freezing interval de-
creases asT increases.TN

c is a linearly decreasing function of
N . Figure6 shows the effect of thermal excitations on freez-
ing interval of long-range QD in anXX spin chain.

VII. DISCUSSION

In recent years, experimental generation of long-range
quantum correlation in antiferromagnetic spins chains have
been reported using strontium-cuprate compounds, such as
Sr14Cu24O41, to simulate dimerized spin-chains [29]. Quan-
tum correlations are experimentally measured using low tem-
perature magnetization, magnetic susceptibility, and heat ca-

pacity [29, 32]. Another experimental protocol, relevant to
the quantum spin chain considered in our study, was proposed
using ions of the ytterbium isotope,171Yb, in segmented lin-
ear Paul traps [30], utilizing the tailoring of axial trapping
potential to generate the spin-spin coupling, and using mi-
crowave pulses to generate effective spin interactions. A more
recent study devises a similar scheme using superconducting
flux qubits, using dc currents and microwave pulses to control
the spin-spin interaction [31]. Moreover, recent experimental
studies have also observed the freezing phenomena in various
quantum systems [25].

In our work, we find that there exists adiabatic freezing of
quasi long-range quantum correlations in finite quantum spin
chains. We show that the observed phenomena is robust to
the weak end-spin couplings and finite thermal fluctuations,
which are the fundamental elements in experimental control
of quantum systems. Further, by tuning the end-spin coupling
one can obtain relatively high values of long-range QD. In-
terestingly, we have observed that a finite interaction between
the two end spins can vastly increase the shared QD between
the sites, without affecting the freezing interval. This isintu-
itively plausible, as the finite end-to-end coupling encourages
greater correlation between the end spins. Alternatively,one
can also study the phenomena in theXX andXY spin chains
in a transverse magnetic field. Preliminary investigationsre-
veal that, for weak end-couplings, an effective freezing [27]
of long-range QD can be characterized. For quantum spin
chains such as the frustrated spin-1/2J1 − J2 model, spin-1/2
XX chain with alternating interactions, and the spin-1 AKLT
model, long-range quantum correlations are observed [17], al-
though adiabatic freezing is absent. We also note that the phe-
nomenon of adiabatic freezing can be utilized to experimen-
tally detect properties of quantum spin-baths, modelled byan
interacting bulk spin Hamiltonian, and probed by weakly in-
teracting spins at ends of the bath.

To conclude, we find the phenomenon of adiabatic freezing
of quasi long-range QD in the closed dynamics of many-body
quantum systems. Our work makes a connection between the
temporal freezing of correlations, observed only in damped
quantum systems, to the feature of long-range correlationsin
quantum spin chains. However, in contrast to temporal freez-
ing, the adiabatic phenomena is an intrinsic property of the
considered spin system. It has the ability to detect important
cooperative phenomena in quantum spin models and in partic-
ular serve as an order parameter for detecting the anisotropy
transition in quantum XY models. We note that the phenom-
ena is also observed for other system properties such as energy
gap, and other quantum correlation measures such as symmet-
ric discord [37] and one-way quantum work-deficit [40].

With unprecedented developments to simulate quantum
spin chains in different physical substrates and experimen-
tal techniques to characterize quantum correlations, the phe-
nomenon of adiabatic freezing allows the generation of robust
long-range quantum correlations between distant parties,for
application in future quantum technologies.
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Supplementary Material

S1. SPIN HAMILTONIAN AND CORRELATION
FUNCTIONS

Let us consider an anistropicXY quantum spin chain con-
tainingN spins with a closed end. The Hamiltonian for such
a system can be written as

H =

N
∑

i

κ

4
(Ji σ

x
i σ

x
i+1 +Ki σ

y
i σ

y
i+1), (s1)

whereσx(y)
N+1 = σx(y)

1 . Ji andKi are the dimensionless inter-
action strengths.κ(> 0) has the unit of energy.σi, i = x, y, z,
are the Pauli spin matrices. The open-end case is obtained by
settingJN andKN equal to zero.

The two-site quantum correlation, between arbitrary sites,
in the ground state of the Hamiltonian can be obtained by de-
riving the two-site reduced density matrix, following the sem-
inal work in [S1]. The Hamiltonian given in Eq. (s1), can be
transformed in terms of spin-raising and -lowering operators,
â†i = σx

i + iσy
i andâi = σx

i − iσy
i , to obtain

H =
κ

2

∑

i

(J ′
i â

†
i âi+1 +K′

i â
†
i â

†
i+1 + h.c.), (s2)

whereJ ′
i = (Ji + Ki)/2 andK′

i = (Ji − Ki)/2. The partly-
Fermi, partly-Bose operators (â†) can be transformed to a
set of strictly Fermi operators (k̂†), using the Jordan-Wigner

transformations [S2], such that̂ki = exp
[

iπ
∑i−1

j=1 â
†
j âj

]

â†i

and k̂†i = â†i exp
[

−iπ
∑i−1

j=1 â
†
j âj

]

. Equation (s1) takes

a quadratic form in terms of the Fermi creation (k̂†) and
annihilation (̂k) operators, that can be diagonalized. The
quadratic-form Hamiltonian is given byH = κ

∑

ij k̂
†
iAij k̂j

+ 1
2 (k̂

†
iBij k̂

†
j + h.c.), whereAij = 1

2 (J
′
i δi+1,j + J ′

j δi,j+1)

is a symmetric matrix andBij = 1
2 (K

′
iδi+1,j - K′

jδi,j+1) is an
anti-symmetric matrix. For closed-ended chains,A1N = AN1

= J ′
N andB1N = −BN1 = K′

N . As shown in [S1], any two-
site reduced density matrix of the ground state, for arbitrary
sites, can be derived in terms of the matricesA andB, by
solving the eigenvalue equation,φk(A - B)(A + B) = ∆2

kφk.
The dispersion relation of the function∆k gives us the exci-
tation spectrum that can be used to estimate the energy gap
in the system. A corresponding vector,ψk, is defined asψk

= 1
∆k

(A + B)φk. A unitary correlation matrix,G is then ob-
tained by the relation,Gij = −

∑

k ψki φkj .
The two-site reduced density matrix can be obtained from

the single-site magnetizations,〈σα
i 〉, and the two-site correla-

tion functions,〈σα
i σ

β
j 〉 − 〈σα

i 〉〈σ
β
j 〉, where(α, β = x, y, z).

The symmetry of the Hamiltonian ensures that the only non-
vanishing (single-site) magnetization is〈σz

i 〉. However, for
no external fields, the single-site magnetization also vanishes.
Moreover, the only non-vanishing two-site terms are〈σx

i σ
x
j 〉,

〈σy
i σ

y
j 〉, and〈σz

i σ
z
j 〉, which gives us the two-site correlation

B U L K  S P I N S 

END 

SPIN 

END 

SPIN 

1 2 3 4 N-1 N-2 N-3 N 

FIG. s1. (Color online.) The set-up. The end spins are weaklycou-
pled (black-dashed lines) with the bulk, which are stronglycoupled
to each other (black solid line).

functions, since〈σα
i 〉 = 0,∀ α. In terms of the correlation ma-

trix, G, derived in the main text by diagonalizing the Hamilto-
nian in Eq. (s1), the correlation functions are given by [S1],

T xx
ij =

∣

∣

∣

∣

∣

∣

Gi,i+1 .. Gi,j

: :
Gj−1,i+1 .. Gj−1,j

∣

∣

∣

∣

∣

∣

,

T yy
ij =

∣

∣

∣

∣

∣

∣

Gi+1,i .. Gi+1,j−1

: :
Gj,i .. Gj,j−1

∣

∣

∣

∣

∣

∣

,

T zz
ij = (Gi,iGj,j − Gi,jGj,i). (s3)

Note thatT xx andT yy are minors of the determinant ofG. For
nearest neighbors, the above correlations reduce toT xx

i,i+1 =

Gi,i+1, T yy
i,i+1 = Gi+1,i, andT zz

i,i+1 = −Gi,i+1 Gi+1,i, since
〈σz

i 〉 =−Gii = 0. For the end-to-end spin (see Fig.s1), two-site
correlation function, (Tαα

1,N ), the minor is anN − 1 × N − 1
matrix and the expressions in Eq. (s3) can be simplified to
obtain the following:

T xx
1,N = −GN,1 det (A− B)/| det(A− B)| = GN,1,

T yy
1,N = −G1,N det (A− B)/| det(A− B)| = G1,N , and

T zz
1,N = −G1,N GN,1 = −T xx

1,N T yy
1,N . (s4)

Now, any two-site reduced density matrix, for arbitrary sites
i andj, can be written as

ρij =
1

4
(I+

∑

α=x,y,z

Tαα
ij σα

i ⊗ σα
j ), (s5)

whereI is the two-qubit identity matrix. Since the derivation
of the two-site density matrix depends on the diagonalization
of N × N matrices, such asA andB, the method can be ex-
ecuted for chains with a large number of spins, and allows us
to study the asymptotic behavior of several system properties.
In our case, these are the long-range quantum correlations.

To obtain the reduced two-site density matrix of the thermal
equilibrium state of the quantum spin system, at temperature
T , one must find the thermal correlation matrixGij(β), in a
similar fashion to the analytical derivation done above. Here,
β = 1/kBT , wherekB is the Boltzmann constant. The corre-
lation matrix can be written as

Gij(β) = −
∑

k

ψki φkj(〈η
†
kηk〉β − 〈ηkη

†
k〉β), (s6)
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whereη†k are the spinless fermionic operators that diagonal-
ize the Hamiltonian, thus generating fermionic excitations
in the ground states with energy|∆k|. From Fermi statis-
tics, 〈ηkη

†
k〉β = 1/(exp[β∆k] + 1), and hence,Gij(β) =

−
∑

k ψki tanh[β∆k/2]φkj . UsingGij(β), the reduced two-
site density matrix for the thermal equilibrium state can then
be evaluated by following the expressions for the ground state
of the spin system as shown in Eqs. (s3- s4).

S2. MEASURES OF QUANTUM CORRELATION

The correlation functionsTαα
ij can be used to derive quan-

tum correlation measures, such as quantum discord and en-
tanglement, for reduced two-site density matrices of both the
ground and thermal equilibrium states of the system. The ob-
tained two-site reduced density matrix, in Eq. (s5), is Bell-
diagonal and hence its quantum discord [S3] can be calculated
using an analytical optimization [S4]. For the Bell-diagonal
density matrix,ρij , its eigenvalues,ei, can be obtained in
terms ofTαα

ij :

e1 = 1/4(1− T xx
ij − T yy

ij − T zz
ij );

e2 = 1/4(1− T xx
ij + T yy

ij + T zz
ij );

e3 = 1/4(1 + T xx
ij − T yy

ij + T zz
ij );

e4 = 1/4(1 + T xx
ij + T yy

ij − T zz
ij ). (s7)

The quantum mutual information is given by the relation,
I(ρij) =

∑

i ei log2(4ei). The classical correlation obtained
after optimization over measurements on a single-party, is
given by the relation

C(ρij) =
2

∑

k=1

xk log2(2xk), where (s8)

xk = (1 + (−1)kx)/2, for k = (1, 2), and (s9)

x = max{|T xx
ij |, |T yy

ij |, |T zz
ij |}. (s10)

The quantum discord is then given by the relation,

D(ρij) = I(ρij)− C(ρij)

=

4
∑

i=1

ei log2(4ei)−

2
∑

k=1

xk log2(2xk). (s11)

Similarly, using concurrence [S5] as our measure of choice,
the entanglement between any two sites can be analytically
derived. Concurrence of a two-qubit density matrix,ρij , is
defined by the relation

E(ρij) = max [0, c1 − c2 − c3 − c4] , (s12)

whereci’s are the square root of the eigenvalues of the matrix
ρij ρ̃ij , arranged in decreasing order.̃ρij = σy

i ⊗ σy
j ρ

∗
ij σ

y
i ⊗

σy
j . For the two-site density matrix obtained in Eq. (s5), ρ̃ij =
ρij , andci’s are nothing but the eigenvalues ofρij , given by
Eq. (s7), arranged in decreasing order. Hence, the concurrence

of the obtained two-site reduced density matrix is given by

E(ρij) = max [0, 2 emax − 1]

= max

[

0,
1

2
(|g+ij | − h+ij),

1

2
(|g−ij | − h−ij)

]

,(s13)

whereemax = max[{ei}
4
i=1], g

±
ij = T xx

ij ± T yy
ij , andh±ij =

1 ± T zz
ij . Hence, once the correlation functions,Tαα

ij , are
known from Eq. (s3), quantum discord and entanglement can
be obtained using Eqs. (s13) and (s11), respectively.

To highlight the role of the correlation functions in the be-
havior of quantum discord and entanglement during the phe-
nomena of adiabatic freezing, we consider an explicit exam-
ple. Let us study the model considered in the main text: an
N -spin open quantum spin chain, with nearest neighbor inter-
actions, with two spins at the edge of the chain (end spins) are
weakly coupled to the remaining bulk ofN−2 spins, as shown
in Fig. s1. As presented in the main text, the Hamiltonian for
such a spin chain is given by,

H = Hbulk +Hend, where

Hbulk =

N−2
∑

i=2

κ

4
(Ji σ

x
i σ

x
i+1 +Ki σ

y
i σ

y
i+1), (s14)

Hend =
κ

4

[

λ1(σ
x
1σ

x
2 + σx

N−1σ
x
N )

+ λ2(σ
y
1σ

y
2 + σy

N−1σ
y
N )

]

. (s15)

λ1 andλ2 are the weak end-couplings, and{Ji} = {Ki} = 1,
such that the bulk forms an XX spin chain. Adiabatic freezing
of long-range quantum correlations is observed, when one of
the end-couplings (say,λ2) is kept fixed, while the other (say,
λ1) is adiabatically varied.

0 0.2 0.4 0.6 0.8 1
λ

1

0

0.2

0.4

0.6 D (ρ1Ν)
E (ρ1Ν)

0 0.1 0.2 0.3 0.4
λ1

-1

-0.8

-0.6

-0.4

-0.2

0

T
 xx

 1N

 T
 yy

 1N

T
 zz

 1N

FIG. s2. (Color online.) Variation of long-range two-site correlation
functions,T xx

1N (green-square),T yy

1N (violet-up-triangle), andT zz
1N

(maroon-down-triangle), with end-coupling strengthλ1, for a spin
chain withN = 20. The other end-coupling,λ2 is kept fixed at 0.2.
The inset figure shows the behavior of long-range concurrence (blue-
diamond) and quantum discord (square-red). The adiabatic freezing
of DL for λ1 ≤ λ2 is evident from the inset figure, whereas en-
tanglement exhibits non-temporal death atλ1 = 0.59. All quantities
used are dimensionless except entanglement (in ebits) and quantum
discord (in bits). Compare with Fig. 2 in the main text.

In Fig.s2, one observes the adiabatic freezing of long-range
quantum discord (DL) between the end spins, in the ground
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state of the Hamiltonian defined in Eq. (s15), when the end
spin coupling satisfies the condition,λ1 ≤ λ2 (fixed), ∀ λ1.
Forλ1 > λ2 (fixed),DL decays with increasingλ1. This phe-
nomena is however not observed for long-range entanglement
(EL). The behavior of bothDL and EL upon adiabatically
varyingλ1 can be explained through the variation of the cor-
relation functionsT xx

1N , T yy
1N , andT zz

1N shown in Fig.s2. We
observe thatTαα

1N < 0, with |Tαα
1N | < 1, ∀ α = (x, y, z), for a

spin chain withN = 20 spins andλ2 fixed at 0.2. Since,T zz
1N =

−T xx
1N T yy

1N , thereforeT xx
1N andT yy

1N are the only independent
variables, with|T zz

1N | ≤ |T xx
1N | and|T zz

1N | ≤ |T yy
1N |. Moreover,

T xx
1N remains constant with the variation ofλ1.
Consider the region,λ1 ≤ λ2 = 0.2, in Fig.s2. We see that

|T yy
1N | ≥ |T xx

1N | ≥ |T zz
1N |. Therefore, theC(ρij) is dependent

only on |T yy
1N |, and decreases with increasingT yy

1N . Similarly,
I(ρij) is varies with|T yy

1N | (|T xx
1N | is constant) and decreases

with an identical rate, thus allowingDL to remain frozen for
λ1 ≤ λ2 = 0.2, as observed in the inset of Fig.s2. For
λ1 > λ2 = 0.2, |T xx

1N | ≥ |T yy
1N | ≥ |T zz

1N |, andC(ρij) is
dependent only on|T xx

1N |, which is constant. Therefore,C(ρij)
is constant forλ1 > λ2 = 0.2, but the decreasingI(ρij)
forcesDL to decrease, leading to breakdown of freezing. The
behavior is consistent with that observed in the phenomena of
temporal freezing [S6].

For entanglement, no adiabatic freezing occurs. Since 0
< |Tαα

1N | < 1, ∀ α, the long-range concurrence is given by
the relation,EL = max

[

0, 1/2(|g+1N | − h+1N )
]

, where,|g+1N |

= |T xx
1N + T yy

1N |, andh+1N = 1 − |T xx
1N || T yy

1N | > 0. As λ1
increases|g+1N | andh+1N decreases, due to the fact that|T yy

1N |

decreases, andT xx
1N | is constant. For,|g+1N | > h+1N , EL =

1/2(|g+1N | − h+1N ) and decreases withλ1. For |g+1N | ≤ h+1N ,
EL = 0, and long-range entanglement vanishes. The above
analysis can be compared with known results on quasi long-
range entanglement. Forλ1 = λ2, the system is isotropic,
and we haveT xx

1N = T yy
1N = z (say). Moreover,T zz

1N =
−z2, which gives us the relation for the long-range entan-
glement,EL = max

[

0, 1/2(z2 + 2|z| − 1))
]

. Now for x =
−〈Sx

1S
x
N + Sy

1S
y
N 〉 = −1/2 z, the above expression for en-

tanglement reduces toEL = 2max
[

0, (x2 + |x| − 1/4))
]

, as
shown in [S7].

S3. FREEZING OF ENERGY GAP AND QUANTUM
DISCORD, AT LARGE N

An important result discussed in the main text of the letter,
is the adiabatic freezing of the energy gap, and its comple-
mentary relation to the freezing of quantum discord. In par-
ticular, it is shown that for the Hamiltonian in Eq. (s15), the
quasi long-range quantum discord between the end spins in
the ground state of the system is frozen forλ1 ≤ λ2, while
the energy gap remains constant in the complementary region
λ1 ≥ λ2.

Let us briefly describe the presence of energy gap in the
spin Hamiltonian considered in the study. As mentioned in the
main text, for the case,λ1 = λ2 =λ, the dispersion relation of
the excitation energy is given by∆k = cos(k), wherek is the
quasimomentum modes. These modes satisfy the following
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FIG. s3. (Color online.) Variation of the analytically and numerically
estimated values of the energy gap with increasing size of the spin
chain. The value of energy gap, using the analytical expression, is
given by∆g = min[f(λ1), f(λ2)] (blue-square), wheref(λ) is de-
fined in Eq. (s16), and for exact numerical calculations (red-circle),
for λ1 = 0.4 andλ2 = 0.6 (and,λ1 = 0.6 andλ2 = 0.4), for largeN .
The figure shows that at largeN , ∆g scales linearly as1/N .

eigenvalue equationcot(k)[cot((N−1)k/2)] = λ2/(2−λ2),
for λ 6= 1, where the positive eigenstate parity has been con-
sidered [S7]. The energy gap is then given byk′, which min-
imizes the dispersion relation∆k = cos(k′), while satisfying
the above eigenvalue equation.
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FIG. s4. (Color online.) Variation of the long-range quantum discord
(red-circle) with increasing size of the spin chain. The inset shows
the behavior of the correlation functions,T xx

1N (green-square),T zz
1N

(maroon-down-triangle), andT yy
1N (violet-up-triangle).λ1 andλ2 are

set at 0.01 and 0.1, respectively. The figure shows that at largeN ,
DL scales as1/N .

In largeN limit, for k′ = π/2 − δ, whereδ → 0, the
dispersion relation provides an analytical expression forthe
energy gap (∆g) as

∆g ≈
π

2N

(

1 +
2

N(λ2/(2− λ2) + 2

)

= f(λ) (s16)

Numerical analysis for the case,λ1 6= λ2, shows that the
quasimomentak′ corresponding to the energy gap satisfies the
eigenvalue equation forλ =min[λ1, λ2]. Thus, the energy gap
is given by the analytical relation,∆g = min[f(λ1), f(λ2)],
wheref(λ) is defined in Eq. (s16). Figure s3, shows the
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agreement between the analytical expression for∆g and ex-
act numerical calculations for largeN . One can then show
that f(λ1) < f(λ2), for λ1 < λ2, andf(λ2) ≤ f(λ1), for
λ2 ≤ λ1. The adiabatic freezing of the energy gap, asλ1 is
varied, is thus evident forλ2 ≤ λ1, as∆g is independent of
λ1 in this range.

It is known that for the model considered in the study, given

by Eq. (s15), the long-range quantum correlation between the
end spins is quasi long-range [S7], i.e., the long-range quan-
tum correlation vanishes with increasingN . The behavior of
DL with increasing system size is shown in Fig.s4, which
plots the value of the frozen quantum discord with increasing
system size. The figure shows that in the largeN limit, both
the frozen energy gap and quasi long-range quantum discord
scales with1/N .
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