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The monogamy relation for quantum correlations is not satisfied by all measures for all multiparty
quantum states. We prove that an arbitrary quantum state which is nonmonogamous for negativity
will become monogamous if a finite number of copies of the same state is provided. We refer this as
activation of nonmonogamous states. We also show that multiple copies of a state satisfy monogamy
for negativity if it does so for a single copy. The results are true for all quantum states of an arbitrary
number of parties. Moreover, we find that two different three-qubit pure states which individually
violate monogamy relation for negativity, taken together can satisfy the three-party monogamy
relation. This holds for almost all three-qubit pure states while it is true for all three-qubit pure
states when a four-party monogamy relation is used to check for their activation. We finally connect
monogamy of negativity with genuine multipartite entanglement.

I. INTRODUCTION

Quantum mechanical postulates of linearity and uni-
tarity put restrictions on tasks like cloning, broadcasting
and deleting [1–5] which can be executed efficiently in a
classical world. However, these no-go theorems turn out
to be crucial in several quantum information protocols,
including secure quantum communication [6] and quan-
tum teleportation [7].

Constraints in a many-body scenario include the ex-
istence of bound entangled states [8] and unconvertible
state pairs by local quantum operations and classical
communication (LOCC) [9]. Bound entangled states are
ones that require entanglement for their creation imply-
ing a nonvanishing entanglement cost [8], although after
preparation, it is impossible to distil [10] its entangle-
ment content. On the other hand, it was shown by using
the mazorization criterion that there are pairs of bipar-
tite pure quantum states that cannot be transformed into
each other by LOCC [9]. Existence of these states seems
to limit the protocols that can be performed by using
them. However, this is not true in general. It was found
that although the bound entangled states are not use-
ful for quantum teleportation [11], these states can be
useful in increasing the teleportation fidelity of distill-
able states [12] (see also [11]). It was also shown that a
pair of bipartite quantum states can be distillable even
though the individual states are respectively bound en-
tangled with positive partial transpose and conjectured
bound entangled with negative partial transpose [13]. In
a different spirit, a locally unconvertible bipartite pure
quantum state pair may become convertible with the help
of another entangled state, a process known as catalysis
[14].

In the multiparty domain, there appears the restriction
of monogamy so that entanglement can not be shared
arbitrarily between different partners. Monogamy of en-
tanglement puts limitations on sharing of entanglement
among different subsystems of a multipartite state which
is not the case for the distribution of classical correlation
[15–17]. Monogamy of entanglement has practical ap-

plications in a variety of areas including quantum cryp-
tography [16]. In this sense, monogamous states can be
thought of as a useful resource in quantum communica-
tion between several parties. However, there exist multi-
party entangled states which are nonmonogamous under
the known measures of quantum correlation like negativ-
ity [18, 19], entanglement of formation [17, 20], quantum
discord [21, 22], and quantum work-deficit [23, 24].

At this point, a natural question can be about the
conditions for which multiparty states become monog-
amous with respect to some quantum correlation mea-
sure. Specifically, in this paper, we address the following
question:

Given a bipartite quantum correlation measure Q, if
a multiparty quantum state is nonmonogamous under Q,
is it possible to obtain monogamy with respect to Q when
finite copies of the same state are available or with ad-
dition of another state which, considered alone, is also
nonmonogamous with respect to Q?

We find that the answer is in the affirmative for a non-
additive quantum correlation measure and we term the
phenomenon as activation of nonmonogamous states. In
particular, we prove that in the case of negativity, if a
multiparty state is monogamous, then its multicopy ver-
sions, i.e., several copies of the state also remains so.
We then show that a nonmonogamous state with respect
to negativity becomes monogamous, when several copies
of the same state are provided. The result is true for
both pure and mixed states for arbitrary number of par-
ties. From extensive numerical searches for three-qubit
pure states, we observe that to get rid of nonmonog-
amous nature of a state, the states from the W-class
require much higher number of copies than the states
from the Greenberger-Horne-Zeilinger (GHZ)-class [25–
28]. We also prove that if two different states individu-
ally satisfy the monogamy inequality for negativity, they
continue to obey so even jointly. Moreover, we observe
that almost all pairs of three-qubit pure states can jointly
obey three-party monogamy with respect to negativity,
even when they individually are nonmonogamous. We
also introduce a different kind of activation protocol of an
N -party state, where two copies of N -party state is con-
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FIG. 1. (Color online.) The two scenarios of activation. (a) The multicopy case. Schematic diagram of δQ(ρ1112131⊗ρ
2
122232⊗. . .),

where three-party monogamy score is considered. For activation, we consider two scenarios – (i) when all ρi’s are the same and
(ii) when they are different. In both the cases, activation occurs, when δQ(ρ1112131 ⊗ ρ

2
122232 ⊗ . . .) ≥ 0 although δQ(ρi) < 0.

(b) A schematic representation of four-party monogamy score of δQ(ρ123 ⊗ σ1′2′3′), with 3 and 3’ being located on separate
locations. We look for positivity of δQ(ρ123 ⊗ σ1′2′3′) with δQ(ρ123) < 0 and δQ(σ1′2′3′) < 0

sidered in an N + 1-party situation, and the monogamy
of the state in the N + 1-party situation is considered.
See Fig. 1(b) for an illustration. In this situation, we nu-
merically confirm that all three-qubit nonmonogamous
states can be activated for negativity. Finally, we estab-
lish a relation between “monogamy scores” for negativity
of single or two copies of three-qubit pure states and the
amount of a genuine multipartite entanglement.

The paper is organized as follows. In Sec. II, we intro-
duce the concept of activation of nonmonogamous states
after briefly defining the monogamy score for a quantum
correlation measure. Negativity and its closed form for
multiple copies of arbitrary states are discussed in the
next section (Sec. III). The main results of this paper are
presented in Sec. IV. Specifically, we derive the effects
on monogamy score for negativity with multiple copies
in Sec. IV A, and nonadditivity of monogamy score for
negativity is shown in Sec. IV B. In Sec. V, we make
a connection between negativity monogamy score and a
genuine multipartite entanglement. We present a conclu-
sion in Sec. VI .

II. MONOGAMY SCORE OF QUANTUM
CORRELATION MEASURES

Suppose ρ12...N is an arbitrary N -party quantum state,
and let Q be a bipartite entanglement measure. The
“monogamy score” [15–17, 29] of Q for the state ρ12...N ,
with the party 1 as the “nodal” observer, is defined as

δQ ≡ δQ(ρ12...N ) = Q1:rest −
N∑
i=2

Q1:i, (1)

where Q1:rest ≡ Q(ρ1:rest) and Q1:i ≡ Q(ρ1:i). One can
consider another party as the nodal observer as well.
δQ(ρ12...N ) ≥ 0 implies that the state, ρ12...N , is monog-
amous with respect to Q, and otherwise it is nonmonog-
amous. And when it is non-negative for all states, then
the quantum correlation measure Q is said to be monog-
amous. If there exists a state for which Q fails to satisfy
the monogamy condition, then Q is called nonmonoga-
mous. The squares of concurrence [15], negativity [19],
and quantum discord [30] have been shown to satisfy
monogamy, although without the power, they violate
the relation [22, 31]. Recently, it was shown that in
general, given any quantum correlation measure, Q, for
which δQ < 0 for some state, it is always possible to
find a monotonically increasing function of Q satisfying
monogamy for that state [24]. In this paper, instead of
taking functions of Q, we choose a different path to ob-
tain monogamy.

A. Activation vs. additivity of quantum correlation

Let us consider an N -party state ρ12...N which does
not satisfy the monogamy relation for some Q, i.e.,
δQ(ρ12...N ) < 0. Considering m copies of the same state,
the monogamy score is

δ
(m)
Q ≡ δQ(ρ⊗m12...N ) = Q1112...1m:rest −

N∑
i=2

Q1112...1m:i1i2...im ,

(2)

where the notation ir(r = 1, 2, . . .m) denotes the i-th
party of the r-th copy of the state. For a given Q, we
want to know the status of δQ(ρ⊗m12...N ). If we find that
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δQ(ρ⊗m12...N ) ≥ 0, with δQ(ρ12...N ) < 0, we say that “ac-
tivation” of the nonmonogamous state, ρ12...N , has oc-
curred with respect to Q. See Fig. 1(a) for a schematic
representation of the activation.

In another case, we also want to know the status of
δQ(ρ12...N⊗σ1′2′...N ′) where ρ12...N and σ1′2′...N ′ are both
N -party states. Specifically, we want to see whether for
a given Q and ρ12...N with δQ(ρ12...N ) < 0, it is possible
to find a σ1′2′...N ′ having δQ(σ1′2′...N ′) < 0 such that

δQ(ρ12...N ⊗ σ1′2′...N ′) ≡ Q11′:rest −
∑N,N ′

i,i′=2Q11′:ii′ ≥ 0.
We again call this situation as activation.

In the two preceding cases, we have consideredN -party
monogamy scores forN -party quantum states, even when
more than a single copy of the state is available. Relax-
ing this restriction opens up a large number of possi-
bilities, of which we choose only one. We consider an
(N + 1)-party monogamy score, δQ(ρ12...N ⊗σ1′2′...N ′) ≡
Q11′:rest−

∑N−1,N ′−1
i,i′=2 Q11′:ii′−Q11′:N−Q11′:N ′ , and find

whether δQ(ρ12...N⊗σ1′2′...N ′), can be positive when both
δQ(ρ12...N ) < 0 and δQ(σ1′2′...N ′) < 0. This situation can
also be called activation of nonmonogamous states. See
Fig. 1(b) for a schematic description.

In this respect, it is interesting to note that any quan-
tum correlation measure, Q is said to be additive, if
Q(ρ ⊗ σ) = Q(ρ) + Q(σ). For some measure Q, if we
are able to show that activation is possible for all states,
it implies that δQ is non-additive.

One should note that both the above questions remain
invalid if the entanglement measures are additive like
squashed entanglement [32], relative entropy of entan-
glement for two qubits [33], and logarithmic negativity
[18].

III. NEGATIVITY

Having defined the activation of monogamy for arbi-
trary Q, in the rest of the paper, we consider a specific
entanglement measure, namely negativity. We begin by
giving a the definition of negativity [18]. Thereafter, we
discuss the closed form of negativity for multiple copies
of a given state, and also when a pair of two different
states is considered .

The negativity of a bipartite quantum state ρ12 defined
on the composite Hilbert space of Hd11 ⊗ H

d2
2 , is based

on the partial transposition criterion [34]. If a bipartite
quantum state is separable, then the partial transposed
state, ρT1

12 , with transposition being taken with respect to
the first party, is positive semi-definite. The negativity
of ρ12 is defined as

N12 ≡ N (ρ12) =
||ρT1

12 ||1 − 1

2
, (3)

where ||ρ||1 is the trace norm [35], defined as ||ρ||1 =

tr(
√
ρ†ρ). The above equation reduces to

N (ρ12) =
∑
j

|λnj |, (4)

where λnj are the negative eigenvalues of ρT1
12 . Since par-

tial transposition does not change the trace of the matrix,
we have tr(ρT1

12) =
∑
j λ

n
j +
∑
k λ

p
k = 1, where λpk are non-

negative eigenvalues. The total number of eigenvalues of
ρT1
12 is d1d2, and we denote them as {λi}. The λi’s can

be either λnj or λpk.

A. Closed form of negativity with multiple copies
and a pair of states

Let us first calculate the negativity of m copies of ρ12,
where m ∈ N. Without loss of generality, we assume that
in all the copies, partial transposition is taken in the first

part. Note that
(
ρ⊗m12

)T1112...1m =
(
ρT1
12

)⊗m
. Hence, the

eigenvalues of
(
ρ⊗m12

)T1112...1m are {Πm
j=1λij}, Here ρ⊗m12

is the shorthand for ρ1121⊗ρ1222⊗. . .⊗ρ1m2m . Therefore,
we get

N (ρ⊗m12 ) =
∑
r=odd

∑
j1...jr

kr+1...km

(
m

r

)
|λnj1 | . . . |λ

n
jr |λ

p
kr+1

. . . λpkm

=
∑
r=odd

(
m

r

)
N r

12

(
1 +N12

)m−r
=

1

2

[(
1 + 2N12

)m − 1
]
. (5)

Similar calculation also leads to

N (ρ12 ⊗ σ1′2′) =
∑
j,k

(|λnjρ |λ
p
kσ

+ |λnjσ |λ
p
kρ

)

= N ρ(1 +N σ) +N σ(1 +N ρ), (6)

where λjρ and λjσ denote the eigenvalues of ρ and σ re-
spectively, and the superscripts p and n respectively in-
dicate when the eigenvalue is non-negative and negative.
Here N ρ represents N (ρ12). Similarly, N σ ≡ N (σ12).

IV. ACTIVATING NONMONOGAMOUS
STATES WITH RESPECT TO NEGATIVITY

In this section, we prove the main results. The first
subsection is devoted to the situation where many copies
of a state is considered, and a single copy of which vio-
lates monogamy for negativity. Next, we discuss the sta-
tus of monogamy score of negativity for a pair of states
which are separately nonmonogamous.

A. Effect of multiple copies on monogamy

Before answering the main question, we first ask the
following question: If negativity monogamy score is non-
negative for a single copy of a state, will it remain so with
multiple copies of the same state? The answer is “yes”
and it holds in arbitrary dimensions and for arbitrary
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number of parties. The proofs are mainly given for three-
party states, which can be easily generalized to arbitrary
number of parties.

Theorem 1. If negativity of a tripartite state, ρ123,
satisfy monogamy i.e. if δN (ρ123) ≥ 0, then the m copies
of the same state also remains monogamous.

Proof : By using Eq. (5), the monogamy score of
negativity for the m copies of ρ123 can be written as

δN (ρ⊗m123 ) = N (ρ⊗m1:23)−N (ρ⊗m12 )−N (ρ⊗m13 )

=
1

2

[
(1 + 2 N1:23)m − (1 + 2 N12)m

−(1 + 2 N13)m + 1
]
. (7)

We now use the method of induction to prove δN (ρ⊗m123 ) ≥
0 for all m, provided δN (ρ123) ≥ 0.

For m = 2, Eq. (7) reduces to

δN (ρ⊗2123) = 2
[
N1:23(1 +N1:23)−N12(1 +N12)

−N13(1 +N13)
]

≥ 2
[
(N12 +N13)(1 +N12 +N13)

−N12(1 +N12)−N13(1 +N13)
]

= 4 N12N13 ≥ 0, (8)

where the inequality follows from δN (ρ123) ≥ 0. Thus
the theorem is true for m = 2. Let us now assume that
δN (ρ⊗m123 ) ≥ 0 for some m = n, i.e., δN (ρ⊗n123) ≥ 0. This
implies that,

(1 + 2N1:23)n + 1 ≥ (1 + 2N12)n + (1 + 2N13)n (9)

Then for m = n+ 1, we have

(1 + 2N123)n+1 = (1 + 2N123)n(1 + 2N123)

≥
{

(1 + 2N12)n + (1 + 2N13)n − 1
}
×

(1 + 2N12 + 2N13)

= (1 + 2N12)n+1 + (1 + 2N13)n+1 − 1

+2N12

{
(1 + 2N13)n − 1︸ ︷︷ ︸

≥0

}
+ 2N13

{
(1 + 2N12)n − 1︸ ︷︷ ︸

≥0

}
≥ (1 + 2N12)n+1 + (1 + 2N13)n+1 − 1. (10)

Hence the proof [36]. �
Corollary. For an N -party state, ρ12...N ,

δN (ρ12...N ) ≥ 0 implies δN (ρ⊗m12...N ) ≥ 0 for some
m ∈ N.
Proof : The proof is similar to the proof of Theorem 1.
Here, we notice that

δN (ρ⊗212...N ) ≥ 4

N−1∑
i=2,j>i

N1iN1j , (11)

which is again a non-negative quantity. Then by using
induction, we can have the proof. �

We now consider activation of nonmonogamous states
for negativity. Again, we give the proof for three-qubit
mixed states, which can be easily extended to an arbi-
trary number of parties.

Theorem 2: For a three-qubit mixed state, ρ123,
if the negativity monogamy score is negative, i.e., if
δN (ρ123) < 0, then ρ⊗m123 becomes monogamous for some
positive integer m.
Proof : We again note that Eq. (7) can be expressed
with the help of Eq. (5) as

2δN (ρ⊗m123 ) = 2
[
N (ρ⊗m1:23)−N (ρ⊗m12 )−N (ρ⊗m13 )

]
=

m∑
k=1

(
m

k

)
2k
(
N k

1:23 −N k
12 −N k

13

)
. (12)

Since negativity is a convex function [18], and the squared
negativity is monogamous for three- and more qubit pure
[19, 31], and mixed [37] quantum states, we can rewrite
Eq. (12) as

2δN (ρ⊗m123 ) =

m∑
k=2

(
m

k

)
2k
(
N k

1:23 −N k
12 −N k

13

)
+2m

(
N123 −N12 −N13

)
. (13)

Now the last term of the above equation is negative, since
we assume that δN (ρ123) < 0 for ρ123 [31], and it is linear
with m. On the other hand, the first term is polynomial
of degree k ≥ 2. It is therefore always possible to choose
some positive integer m ≥ 2 such that the first term of
δN (ρ⊗m123 ) is bigger than the last one.
Hence the proof. �
Note 1. The above proof uses the fact that negativ-

ity is convex and its squared monogamy score is non-
negative for pure as well as mixed three-qubit states.
Since squared negativity satisfies monogamy for all states
with arbitrary number of qubits, Theorem 2 also holds
for arbitrary multiqubit states.

Note 2. The above theorem also proves that negativity
monogamy score is not additive.

To visualize the effect of multiple copies on negativity
monogamy score, we Haar uniformly generate 107 three-
qubit pure states from both the GHZ and the W-classes.
depicts The histogram in Fig. 2 depicts the probability
for arbitrary nonmonogamous pure states becoming ac-
tivated with the increase of m. The analysis also reveals
that there is a marked difference between the GHZ-class
and the W-class states with respect to their activation. In
particular a W-class state which is nonmonogamous with
respect to negativity, generally requires a higher value of
m for satisfying the monogamy relation as compared to
a GHZ-class state. For example, we find that there are
only few random states from the GHZ-class, which re-
quire more than 10 copies to obtain monogamy for nega-
tivity. However, this is not the case for the W-class states
as shown in the inset of Fig. 2.

In Fig. 3, we compare the distribution of negativity
monogamy scores of |ψ123〉 and |ψ123〉⊗2, when we Haar
uniformly generate three-qubit pure states. We observe
that almost all states from the GHZ-class become monog-
amous when two copies are considered, while this is not
the case for the states from the W-class. The difference in
the behavior of the negativity monogamy scores of |ψ123〉,
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and |ψ123〉⊗2 is analysed in the succeeding section from
the perspective of genuine multiparty entanglement.
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FIG. 2. (Color online.) Histogram of probability for obtaining
δN (ρ⊗m

123 ) ≥ 0, against the minimum number of copies m. We
Haar uniformly generate 107 states from both the GHZ- and
the W-classes. We observe that approximately 88% states
from the GHZ-class, which do not satisfy monogamy when a
single copy is provided, become monogamous when two copies
are considered. For the W-class, the same is 47%. (Inset) The
same plot for only W-class states but for higher m. All the
axes are dimensionless.
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FIG. 3. (Color online.) (a) Distribution of negativity
monogamy score of three-qubit pure states, |ψ〉. On the hor-
izontal axis, the value of the tick (xi) indicates that the cor-
responding probability columns are for xi ≤ δN (ψ) < xi+1,
where xi+1 denotes the value of the next tick. A higher num-
ber of states from the GHZ class satisfy monogamy compared
to the W-class states, confirming the results in Fig. 2. (b)
Similar distribution is depicted for |ψ〉⊗2. Other notations are
the same. We see that almost all states from the GHZ-class
becomes monogamous when two copies are considered. The
abscissa is in ebits while the ordinate is dimensionless.

B. Nonadditivity of monogamy score for negativity

In this section, we choose two tripartite states, ρ123
and σ1′2′3′ such that

N (ρ1:23) < N (ρ12) +N (ρ13),

N (σ1′:2′3′) < N (σ1′2′) +N (σ1′3′). (14)

We are interested in the sign of

δN (ρ123 ⊗ σ1′2′3′)
= N (ρ1:23 ⊗ σ1′:2′3′)−N (ρ12 ⊗ σ1′2′)−N (ρ13 ⊗ σ1′3′).

(15)

In particular, corresponding to each ρ123, our task is to
find out σ1′2′3′ so that both relations in Eqs. (14) are
satisfied, where δN (ρ123⊗σ1′2′3′) ≥ 0. By using Eq. (6),
we obtain that the above relations hold, only when the
expression given by

2N ρ
1:23N σ

1′:2′3′ −
(
2N ρ

12N σ
1′2′ + 2N ρ

13N σ
1′3′
)

−
(
|δN (ρ1:23)|+ |δN (σ1′:2′3′)|

)
≥ 0.(16)

In this case, we numerically simulate 107 three-qubit
pure states from the GHZ-class. We find that it is al-
ways possible to find a pure state σ = |φ〉〈φ| from the
GHZ-class which satisfies both the relations in (14), and
δN (ρ123⊗σ1′2′3′) ≥ 0. Among Haar uniformly generated
GHZ-class states, we find that there are only 8.8% states,
for which δN < 0.

On the other hand, a large number of states from the
W-class show nonmonogamous nature for N . In par-
ticular, within 107 randomly generated states of the W-
class, 43.3% states are nonmonogamous. Numerical sim-
ulations show that in this case, there are less than 1%
states which do not satisfy monogamy relation for nega-
tivity even with the help of σ, chosen from the W-class
as well as from the GHZ-class.

With these observations, we can conclude that almost
all three-qubit pure states satisfy negativity monogamy
relation with the help of another nonmonogamous state
from the same class. It also confirms the non-additivity
of negativity monogamy score.

Let us now consider another activation scenario, given
in Fig. 1(b). We again choose two tripartite states which
satisfy the relations in (14). We now find the condi-
tion when the four-party monogamy score becomes non-
negative, i.e., when

δN (ρ123 ⊗ σ1′2′3′)
= N (ρ1:23 ⊗ σ1′:2′3′)−N (ρ12)

−N (ρ13 ⊗ σ1′3′)−N (σ1′2′) ≥ 0. (17)

The above condition reduces to

2N ρ
1:23N σ

1′:2′3′ − (2N ρ
13N σ

1′3′ + |δN (ρ1:23)|+ |δN (σ1′:2′3′)|) ≥ 0.

(18)

This is similar to the one obtained for three-party
monogamy score, given in (16). However, comparing
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FIG. 4. (Color online.) Negativity monogamy score vs.
GGM. We Haar uniformly generate 107 arbitrary three-qubit
pure states from the GHZ (red dots) and the W-classes (green
dots). δN is plotted along the abscissa while the E is plotted
along the ordinate. The blue line corresponds to the gener-
alized GHZ state. The horizontal axis is in ebits, where the
vertical axis is dimensionless.

both the relations, one should note that (16) contains
one extra term which is absent in (18). Therefore, all
the states from the GHZ-class which satisfy three-party
negativity monogamy relation, continue to obey four-
party monogamy condition. It will be interesting to find
whether the 1% states from the W-class which cannot
be activated by using three-party negativity monogamy
score, can satisfy the four-party monogamy relation. Nu-
merically, we find that it is indeed the case.

V. RELATION OF NEGATIVITY MONOGAMY
SCORE WITH GENUINE MULTIPARTY

ENTANGLEMENT MEASURES

We now ask whether activation of a state is related to
it’s multipartite entanglement content. First, we estab-
lish a relation between δN (|ψ〉) and genuine multiparty
entanglement measure, with the later being quantified by
the generalized geometric measure (GGM) [38] for three-
qubit pure states. We then try to build a connection
δN (|ψ〉⊗2) and the GGM of |ψ〉 of arbitrary |ψ〉. A mul-
tiparty pure quantum state is called genuinely multiparty
entangled if it is entangled in all bipartitions. The gen-
eralized geometric measure of an arbitrary state is the
minimum distance of the given state from the nongen-
uinely mutiparty entangled states, and can be simplified
for a three-party quantum state in arbitrary dimensions
as

E(|ψ123〉) = 1−max{λmax
1 , λmax

2 , λmax
3 }, (19)

where λmax
i (i = 1, 2, 3) denotes the maximum eigenvalue

of the single-site reduced density matrices, ρi(i = 1, 2, 3),

of |ψ123〉. In this respect, we consider the general-
ized GHZ state [26], given by |gGHZ〉 =

√
α|000〉 +√

1− αeiφ|111〉 which plays an important role to ob-
tain the connection. In particular, we have the following
Proposition:

 0
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-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

ε

δN
(2)

GHZ class

W class

gGHZ

FIG. 5. (Color online.) Negativity monogamy score of two
copies of randomly generated states against GGM. All nota-
tions are same as in Fig. 4.

Proposition. The GGM of an arbitrary three qubit
pure state is bounded below by the GGM of the gener-
alized three qubit GHZ state, whenever δN (|gGHZ〉) =
δN (|ψ〉) and when the nodal observer gives a maximum
eigenvalue involved in GGM.

Proof: The negativity monogamy scores with the first
party as the nodal observer, of the generalized GHZ state
and an arbitrary three-qubit pure state, |ψ〉, are respec-
tively given by

δN (|gGHZ〉) =
√
α(1− α), (20)

δN (|ψ〉) =
√
λ1(1− λ1)−N12 −N13 ≤

√
λ1(1− λ1),

(21)
where λ1 ≥ 1/2 is the largest eigenvalue of the local den-
sity matrix ρ1, of |ψ〉. Using (20) and (21), we get α ≥ λ1.
Now the GGM of |ψ〉 is 1 −max{λ1, λ2, λ3}, where λi s
are the maximal eigenvalues of the local density matrices
of |ψ〉, while E(|gGHZ〉) = 1 − α. If λ1 ≥ λ2, λ3 ≥ 1/2,
we have E(|gGHZ〉) ≤ E(|ψ〉), and hence the proof. �

Numerical simulations indicate that the lower bound is
true irrespective of whether the maximum eigenvalue is
obtained from the nodal observer or not. The numerical
analysis is performed by generating 107 random three-
qubit pure states, Haar uniformly, from both GHZ and
W-classes (see Fig. 4).

Similar analysis can also be carried out between
δN (|ψ〉⊗2) and E(|ψ〉). In this situation, by using Eq.
(5), it can be proven in a similar fashion that when-
ever δN (|gGHZ〉⊗2) = δN (|ψ〉⊗2), we have E(|ψ〉) ≥
E(|gGHZ〉), for arbitrary pure three qubit pure states
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|ψ〉, assuming again that the maximum eigenvalue is ob-
tained from the nodal observer. If we once more lift
the restriction of maximum eigenvalue in GGM appear-
ing from the nodal observer, we see that the |gGHZ〉
state still gives the lower boundary, as seen from Fig.
5. Moreover, we notice that the states from the W-
class which possess low value of GGM and high negative
value of δN (|ψ〉) require more than two copies to sat-
isfy the monogamy relation for negativity. Pure states
with high genuine multipartite entanglement which vio-
late monogamy for negativity, are seemingly easier to be
activated than the states with low genuine multipartite
entanglement.

VI. CONCLUSION

Summarizing, we have introduced the concept of ac-
tivation of nonmonogamous multiparty states for a non-
additive quantum correlation measure. Our aim was to
obtain monogamous states from nonmonogamous ones by
using many copies of the same state. We proved that an
arbitrary state, whether pure or mixed, which does not

satisfy the monogamy relation for negativity, will satisfy
monogamy when multiple copies of the same state is pro-
vided. This is true irrespective of the number of parties
and their dimension. On the other hand, we showed that
negativity monogamy score of multiple copies of a state
remains non-negative if it is so for a single copy. We
carried out extensive numerical searches among three-
qubit pure states and found that nonmonogamous W-
class states, generally require a higher number of copies
to satisfy monogamy compared to the states from the
GHZ-class. We also analysed the status of monogamy
for pairs of states that are individually nonmonogamous.
We found that almost all pairs of states become monog-
amous, even when they individually are not. Finally, we
provided a relation between the negativity monogamy
score and a genuine multipartite entanglement measure
for three-qubit pure states.
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