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Adiabatic freezing of long-range quantum correlationsin spin chains
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We consider a process to create quasi long-range quantgordlisetween the non-interacting end spins of a
guantum spin chain, with the end spins weakly coupled to tiledf the chain. The process is not only capable
of creating long-range quantum correlation but the lategnains frozen, when certain weak end-couplings
are adiabatically varied below certain thresholds. We térisiphenomenon as adiabatic freezing of quantum
correlation. We observe that the freezing is robust to maddethermal fluctuations and is intrinsically related
to the cooperative properties of the quantum spin chainartiqular, we find that the energy gap of the system
remains frozen for these adiabatic variations, and moreoweasidering the end spins as probes, we show that
the interval of freezing can detect the anisotropy traosiith quantunXY spin chains. Importantly, the adiabatic
freezing of long-range quantum correlations can be siradlatith contemporary experimental techniques.

I. INTRODUCTION ular, we find that the long-range QD of the ground state can
exhibit non-temporal freezing, while the weak end-cougsin
are varied. We term the freezing as “adiabatic”, as the phe-
nomenon is observed while the weak end-couplings are adia-
I?atically varied. No such freezing behavior is observedtier

Quantum correlationl] 2] is one of the principal charac-
teristics that separates the quantum domain from its clalssi

counterpart. The properties and phenomena that arise tromlon range entanalement. The observed phenomena makes
are neither reproducible nor simulatable in classicalesyst 9 9 g ' P

The amount of quantum correlation that exists between tw(#ong—range QD a ro_bu_st re_source,_against moderate thermal
subsystems of a pure quantum state is completely capturel:'i‘Ctuat'on.S and variations in certain system parameters, .f
by entanglementl]. However, for mixed states, local mea- implementing quantum protocols between distant spin gubit
surements may reveal nonclassical features, that arenprese _Interestingly, and in contradistinction to temporal fieez
even in non-entangled or separable stafs Measures that [24-27], the observed adiabatic phenomenon is characteristic
capture quantum correlations beyond entanglement, such 86 the quantum system rather than an external environment,
quantum discord (QD)J], have been instrumental in inves- and is intrinsically related to the many-body propertiethef
tigating several protocols of quantum information and com-duantum spin chain. For instance, in an experimental gettin
putation (QIC) B—6], quantum phase transitiong][ many-  One may consider the two end-spins togdnebe sites weakly

body dynamics§, 9], quantum biology 10], and metrology ~ oupled to aystem consisting of a spin chairif-19], where
[11, 12] (see P), for a review). the weak end-couplings can be controlled. The long-range

O%D between the probe spins can then be shown to identify the
nature of interaction in the system. Specifically, the fiegz
interval of long-range QD can be used to define an order pa-
rameter that detects the “anisotropy transition” in theteys

Methods to create long-range entanglement have attracte
lot of attention due to their importance in several protsdnl
QIC [13-2(]. Such investigations led to the discovery of pro-

cesses like entanglement swapping[and repeatersip, considered. Further, one can show that the adiabatic frgezi

and concepts like localizable entanglemelf{ In the last henomena is not limited to long-range quantum correlation

decade, there have been several instances where quantum cor

relation measures such as QD were claimed to be importantm is also manifested in other cooperative properties ef th

[2, 4-12]. For example, it provides an interesting perspectivequ"’mtum spin chain, such as the energ)./ gap.

on the dynamics of open quantum syste@®,[where entan- We note that there are recent experlmental proposals and
glement is fragile. In quantum systems subject to noisy-envitechniques to generate and characterize long-range quan-
ronments, for both Markovian and non-Markovian evolution,lUm correlation in quantum spin systenZ9{31] (also see

QD is more robust than entangleme[23]. Interestingly, Refs. B2)). In this light, we investigate the effect of ther-
for certain types of quantum states under dephasing, QD exP@l fluctuations in the spin system, which is important for
hibits a qualitatively different robustness. It remafimgenfor ~ Potential experimental implementations, and find that thie a
finite evolution times 24, even though entanglement suffers abatic freezing is stable below a critical temperature. déen
sudden death. In recenttimes, a significant amount of relsear OUr results show that in an experimentally accessible regim
has been undertaken to characterize the phenomena of fred-weak end-couplings and low-temperature, high quasi-lon

ing of quantum correlation®@p-27), including entanglement  "ange quantum correlations can be adiabatically frozeager
[28]. plications in various quantum information protocols.

In this letter, we report quasi long-range QD between the
end spins of a finite quantum spin chain, when the end spins
are weakly coupled to the bulk of the spins. The work is mo-
tivated by the desire to investigate the quantum corraiatio
properties of the end spins due to the collective effect ef th
bulk spins that act as a reservoir for the end spins, thuagjivi  Let us consider an anistropiY quantum spin chain con-
rise to interesting long-range quantum phenomena. Ingarti taining N spins with a closed end. The Hamiltonian for such
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a system can be written as with very short-range interactiorl§, 17]. In the balanced
case,£;, decreases monotonically with increasikg(= A2),

N and the rate of decay increases with system size. Algo,

H=>) 7 Wiotola +Kiolaly,), (1) may exhibit non-temporal sudden death (6f) ]

[y

Wherecrj”\,(ji)1 = of(y). J; andC; are the dimensionless inter-

action strengths<(> 0) has the unit of energy:’, i = z, v, z, 0.8

are the Pauli spin matrices. The open-end case is obtained by

setting7y andX equal to zero. g
The quantum correlation between two arbitrary sites, in 2

the ground and thermal equilibrium state of the Hamiltonian S|

can be obtained by deriving the two-site reduced density ma-

trix, following the seminal work in33]. The symmetry of L ; 7

the Hamiltonian ensures that all (single-site) magneatnat I0ARARRE ; , ]

(0%), V a = (z,y, z) vanish in the absence of any external % 02 04 06 08 1

fields. The only non-vanishing two-site terms deef o), A

<o§cr}’>, and(o7o%). Hence, any two-site reduced density

matrix, for arbitrary sites and j, can be written ap;; = FIG. 1. (Color online.) Adiabatic freezing of quasi longige quan-

1/4(T+ > TaY 0 ® 0%), whereT 2 = (6%0¢) are  tum discord Pr). The bulk is anXX spin chain. For each non-zero
a=x,y,z ! . . .
the two-site correlation functions arids the two-qubit iden-  value of\s, freezing of Dy, takes place for adiabatic change f:

; i o ; ; ; The behavior of entanglement is given in the inset. All qgitst
Eit;rml?érrll)i(énz;ﬁ E((q: af) ?fg,agn 4a]llyt|cally derived by solving the are dimensionless, except QD (in bits) and entanglemerghiis).

Sincep;; is Bell-diagonal, its QD 3] can be analytically Here, N = 10.

obtained B5]. The eigenvalues of;;, in terms of 75, is

given by {e;} equal tol/4(1 + (Tj5" + T3") — T5) and Let us now consider the case whekg,,;, represents an
141 = (T35 — T}F') + T77), for i = 1 to 4. The quan-  gordered, XX spin chain, such thal, = K; = 1,Y i =
tum mutual information is given by the relatiof(p;;) =  2,.... N — 2, and the coupling strengths at the ends are such
> i eilogy(4e;), and the classical correlation, obtained afterthat \;, \» < J;. When\, # X, We refer to it as “unbal-
optimization over measurements on a single-party, is giyen anced” weak-coupling. Under such coupling, the behavior of
Clpij) = 2221 xr logy(271), wherexy, = (1 + (=1)* 2)/2 &, and long-range QD1;) i.e., the QD of the reduced den-
(k = 1,2), andz = max{|T}%"|, |T}}"|,|T77|}. The QD is  sity matrix of the end sping; v, of the ground state, are qual-
then given by the relationD(p;;) = Z(p;;) — C(pi;) =  itatively different. Specifically, for fixed values o, and on
2?21 eilog,(de;) — Zi:l x5 log,(22;). Similarly, the en-  slowly increasing the paramety, from approximately) to
tanglement, using concurrencgd], between any two sites 1, Dr freezes, i.e., remains unchanged in value for the range 0
can be analytically derived in terms of the correlation func < A1 < 2. The value of the froze®;, (D}) is dependent on
tion o~ [34]: £(pij) = max [0, 2 max[{e;}] — 1]. the fixed\s and the size of the spin chaify. However, the

freezingintervally), i.e., the region on th&; -axis over which

Dy, remains frozen, is equal t,. As )\, is increased beyond

IIl. ADIABATIC FREEZING OF QUANTUM DISCORD Ao, i.e., for the range; > )\, the freezing oD, ceases and
it decays exactly similar to the balanced case. Interdsting

Let us consider anV-spin non-periodic quantum spin the behavior of entanglement does not distinguish the regim
chain, with nearest neighbor interactions, where the tvilmssp 0 < A1 < Ay andA; > A,. In particular,£;, decays in a
at the edge of the chain (end spins) are weakly coupled to th@milar fashion in both the regimes, though the maximtym
remaining bulk ofN' — 2 spins. The Hamiltonian for the spin atA: ~ 0 and the value ok, at the non-temporal death (i.e.,

is given byH = (/4) (Houik + Hena), Where AP, such that for alh; > AP, £, = 0), both decrease with
increasing\,. Figurel shows the freezing of long-range QD
Howire = Sorey (Ji 0F 0y + Kialo? ), (2) inanN = 10 spin XX chain for different values of the fixed

_ x, x x Yy y y weak coupling s, with the variation of\;. We call such phe-

Hena = Ailofog + 0% 10%) + Aa(010g + oy, 0% )(3) nomenonpas g‘?adiabatic freezing” since it can be obsgrved in
The above Hamiltonian can be exactly solved to calculate théhe adiabatic evolution obtained by slow variation of thelwe
qguantum correlation between any two spins in the chain. Theoupling ;. The phenomenon of adiabatic freezing can be
cases forwhich\; = X\ < J;,K;, Vi =2, ..., N — 2, will be explained by observing the behavior of the two-site cofrela
referred to as “balanced” weak-coupling. It is known that fo tion functions that are obtained by solving the Hamiltoriran
A1(= A2) — 0, the two end spins in the ground state of theEq. (3). Note that the freezing dP;, observed in the present
chain are maximally entangled. Denoting concurrer®® [ context is purely a property of the quantum spin chain, and
by £, we have€, — 1 in that limit. This gives rise to quasi not a conjunction of the system and an environment.
long-range entanglement, interestingly, in a quantumesyst ~ We note that botld;, andD/, are quasilong-rangéf],i.e.,



their value decreases with increase in system-&izéience,
for a fixed A\, the frozen discord valué?{, decreases a%

3

amount of research in recent yea2§{27]. However, we note
that the freezing oDy, (p1 ) observed in the present context

grows larger. However, fixing the weak-end couplings to lowis purely a property of the long-range correlations in thie sp
values, say\;/J; ~ 0.001, for N=200, a reasonably high chain and is devoid of any external decoherence, in cortrast
D! ~0.93 can be obtained, and frozen upto one order highegonventional freezing phenomena.

i.e.,ly = Ay = 0.01. Moreover, even symmetric quantum cor-

relation measures, such as symmetric @M@ [exhibits adia-

batic freezing for\, # Ao. IV. DETECTING ANISOTROPY TRANSITION

2

The adiabatic freezing of the quasi long-range @B ) in

—= )]

| 0.4F I E . . . . . .
14 3 | 1 =10 spin chains, with Hamiltonians of the form given by Eg), (
- 06 u/f aTy can be used to investigate certain intrinsic propertieshef t
1 “leny: 8 bulk Hamiltonian, such as the anisotropy transition. THoug
\ad there exist methods to detect anisotropy in quantum spin sys

0.5

tems B8], our results provide an information-theoretic per-
spective to investigate these quantum properties in anriexpe
mentally viable manner.

Let Hpuix be an ordereY spin chain with7; = 1 4 v
andiC; =1 — v,V i = 2,.... N — 2, with v(#£ 0) being the
finite anisotropy present it;,,;. The end-coupling is unbal-
anced, such that; # \,. We focus on the parameter regime
A1, A2 < 1, where the relevant physics under consideration
increase in the end coupling, for a fixed\, = 0.2, and forv =20 IS clearly observed. Let us now consider the adiabatic freez
spins, where the bulk is aX chain. Dy, is frozen for\; < As. DI ing of Dy, in the above spin chain, with possible anisotropy in
= 0.322 and; = 0.2. All quantities used are dimensionless exceptH.;x, by varying the weak end-couplings. The presence of
Dr, Z(pin), andC(p1~), which are in bits. The inset magnifies the anisotropy introduces changes in the freezing charatiteris
red-encircled region. of Dy, For instanceD; increases with upto a certain fixed

value that depends o, and then decreases. See inset of
Fig. 3. Interestingly, the freezing intervdl; undergoes a tran-
The analysis of two-site correlation functions between the

FIG. 2. (Color online.) Variation af(p1n~), C(p1n), andT1y with

1 " " T

end spins7Y%, can shed light on the observed adiabatic freez- R =
ing of QD. From Fig.2, for N = 20 spins with\, = 0.2, we 0.9 oo 1]
observe thafffyy < 0, and|T7| < 1,V a. Since, 7% = S o4t ]
— TEe TP (33, 34), thereforeT'se and TV are the only in- 0.60 02 7]
dependent variables, witll'75 | < |T7%| and|T75| < |TY¥]. = 0.4
Moreover, it is seen that}’y; is constant during the adiabatic <
evolution. Hence, the quantum mutual informati@n v )) 0.
is an entropic function of £ TY%. Since,|T{%| > T3] > oF [soNz 1o
|T¢%| for Ay < )Xo, the classical correlatior(p1n)) is also a oo [#AN=30 |
function of1 + 7T7%. HenceZ(p1n) andC(p,n) decay with '

-0.4 -0.2 0 0.2 0.4

identical rates leading to a constant long-range QD. Howeve
for Ay > Xo, [T > |TVN] > |T¢%| andC(p1n) is now a
function of 1 + 77%. Since, 1} is constant during the evo-
lution, C(p1 ) freezes for\; > Ao, in contrast taZ(p; ) in
that range. Hence, the freezing of the long-rafigd p1 )
disappears foh; > X2. As Ay — {0, )\ }, there is no freez-
ing of Dy, (p1n), asC(p1n) Is always constant. In contrast,
for entanglement, no adiabatic freezing occurs. In Big.
since 0< |T7¢| < 1,V a, &L is given by the relationgy,
= max [0, 1/2(91]\/ — th)], Where,glN = |T1$Jic[ + le;\ﬂ, and
hin =1 — T[T > 0. As A increasegy andhiy
decreases, due to decreasjiyy, |, and constantZ%|. For
gin > hin, £ decreases with, and atg1ny < hin, & =
0 (sudden death). For = Xy, we havel % = TYY = z (say).
Therefore£,, = max [0,1/2(2% + 2|z| — 1))} [34]. intervall;. This can be seen as follows. We evaluitdor
The observed behavior @ p: x) andC(p1n) is consistent  different values of\;, and a fixed\,. By using\, — [ as the
to what is observed in the freezing of QD, first observed inorder parameter, one can detect thdransition in the sys-
dephasing quantum systen®], that heralded a substantial tem aty = 0, driven by changes in the anisotropy parameter.

FIG. 3. (Color online.) Detecting the anisotropy) transition. The
order parameten. — [ is plotted againsy, with fixed A2. The inset
shows thatD,{ can be substantially increased for positiyebelow a
threshold value. The anisotropy transition can also be Beenthe
change in the curvature (convexity to concavityﬂzﬁ with respect
to v, where theV-dependent critical values approagh= 0 through
negativey. All quantities are dimensionless, except QD (in bits).

sition that can detect the anisotropy transition at 0 in the
bulk spin system. This allows us to define an anisotropy tran-
sition order in terms of the system parameters and the figezi
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The order parameteY, — [ is finite for anisotropic systems system that can be obtained from the excitation energy spec-
and vanishes af = 0. Further, one observes thas — [ trum or the dispersion relation of the functidxy, [33, 34].
sharply decreases gsis increased beyond alN-dependent Let us consider the system, whéig,; in Eq. (2), represents
threshold valueoY). It is observed that a8 is increased an orderedX spin chain. The only anisotropy in the system
upto certain values, the critical parametef — 0. Hence, arises from the coupling strengths at the end spins. Solving
for large but finiteV, transition in\, — I, aty¥ captures the the Hamiltonian, one can obtain the excitation spectriyp,
~—transition of the class of quantum spin models described by For the balanced casg; = A2 = ), the dispersion relation
the Hamiltonian in Eg.3). The observed transition is shown of the excitation energy is given by, = cos(k), wherek are
and described in Figg. the quasimomenta modes. These modes satisfy the eigenvalue
In an experimental setting, one may consider the end spinsquation 16], x cot(k)[cot((N — 1)k/2)]* = X2/(2 — A\?),
to be probe sites at the edge of a quantum spin chain corier A # 1, with u = +1 being the eigenstate parity. Consid-
sisting of the bulk spins. The two end-spins can be defectsring . = 1, the energy gap is then given &Y, which min-
or scattering particles in a spin chaib7] 39], and the weak imizesA,; = cos(k’), while satisfying the above eigenvalue
end-coupling can be experimentally controlled. Under suclequation. FotN > 1, atk’ = 7 /2 — §, whereé — 0, an an-
conditions, the anisotropy ;... can be detected using the alytical expression for the energy gafi ) is obtained 17],
order parameteks — [, where the desired quantities are ob-whereA, ~ (7/2N)[(1+2/(N(A?/(2 — A?) 4+ 2)] = f(A).
served from the freezing of long-range QD between the twdNumerical analysis shows that for the case, # Ao, the
probe spins. Hence, the quantkty—I, can serve as a suitable quasimoment&’ corresponding to the energy gap satisfies the
order parameter in many-body simulations. The advantage @igenvalue equation fox = min[\;, A2]. Therefore, the en-
the approach lies in the fact that all performed measuresnenergy gap is given by the relatiod, = min[f (A1), f(A2)],
and tuning of interactions are associated only with the @robwhere f()), defined above, is a monotonically decreasing
spins that weakly interact with the quantum spin chain. Thdunction of \. The adiabatic freezing of the numerically es-
detection of the intrinsic anisotropy in the bulk spin ch&in timated energy gap, is shown in Fig. Using the above
achieved without disturbing the system. This provides an inrelation for A, and monotonicity of the functiorf(\), it is
teresting role for adiabatic freezing of discord in invgating  obvious thatA, freezes forA, < Aq, since in this region,
many-body phenomena. f(A2) < f(A1) andAy is thus independent of; .

V. FREEZING OF ENERGY GAP

Another interesting phenomenon that connects adiabatic
freezing of long-range quantum correlations to the coopera A o0
tive properties of the quantum spin chain, is the freezirenef
ergy gap. For the considered model, the weak end-couplings
between the bulk and end spins introduces a finite energy gap.

100(

= A,=0.2 ‘ o0 800
006 | _ >\2= v g ] 200 400 N600 800 1000
1A,=0.§ ]
=\,=0.8 . - .
0.04- 2 s SRR R RRRRRE FIG. 5. (Color online.) Variation of the analytically and -nu
Ag ___________________ J merically estimated values of the energy gap with increpsize
of the spin chain. The analytical expression is givenby =
0.02- 8 min[f (A1), f(A2)] (blue-square), and is observed to be consistent
SIS ST ST with numerically obtained values &, (red-circle) at largeV, for
A1 =0.4 and\; = 0.6 (and,\; = 0.6 and\2 = 0.4). The inset shows
e S P D;, (maroon-diamonds) with increasiig. The figure shows that at
0 02 04 A 06 08 ! largeN, A, andDy, scale ad /N.
1
FIG. 4. (Color online.) Adiabatic freezing of the energy gayu- The adiabatic freezing o\, is complementary to that of

merically obtained values ok, is plotted againsi, for different

fixed values of\2. The spin model is the same as in Fig.but Dy, in terms of the variation of weak end-couplings. Fis.

for N = 20 (red) and 30 (black). Fox; > Xs, A, is frozen. The and4 show that whileDy, freezes for\; < Ay, A, is constant

difference in frozem\, for different NV, marked in one case with a for A, > /_\2' ) Moreover, Wh”e the frozen v_alue ary, 0_'6'
double-headed arrow, increases with All quantities plotted are ~ Créases with increase iy, it does the opposite fah,,. Fig-
dimensionless. Note that the behaviorsf andD,, with response ~ Ure 5 shows the agreement between the analytically and nu-
to A1, for fixed A2, is complementary. merically obtained values @k, at largeN. We observe that
at largeN, the frozen values of bothh, andD;, scale with
1/N [34]. The behavior oA, shows that the phenomenon of
The energy gap is an intrinsic property of a quantum spiradiabatic freezing is manifested through the intrinsicgre



ties of the quantum spin chain.

VI. RESPONSE TO THERMAL FLUCTUATIONS
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pacity [29, 32]. Another experimental protocol, relevant to
the quantum spin chain considered in our study, was proposed
using ions of the ytterbium isotop&,' Yb, in segmented lin-

ear Paul traps3JQ], utilizing the tailoring of axial trapping
potential to generate the spin-spin coupling, and using mi-

In the previous sections, the phenomena of freezing is obcrowave pulses to generate effective spin interactionsofem -
served for the ground state of the quantum spin chain undéecent study devises a similar scheme using superconductin
consideration. For small thermal fluctuations, the system iflux qubits, using dc currents and microwave pulses to contro

no longer in the ground-state, but a mixed state in equilifari
at some small temperatur@’, To obtain the reduced two-
site density matrix of the thermal equilibrium state of tpas
system, at temperatufie, one must find the thermal two-site
correlation functions/’5*(3) [33, 34]. Here, 3 = 1/kpT,
wherek g is the Boltzmann constant.

1

0.8

Pos
o]

If 0.4

0.2

FIG. 6. (Color online.) Response of freezing to thermal flations.
We plot the ratio of the thermal freezing intervla(;fXand the ground
state freezing interval §) as a function of temperature. Hertg=
0.2. We observe that for every, there exists a critical temperature
(T'N) beyond which adiabatic freezing disappears for finite mhai
TN decreases linearly witlv, as shown in the inset. The solid
green line, in the inset, is the linear fit,= 19.72 — 0.184x. All
quantities plotted are dimensionless.The abscissae ifigine and
the ordinates in the inset are multiplied by*.

We observe that adiabatic freezing persists at fiflite
below a critical temperaturg?, that also depends on the
system-sizeV. The value of frozen discor®] is constant
for temperatures belo@?”, though the freezing interval de-
creases af increasesT is a linearly decreasing function of

the spin-spin interactiorsfl]. Moreover, recent experimental
studies have also observed the freezing phenomena in gariou
guantum systemsf.

In our work, we find that there exists adiabatic freezing of
quasi long-range quantum correlations in finite quantum spi
chains. We show that the observed phenomena is robust to
the weak end-spin couplings and finite thermal fluctuations,
which are the fundamental elements in experimental control
of quantum systems. Further, by tuning the end-spin cogplin
one can obtain relatively high values of long-range QD. In-
terestingly, we have observed that a finite interaction betw
the two end spins can vastly increase the shared QD between
the sites, without affecting the freezing interval. Thisnti-
itively plausible, as the finite end-to-end coupling enemes
greater correlation between the end spins. Alternativaig
can also study the phenomena in ¥ and XY spin chains
in a transverse magnetic field. Preliminary investigatiais
veal that, for weak end-couplings, an effective freezigg [
of long-range QD can be characterized. For quantum spin
chains such as the frustrated spin-Z{2- J, model, spin-1/2
XX chain with alternating interactions, and the spin-1 AKLT
model, long-range quantum correlations are obseri/@dl-
though adiabatic freezing is absent. We also note that the ph
nomenon of adiabatic freezing can be utilized to experimen-
tally detect properties of quantum spin-baths, modelledry
interacting bulk spin Hamiltonian, and probed by weakly in-
teracting spins at ends of the bath.

To conclude, we find the phenomenon of adiabatic freezing
of quasi long-range QD in the closed dynamics of many-body
guantum systems. Our work makes a connection between the
temporal freezing of correlations, observed only in damped
guantum systems, to the feature of long-range correlations
guantum spin chains. However, in contrast to temporal freez
ing, the adiabatic phenomena is an intrinsic property of the
considered spin system. It has the ability to detect impbrta

N. Figure6 shows the effect of thermal excitations on freez- cooperative phenomena in quantum spin models and in partic-

ing interval of long-range QD in aKX spin chain.

VIl. DISCUSSION

ular serve as an order parameter for detecting the anisotrop
transition in quantum XY models. We note that the phenom-
ena is also observed for other system properties such agener
gap, and other quantum correlation measures such as symmet-
ric discord B7] and one-way quantum work-defic#()].

In recent years, experimental generation of long-range With unprecedented developments to simulate quantum
guantum correlation in antiferromagnetic spins chainsshavspin chains in different physical substrates and experimen
been reported using strontium-cuprate compounds, such &al techniques to characterize quantum correlations, ltige p

Sr14Cu4 Oy, to simulate dimerized spin-chain9. Quan-

nomenon of adiabatic freezing allows the generation ofsbbu

tum correlations are experimentally measured using low temlong-range quantum correlations between distant pafoes,

perature magnetization, magnetic susceptibility, and baa

application in future quantum technologies.
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Supplementary Material

1 2 3 4 N-3 N-2 N-1 N
S1. SPINHAMILTONIAN AND CORRELATION END END
FUNCTIONS SPIN | | SPIN
1
Let us consider an anistropXy quantum spin chain con- BULK SPINS
taining N spins with a closed end. The Hamiltonian for such
a system can be written as FIG. s1. (Color online.) The set-up. The end spins are weedily
pled (black-dashed lines) with the bulk, which are strorgdypled
N . to each other (black solid line).
H=) 7 (Tiotol +Kiolol), (s1)
i
functions, sincéos) =0,V a. In terms of the correlation ma-
Wheregfv(ji)l = Uf@)_ 7, andK; are the dimensionless inter- trix, G, derived in the main text by diagonalizing the Hamilto-
action strengths:(> 0) has the unit of energy, i = . y, 2, nian in Eq. €1), the correlation functions are given b§71],
are the Pauli spin matrices. The open-end case is obtained by Giint G -
(2 2y

setting.7y andXy equal to zero.

The two-site quantum correlation, between arbitrary sites
in the ground state of the Hamiltonian can be obtained by de-
riving the two-site reduced density matrix, following thens-
inal work in [S1]. The Hamiltonian given in Eq.s(l), can be Tf“;y _

TT __
T =

3

Gi—1i11 - Gj—1

Git1,i - Gix1,j—1

)

transformed in terms of spin-raising and -lowering opasgto Q;'i .G ;,_1
al = o¥ +i0? anda; = o¥ — ic?, to obtain ' '
H=" I oata K atat h 2 T = (9955 — Gi.395.)- (s3)
= " ala, Lol a) .C. s . .
2 Z(‘Z @541+ Ki 0,4, + b)), (s2) Note thatl’** andT¥¥ are minors of the determinantgf For

7

nearest neighbors, the above correlations redu@to, =
where7/ = (J; + K;)/2 andK} = (J; — K;)/2. The partly- ~ Giiv1, T/ 1 = Givri, @andT72 = —Giiv1 Giy1, SiNCE
Fermi, partly-Bose operatorgf() can be transformed to a (07) =—G;; = 0. For the end-to-end spin (see Fd), two-site
set of strictly Fermi operators:{), using the Jordan-Wigner correlation function, T1'}), the minoris anV — 1 x N — 1

transformations$2, such thatk; = exp [m sl de} 5t matrix and the expressions in Eg3| can be simplified to
. ; ’ 1 J=L7I1 T obtain the following:
and k] = a)exp |—imr > '_ a.a}. Equation §1) takes
dratic form i tzy_1 fjt;] Fermi creatiok') and Tiy = =Ona det (A=B)/|det(A = B)] = s,
a quadratic form in terms of the Fermi creatiokf) an v B e
annihilation ) operators, that can be diagonalized. The Ny = ~G1ndet (A B)/|dety(;4 B)| = G1,n,and
quadratic-form Hamiltonian is given bl = x 3", k[ A;jk; Tt =—-Gin vy = —Ti N T7 - (s4)

+ %(EJBZ—J— k:JT +h.c.), whereA;; = 3(J/0;41,; + Jj0ij+1) Now, any two-site reduced density matrix, for arbitrargsit

is a symmetric matrix an8;; = §(K;6;11,; - K/0; ;41) isan i andj, can be written as

anti-symmetric matrix. For closed-ended chaidsy = An1

= Ji andBiy = By = /_C§v- As shown in §1, any two- pij = —(I+ Z T3 0¥ @ 0f), (s5)

site reduced density matrix of the ground state, for anbyitra a=x,y,2

sites, can be derived in terms of the matricésand B, by ) o . o o

solving the eigenvalue equatiopy, (A - B)(A + B) = AZ¢,. ~ Wherel is the two-qubit identity matrix. Since the derivation

The dispersion relation of the functiah;, gives us the exci- Of the two-site density matrix depends on the diagonabrati

tation spectrum that can be used to estimate the energy g&b/V < NN matrices, such agl and, the method can be ex-

in the system. A corresponding vectar,, is defined agy,  €cuted for chains with a large number of spins, and allows us

= L (A + B)¢i. A unitary correlation matrixg is then ob- 10 study the asymptotic behavior of several system progeerti

tainked by the relatiorG;; = — 32, ki b, In our case, these are the long-range quantum correlations.
The two-site reduced density matrix can be obtained from To obtain the reduced two-site density matrix of the thermal

the single-site magnetizations;®*), and the two-site correla- equilibrium state of the quantum spin system, at tempegatur
! T, one must find the thermal correlation matéx (5), in a

' ' agPy _ (g2 (5P = o ; _ et
tion functions (o oy') — (of*)(0; ), where(a, = z,y,2).  GiaFeachion to the analytical derivation done aboveree

.

K2
The symmetry of the Hamiltonian ensures that the only non=, ;
vanishing (single-site) magnetization {s;). However, for B = 1/ksT, wherekg is the Boltzmann constant. The corre-

no external fields, the single-site magnetization alsosleas. lation matrix can be written as

M(Z)Jreyover, the only non_—vanl_shlng two-site terms argo’ >,. Gii(B) = — Z i ¢kj(<77;177k>[5 _ <77k771];>ﬁ)7 (s6)
(of0]), and(cfa7), which gives us the two-site correlation B



2

wheren,TC are the spinless fermionic operators that diagonalof the obtained two-site reduced density matrix is given by

ize the Hamiltonian, thus generating fermionic excitasion

in the ground states with energ\;|. From Fermi statis-
tics, (mnl)s = 1/(exp[BAx] + 1), and henceGi;(3) =

— > Uri tanh[BA /2]¢r;. UsingG;;(6), the reduced two-
site density matrix for the thermal equilibrium state caarth

E(pij) = max|0,2 emaz — 1]

1 1, _ _
= max |0, §(|g:g_| - h;;), §(|gzg| —h;;)| ,(s13)

. ; _ + " + _
be evaluated by following the expressions for the grourig sta Wher€emas = max[{e;}i, ], gi; = T75" £ T}, andhj; =

1 &+ T7*. Hence, once the correlation functioris;*, are
known from Eq. §3), quantum discord and entanglement can
be obtained using Eqss13 and €11), respectively.

To highlight the role of the correlation functions in the be-
havior of quantum discord and entanglement during the phe-
] ] ) nomena of adiabatic freezing, we consider an explicit exam-

The correlation functiong3* can be used to derive quan- ple Let us study the model considered in the main text: an
tum correlation measures, such as quantum discord and ef.spin open quantum spin chain, with nearest neighbor inter-
tanglement, for reduced two-site density matrices of boéh t actions, with two spins at the edge of the chain (end spires) ar
ground and thermal equilibrium states of the system. The obyeakly coupled to the remaining bulk 8f—2 spins, as shown

tained two-site reduced density matrix, in Eg9( is Bell- iy Fig. s1. As presented in the main text, the Hamiltonian for
diagonal and hence its quantum discdd|[can be calculated  gych a spin chain is given by,

using an analytical optimizatiorSf]. For the Bell-diagonal
density matrix,p;;, its eigenvaluesg;, can be obtained in
terms of 7,5

of the spin system as shown in Eqs3{ s4).

S2. MEASURESOF QUANTUM CORRELATION

H = Hywik + Hena, Where

N—2
K xT xT
Tz vy 22 Houtk = Z 1 (Jiofoi, +Kialal,,), (s14)
er = 1/4(1 = T5" = T = T77); -
s = /A1~ T 4 T+ T
( )
( )

bl

2
Hena = [)\1(0%05 + Ulmvfla'lw\/)

ﬁl?ﬁﬂ

s = 1AL+ T ~ T + 157
e = 1/A(1+ T + T = T59).

’ + Ae(ofod +o%_10%)] - (s15)

(s7) A1 and )\, are the weak end-couplings, afid; } = {K;} = 1,

The quantum mutual information is given by the relation,such that the bulk forms an XX s_pin qhain. Adiabatic freezing
Z(pij) = >, eilog,(4e;). The classical correlation obtained of long-range quantum correlations is observed, when one of
after optimization over measurements on a single-party, ighe end-couplings (saye) is kept fixed, while the other (say,
given by the relation A1) is adiabatically varied.

ETION
ee Z(Py)

0

2
Clpij) = Zxk log, (2x1), Where (s8)
k=1

zp = (14 (=1)*2)/2, for k= (1,2), and (s9)

x = max{|T5"|, [ T;}"], T3]} (s10)

The quantum discord is then given by the relation,
D(pi;) = L(pi;) — C(pij)

4 2
= Z e;logy (4e;) — Z 2k logs (221). (s11)
i k=1

0.4

Similarly, using concurrencé&H as our measure of choice, FIG. s2. (Color online.) Variatior;yof long-range two-sitrielation
H xrxr H H zZz
the entanglement between any two sites can be analyticalfyctions. Iix (green-square)]yy (violet-up-triangle), andlty

. i . . o aroon-down-triangle), with end-coupling strength, for a spin
derllved. Concurrence of a two-qubit density maty;, is chain with vV = 20. The other end-coupling\. is kept fixed at 0.2.
defined by the relation

The inset figure shows the behavior of long-range concueréice-
diamond) and quantum discord (square-red). The adiabragzihg

of Dy, for A1 < X is evident from the inset figure, whereas en-
tanglement exhibits non-temporal death\at= 0.59. All quantities
wherec;’s are the square root of the eigenvalues of the matrixused are dimensionless except entanglement (in ebits) @arttum
pijpi;, arranged in decreasing order, = 0! @ a;/ fon ol ® discord (in bits). Compare with Fig. 2 in the main text.

o?. For the two-site density matrix obtained in Eg5) p;; =

pij,» ande;’s are nothing but the eigenvalues @f, given by In Fig.s2, one observes the adiabatic freezing of long-range
Eq. (s7), arranged in decreasing order. Hence, the concurrenapiantum discord®;) between the end spins, in the ground

E(pij) =max[0,c1 — co —c3 — cal, (s12)



state of the Hamiltonian defined in Eg16), when the end 0.02
spin coupling satisfies the condition; < )Xo (fixed),V A;.

For A, > Aq (fixed), Dy, decays with increasing;. This phe- 0.01
nomena is however not observed for long-range entanglement

(€L). The behavior of bottD;, and £, upon adiabatically A oo
varying A; can be explained through the variation of the cor-
relation functionsI'7%, 7%, and T shown in Fig.s2 We
observe thaf' iy < 0, with |T7¢| < 1,V a = (z,y,2), fora
spin chain withV = 20 spins and fixed at 0.2. Since] 7% =
=T T, thereforel' 7 andTY; are the only independent
variables, with 775 | < |T5%| and|TE5| < |T{%|- Moreover,
7% remains constant with the variation df. N

Consider the regiony; < Ay = 0.2, in Fig.s2 We see that FIG. 3. (Col i Variat fth Wically anamericall
TR > (155 = [T, Thereore, he, s dependent  F9.53 (Caranine) varaton ftve avetca antercay
only on|7}%|, and decreases with increasififf;. Similarly, . gy 920 g SIZeDBf

. ! . vy ) chain. The value of energy gap, using the analytical exjpess

I(pij) is varies with| TV | (|73 is constant) and decreases given byA, = min[f(\), f(A2)] (blue-square), wherg()) is de-
with an identical rate, thus allowinB,, to remain frozen for  fined in Eq. 616, and for exact numerical calculations (red-circle),
A1 < Ay = 0.2, as observed in the inset of Fig2 For  for A, = 0.4 and\, = 0.6 (and,\; = 0.6 and\, = 0.4), for largeN.
Ao> A = 02, |T9%] > |TYY| > |TE%|, andC(p;;) is  The figure shows that at largé, A, scales linearly as/N.
dependentonly ofY % |, which is constant. Thereforé(p;;)
is constant for\; > X\, = 0.2, but the decreasing(p;;)
forcesDy, to decrease, leading to breakdown of freezing. Theeigenvalue equatiotot(k)[cot((N —1)k/2)] = A2/(2—\2),
behavior is consistent with that observed in the phenomena dor A\ +# 1, where the positive eigenstate parity has been con-
temporal freezing$6. sidered B7]. The energy gap is then given &y, which min-

For entanglement, no adiabatic freezing occurs. Since {izes the dispersion relatiof, = cos(k’), while satisfying
< |TY¥| < 1,V o, the long-range concurrence is given by the above eigenvalue equation.
the relation,£;, = max [0,1/2(|g{x| — hiy)], where,|g/ |

1 n n 1
200 400 600

1 n
800 1000

= |Ti + TYx | andhiy =1 — [T T{] > 0. Ashy 03
increasesg, | andh], decreases, due to the fact thafy,| 0.2 ]

decreases, and’y| is constant. Forlgy| > hiy, &L =
1/2(lgfx| — hiy) and decreases witky. For|gfy| < hiy, I
&1, = 0, and long-range entanglement vanishes. The above Q)L 0.15-
analysis can be compared with known results on quasi long- i
range entanglement. Fon = )\, the system is isotropic, 01
and we haveT}y = 17N = z (say). Moreover, 7% = 0.05.
—z2, which gives us the relation for the long-range entan-
glement,&, = max [0,1/2(z% 4 2|z| — 1))]. Now for z =
—(STS% + S{S%) = —1/2 z, the above expression for en-
tanglement reduces , = 2max [0, (z* + |z| — 1/4))], as

0.2

P Y E B |
7200 400 N600 800 1000

1 L 1 L 1
200 400 600
N

1 n
800 1000

shown in 57. FIG. s4. (Color online.) Variation of the long-range quantdiscord
(red-circle) with increasing size of the spin chain. Thestrshows

the behavior of the correlation functiorigy’y (green-square)l7x

S3.  FREEZING OF ENERGY GAP AND QUANTUM (maroon-down-triangle), arifiy; (violet-up-triangle).A1 andX; are

DISCORD, AT LARGE N set at 0.01 and 0.1, respectively. The figure shows that ge Isl;
Dy, scales ag/N.

An important result discussed in the main text of the letter,

is the adiabatic freezing of the energy gap, and its comple- | |arge N limit, for &' = 7/2 — &, where§ — 0, the

mentary relation to the freezing of quantum discord. In parjspersion relation provides an analytical expressiorttier
ticular, it is shown that for the Hamiltonian in Es1(9, the  energy gapd,) as

qguasi long-range quantum discord between the end spins in
the ground state of the system is frozen figr < \,, while T 2
the energy gap remains constant in the complementary region Ag ~ 9N (1 + N(O2/(2=X2) + 2) = [(A) (s16)
A > Ao

Let us briefly describe the presence of energy gap in the Numerical analysis for the cas®; # A, shows that the
spin Hamiltonian considered in the study. As mentionedén th quasimoment&’ corresponding to the energy gap satisfies the
main text, for the case\; = \; =), the dispersion relation of eigenvalue equation for=min[\;, \]. Thus, the energy gap
the excitation energy is given b¥;, = cos(k), wherek is the  is given by the analytical relatio), = min[f (A1), f(A2)],
quasimomentum modes. These modes satisfy the followingshere f(\) is defined in Eq. $19. Figures3 shows the
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agreement between the analytical expressiom¥gprand ex- by Eq. 619, the long-range quantum correlation between the
act numerical calculations for larg€. One can then show end spins is quasi long-rang®{, i.e., the long-range quan-
that f(A\1) < f(A2), for Ay < A, andf(A\2) < f(A1), for  tum correlation vanishes with increasing The behavior of
Ao < A1. The adiabatic freezing of the energy gap\ass Dy, with increasing system size is shown in Figl which
varied, is thus evident fok; < A;, asA is independent of plots the value of the frozen quantum discord with incregsin
A in this range. system size. The figure shows that in the laigdimit, both
the frozen energy gap and quasi long-range quantum discord
Itis known that for the model considered in the study, givenscales withl /N
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