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We show that one can construct a quantum absorption refrigerator that provides refrigeration only in the
transient regime, by using three interacting qubits, each of which is also interacting with a local heat-bath. The
machine either does not provide cooling in the steady state, or the steady state is achieved after a long time. We
propose a canonical form of qubit-bath interaction parameters that facilitates the analysis of transient cooling
without steady-state cooling. We discuss the cooling power and coefficient of performance of the refrigerator,
and demonstrate how the performance of the transient refrigerator can be tuned by the temperature of the hot
bath. We also comment on the robustness of the phenomena against small perturbations to the canonical form
of the qubit-bath interaction parameters. We show that it is possible to have fast cooling in the steady state by
a modification of the canonical form of the qubit-bath interaction parameters. We demonstrate our results for
two separate models of thermalization, and comment on the temporal behavior of the bipartite and multipartite
quantum correlations in the parameter space where transient cooling without the steady state cooling takes place.
For one of the models of thermalization, we find that the minimum achievable temperature of the refrigerated
qubit can remain almost frozen, i.e., unchanged, for a significant region of the parameter space.

I. INTRODUCTION

Study of the thermodynamic properties of microscopic
quantum systems has been an active field of research in re-
cent times [1–7]. Considerable efforts have been directed to
develop and characterize quantum heat engines, and to deter-
mine whether “quantum” advantages can be obtained in these
machines over their classical counterparts [8]. Quantum ana-
logues of the well-known classical Carnot and Otto engines
have been extensively studied [9–13], and implemented in lab-
oratories using mesoscopic substrates [14], superconducting
qubits [15], and ionic systems [16].

On one hand, this has motivated researchers to test the
laws of thermodynamics at the quantum mechanical level
[7, 17, 18], and to determine the efficiencies of quantum heat
engines, analogous to those provided by the extensively stud-
ied classical heat engines [19]. On the other hand, a great deal
of interest has been attracted towards building “small” quan-
tum engines, like quantum refrigerators, which consist of only
a few quantum levels, and the energy required to drive the re-
frigerator is obtained from local heat baths attached to the sub-
systems constituting the refrigerator, known as the absorption
refrigerator [20–26]. Despite their simple working principles,
small quantum refrigerators are shown to be useful in quantum
error correction, where cold ancillary qubits are considered as
resources [27]. Implementation schemes for such models in
laboratories [28, 29] have also been proposed, and realization
of quantum absorption refrigerator in trapped-ion systems has
been possible [30]. The motivation for studying such micro-
scopic refrigerators from an information-theoretic perspective
[26] lies, for example, in the facts that thermodynamics has a
close connection with both classical and quantum information
theory [31].

A special phenomenon, namely, the “steady-state cooling”,
in the case of a quantum self-sufficient refrigerator constituted
of only three qubits [20–26] has recently been in focus. Here,
the steady state temperature of one of the qubits, called the
“cold” qubit, is less than its initial temperature, and it, in gen-

eral, can occur at large time in the dynamics. However, refrig-
eration at short time in these models, which can be more ac-
cessible in the experiments, remains a relatively less explored
topic. Only recently a few studies have addressed this issue
[24, 26], and pointed out the benefit of transient cooling over
the steady state cooling, by using uncorrelated product thermal
states as well as states with coherence in the energy eigenba-
sis, as the initial states. It has been shown that the transient
regime of such refrigerators may provide a better cooling, in
the sense of attaining a lower temperature, as compared to that
in its steady state, which highlights the importance of the study
of the systems as it approaches towards its equilibrium. In situ-
ations where the time scale to attain the equilibrium is too high
to implement, or where very fast cooling is required, transient
cooling may emerge as the practical option to attain refriger-
ation. In this paper, we ask the following question: Can there
exist a situation where the transient cooling is the “only” op-
tion for refrigeration to occur? In this scenario, no steady-state
cooling takes place. This paper answers the question affirma-
tively by using two different models of thermalization.

Towards this aim, we consider two paradigmatic models of
thermalization for a three-qubit self-contained quantum refrig-
erator attached to local heat baths. One of them is the well-
studied reset model [21], and the other one is a more realis-
tic scenario where the local baths are collections of harmonic
oscillators that interact with the qubits via memoryless inter-
actions [26]. We identify a canonical form of the qubit-bath
interaction parameters which eases the presentation of situa-
tions where no steady-state cooling takes place, and transient
cooling is the only option to attain refrigeration. We demon-
strate this phenomenon for both the models, and find out re-
gions in the space of the qubit-bath parameters where such a
phenomenon takes place. We comment on the cooling power
and coefficient of performance of the transient refrigerator, and
show how the performance of the transient refrigerator in the
absence of steady-state refrigeration can be modulated by tun-
ing the temperature of the hottest bath. Moreover, we discuss
the robustness of the phenomenon of transient refrigeration
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without steady-state refrigeration against a small perturbation
to the canonical form of the qubit-bath interaction parameters.

We point out that with a slight modification of our canon-
ical form of the qubit-bath interactions, a condition emerges
where the system cools fast and attains its minimum tempera-
ture either at the steady state, or in the transient regime. For
each set of parameters, we quantify the speed of cooling by in-
troducing a “half-time”, which the system takes to attain half
the maximum cooling possible for the fixed set of parameters.
Moreover, we discuss the behavior of the bipartite and multi-
partite quantum correlations in the three-qubit system, during
the initial phase of the dynamics, over regions of the parameter
space where transient cooling is the only option for refrigera-
tion. Although the models of thermalizations considered in this
paper are of two different kinds, the results remain qualitatively
unchanged in both the models. Interestingly, for the model of
thermalization involving collections of harmonic oscillators as
local bath, a “freezing”, i.e., almost invariance, of the minimum
temperature attained of the cold qubit with respect to change in
system parameters is observed.

The paper is organized as follows. In Sec. II, we discuss the
necessarily transient self-contained three-qubit quantum ab-
sorption refrigerator with two specific models of thermaliza-
tion. While Sec. II A deals with the reset model of thermaliza-
tion, a more realistic model with local heat-baths constituted of
harmonic oscillators is presented in Sec. II B. In Sec. III, we
discuss the properties of bipartite as well as multipartite quan-
tum correlations in the system of three-qubits under the qubit-
bath interactions corresponding to both the models discussed
in this paper. Sec. IV contains the concluding remarks.

II. THREE-QUBIT QUANTUM ABSORPTION
REFRIGERATOR

We consider a quantum absorption refrigerator consisting
of three qubits [20, 24] labeled as “1”, “2”, and “3”. The
first qubit, “1”, represents the qubit which is to be cooled,
while “2” and “3” behave as the refrigerator. Describing the
qubits in terms of standard Pauli representations, σx,y,zi , where
{|0〉, |1〉}, the eigenvectors of σz , forms the computational ba-
sis, the free Hamiltonian of the three-qubit system can be writ-
ten as

H̃loc =
k

2

3∑
i=1

Eiσ
z
i , (1)

where the ground and excited state energies of the qubit i are
given by −Ei

2 and Ei

2 , respectively, and k is a constant having
the dimension of energy. The coupling between the qubits is
represented by a three-body interaction Hamiltonian,

H̃int = kg(|010〉〈101|+ h.c.), (2)

with kg being the corresponding interaction strength. Each of
the qubits is considered to be weakly interacting with a heat
bath at temperature T̃i, where T̃1 ≤ T̃2 < T̃3. The third qubit
is coupled with the hottest bath, while the bath associated with
the second qubit is considered to be at room temperature. We

assume that the interactions between the qubits are switched
on at time t̃ = 0, such that kg ≥ 0 for t̃ > 0. All the qubits
are initially in a thermal equilibrium state with their respective
baths, and the initial state of the three-qubit system is given by
ρ0 = ρ10 ⊗ ρ20 ⊗ ρ30, with

ρi0 =
1

Zi
exp(−β̃ikEiσzi /2). (3)

Here, Zi = Tr
[
exp(−β̃ikEiσzi /2)

]
is the partition function

corresponding to the qubit i, and βi = (kBT̃i)
−1, kB being the

Boltzmann constant.
The dynamics of the entire three-qubit system, controlled by

the choice of the system parameters as well as the parameters
corresponding to the system-bath interaction, drives the system
to a time-evolved state ρ(t), which is obtained as a solution of
the master equation

∂ρ

∂t̃
= − i

~
[H̃loc + H̃int, ρ] + Φ(ρ). (4)

Eq. (4) governs the dynamics of the three-qubit system, where
the operator Φ depends solely on the type of the local reservoirs
attached to the qubits, and the type of interaction between the
qubits and the reservoirs. Let us now re-write the dynamical
equation in dimensionless variables and parameters as

∂ρ

∂t
= −i[Hloc +Hint, ρ] +

~
k

Φ(ρ), (5)

where t = kt̃/~, Hloc = H̃loc/k, and Hint = H̃int/k.
The second term on the right-hand-side will be written in di-
mensionless form after an explicit definition of Φ(ρ), to be
given later. Let us also introduce the dimensionless parameter
T = kB/k times the absolute temperature, so that the initial
state of the ith qubit is

ρi0 =
1

Zi
exp(−Eiσzi /2Ti). (6)

The transient temperature, Tc(t), of the cold qubit (i.e., the
qubit to be cooled, which is qubit “1”) is determined by us-
ing Eq. (3), from the local density matrix ρ1(t) corresponding
to the cold qubit, obtained by tracing out qubits 2 and 3 from
ρ(t). Note here that Tc(t) is a function of the system parame-
ters and the parameters corresponding to the qubit-bath inter-
actions also. If Tc(t) < T1 at some specific value of t, we call
it to be a successful cooling of the qubit “1” with the help of the
refrigerator, i.e., qubits “2” and “3”. Let us denote the steady
state temperature of the cold qubit by T s1 , which corresponds to
the steady state of the system, given by ∂ρ/∂t = 0. We call a
situation to be of steady state cooling (SSC) if T s1 < T1, while
Tc(t) < T1 represents a case of transient cooling (TC) at time
t.

We now discuss the occurrence of SSC and TC in two dif-
ferent scenarios. The scenarios differ by the choices of the heat
baths and the types of qubit-bath interactions. Unless otherwise
mentioned, in both the cases, we considerE1 = 1, and T1 = 1.
We take T2 = T1, implying a scenario where the cold qubit is
initially at room temperature, like the second qubit. We further
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Figure 1. (Color online) (a) Necessarily transient reset model refrigerator. We plot the variation of Tc(t) as a function of t for g = 10−2 and
5× 10−3, where the values of (x, y) are set at (3.5, 2.5). (b) Robustness of CIP in the reset model. We plot the variation of temperature of the
cold qubit as a function of time, for different perturbations. The set of qubit-bath interaction parameters, {pi}, are modified to {pi+ui×10−vi},
where ui = 1, i = 1, 2, 3, (v1, v2, v3) = (5, 7, 3) for g = 10−2, and (v1, v2, v3) = (4, 7, 1) for g = 5×10−3. All quantities are dimensionless.

set E2 = E1 + E3. Note here that [Hloc, Hint] = 0, so that
in the closed evolution, the interaction and the field energies
are separately conserved. Note that the initial state, ρ0, is di-
agonal in the eigenbasis of Hloc, and the only off-diagonal ele-
ments emerging in the evolved state due toHint are |010〉〈101|
and its hermitian conjugate. The qubit-bath interactions do not
generate coherence between the eigenbasis elements of the in-
dividual qubits, thereby keeping the form of ρ(t) unchanged.
Thus, it leads to diagonal local density matrices corresponding
to each qubit, obtained by tracing out the other two qubits from
ρ(t). This allows one to define a local temperature for the cold
qubit at every time instant t, according to Eq. (6).

A. Reset model

The first example that we consider deals with the represen-
tation of the qubit-bath interaction via a simple “reset model”
[21], where at every time step, a probabilistic reset occurs to
the state of each of the three qubits. With a high probability,
the state of qubit i is left unchanged, while in the rest of the sit-
uations, the qubit is reset to the initial thermal state ρi0. Hence
the operator Φ, in this case, is given by

Φ(ρ) =

3∑
i=1

p̃i(ϕi(ρ)− ρ), (7)

where {p̃i} are the probability densities per unit time, and
ϕi(ρ) = ρi0 ⊗ Tri(ρ(t)). We now introduce the dimensionless
parameter, pi = ~

k p̃i, thus resulting in a dimensionless sec-
ond term in the right-hand-side of the dynamical equation (5).
For such a qubit-bath interaction, the master equation given
in Eq. (5) can be applied in the perturbative regime, where
g, pi � E1, E3 [21]. Solving the quantum master equation,
for fixed values of the system parameters, the steady state tem-
perature and the transient temperature of the cold qubit, as a
function of time, can be computed. It has been observed that

for g > pi, i ∈ {1, 2, 3}, Tc(t) initially oscillates with an ap-
proximate frequency g/π, until dissipation dominates and the
system approaches to its steady state [24]. Typically, the time
taken (in units of the dimensionless parameter, t) for the dis-
sipative dynamics to damp out the oscillations was found to
scale as q where q−1 =

∑
pi. For specific values of the prob-

abilities, {pi}, it has been shown that the temperature of the
cold qubit in the transient regime can be lower than that of the
steady state, i.e., one can have situations for which Tc(t) < T s1 .
This implies that the refrigerator can be more effective in the
transient domain compared to being in the steady state. In this
paper, we wish to find out the parameter region in which TC
occurs without any SSC. Specifically, we are now interested in
the scenario where Tc(t) < T s1 = T1.
Canonical qubit-bath interaction parameters. We propose
a canonical form of a set of qubit-bath interaction parameters,
{κi}, as

κ1 = 10−x, κ2 = 10−(x+y), κ3 = 10−(x−y), (8)

where x, y ≥ 0, such that max{κ1, κ2, κ3} = κ3, and κi ≤
1. We refer to the choice of the parameters according to Eq.
(8) as the canonical qubit-bath interaction parameters (CIP).
The proper choices of x and y dictates the values of {κi}. For
example, the dimensionless qubit-bath interaction parameters
{pi} in the reset model can be chosen according to Eq. (8). We
shall show that such a choice of {pi} will finally lead to the TC
without the SSC. However, the choice of the values of x and y
have to be made in such a way that the master equation remains
valid. We will see later that such choice of these parameters
can be useful in other models also, discussed in the succeeding
subsection.
Refrigeration in a necessarily transient regime. We demon-
strate the usefulness of CIP in characterizing the necessar-
ily transient three-qubit quantum absorption refrigerator in the
case of the present model. This corresponds to a scenario
where the qubit-bath coupling corresponding to the hot qubit is
the strongest, while that of the intermediate qubit is the weak-
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Figure 2. (Color online) Thermodynamic system characteristics in the reset model on the CIP plane. We present the projection-plots of
(a) T s

1 , (b) Tmin, and (c) tmin as functions of x (horizontal axis) and y (vertical axis) for g = 10−2. The continuous lines in the graph (a)
correspond to T s

1 = 0.9, 0.95, 0.99 (from bottom to top). The first quadrants of the figures, where copious occurrences of TC without SSC are
found, are marked by “R” and bounded by the dashed lines. All quantities are dimensionless.

est. Since the intermediate qubit is the one dissipating energy
into the environment, a weak coupling of this qubit with the
heat-bath may lead to a high steady-state temperature, while
transient cooling can still be achieved in this regime.

Let us consider x = 3.5 and y = 2.5, such that p3 = 10−1,
and p2 < p1, p3. The rest of the system parameters are set at
E3 = 102 and T3 = 102. The variation of Tc(t) as a function
of t for different values of g are shown in Fig. 1(a). The tem-
perature of the cold qubit (qubit “1”) decreases at first, reaches
a minimum, and then increases to attain a steady state at a tem-
perature T s1 ≈ T1, i.e., for the cold qubit, the steady state tem-
perature is approximately the same as the initial temperature.
Such phenomena can be observed by tuning the system param-
eters and the qubit-bath interaction parameters, as shown in
Fig. 1(a). It is clear that in scenarios like this, cooling in the
steady state is negligible, while substantial cooling occurs in
the transient regime. Therefore, the three-qubit system repre-
sents a necessarily transient quantum absorption refrigerator,
since the only way of obtaining the cold qubit at a tempera-
ture lower than T1 is to halt the dynamics at a time t in the
transient regime, i.e., when Tc(t) < T1. In other words, there
exist points in the parameter space, where, if the experimental-
ist finds herself/himself forced to work in, due to may be some
practical limitations in the laboratory technology, the only way
to have a refrigerator, within the reset model, is to consider a
transient regime cold qubit. Note here that the values of the
system parameters, given by {Ei}, {Ti}, and g, are chosen to
be similar to those used in Refs. [20, 24], where the occur-
rence of both TC and SSC was reported. This allows us to
compare our results with the cooling phenomena reported in
Refs. [20, 24]. This also implies that the occurrence of TC
without SSC can be achieved by tuning the qubit-bath inter-
action parameters, while keeping the system parameters in the
same domain as in Refs. [20, 24].

Note here that in the case of a good absorption refrigerator
with SSC, it is desired that the object to be cooled should be
well-insulated. Hence, the coupling of the first (cold) qubit
with the environment should be taken to be small. It is also
needed that the intermediate qubit (qubit 2), the one dissipat-

ing energy into the environment, interacts with the environ-
ment strongly, to dissipate heat quickly, implying a high value
of the interaction parameter corresponding to qubit 2 and its
environment. We point out here that the phenomenon of TC
without SSC, according to Eq. (8), corresponds to strongest
coupling between the hot qubit and its environment, i.e., the
highest value amongst {κi, i = 1, 2, 3} is that of κ3, and the
weakest coupling between the intermediate qubit and its envi-
ronment, i.e., the lowest value among the same is of κ2.

A weak coupling of the intermediate qubit with its heat-bath
may lead to a high steady-state temperature. However, the in-
teraction among the three qubits (as quantified by g) drives
them away from the respective thermal states, providing tran-
sient cooling. That a transient cooling happens for short time
scales instead of a transient heating in our case where there is
no coherence in the initial state, is due to the specific choice
of the population ratio of the energy levels |010〉 and |101〉 in
the initial state, which in turn is fixed by the choice of the en-
ergies and temperatures in the system. Due to higher coupling
of the first and third qubits with their environments, they tend
to come back to the initial thermal states more quickly. On the
other hand, the second qubit remains relatively more insulated
and thus fails to act as a good energy dissipator. Therefore,
after sufficiently long time, there occurs no significant cooling
of the first qubit though substantial transient cooling can be
achieved.
Robustness. The next question is whether the phenomena of
transient refrigeration without the steady state refrigeration,
when the qubit-bath interaction parameters, {pi}, are chosen
according to the CIP, is robust against a perturbation to the
choice of the qubit-bath interaction parameter. Note here that
the crucial feature of {pi}, according to the CIP, is the specific
ratios of p1, p2, and p3 to each other. Therefore, to investi-
gate the robustness, we deviate the values of {pi} from CIP as
pi → pi + εi, where εi = ui × 10−vi � pi, {ui} and {vi},
i = 1, 2, 3, being positive real numbers, and find the answer to
the above question to be in the affirmative. Keeping the values
of x and y to be the same as in Fig. 1(a), the broad qualitative
features of the transient refrigeration without the steady-state
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refrigeration is found unaltered with small perturbations in the
form of non-zero values of {ui} and {vi}, although the quan-
titative aspects, such as the values of Tmin and tmin, change.
This is depicted in Fig. 1(b), where we plot the variation of
Tc(t) as a function of t for two sets of values of {vi}, while
keeping {ui = 1}.

Next, we establish that there exists substantial regions in the
space of {pi}, where TC is the only option to obtain refrig-
eration. In Fig. 2, we plot (a) T s1 , (b) Tmin, and (c) tmin as
functions of x and y for fixed values of g. Here,

Tmin = min
t
Tc(t), (9)

and tmin is the time at which this minimization occurs. To
perform the minimization as well as for obtaining a typical dy-
namics profile, we always focus on the range 0 ≤ t ≤ 105. In
this section, and in all the subsequent discussions, we consider
t = 105 to be large time. In all the graphs shown in this paper,
steady state of the system is achieved for t < 105. We find
that over a large set of points considered on the (x, y)-plane,
bounded by 2 ≤ x ≤ 4 and 0 ≤ y ≤ 3, the temperature of
the cold qubit almost reaches the steady state temperature at or
before t = 105. The lines on the graph in Fig. 2(a) refer to
the lines corresponding to fixed values of T s1 , the steady state
temperature of the cold qubit (qubit 1). We observe that there
exist regions on the (x, y)-plane (the region above the line cor-
responding to T s1 = 0.99), where T s1 ≈ 1, implying a negli-
gible or no steady state cooling, and so in these regions, tran-
sient cooling is the only plausible alternative. Indeed, we find
that in these regions, Tmin can have a significantly low value
compared to the initial temperature of the cold qubit, T1. This
situation is “rich” in the first quadrant of the region considered
over the (x, y)-plane, which we mark by “R”, and enclose by
the dotted lines. Here, therefore, we find a large number of
instances where the system provides a refrigeration that is nec-
essarily transient. Qualitatively similar results are found for
different values of g. Note here that T s1 ≤ 1 over the entire
region of the (x, y)-plane considered, which implies that no
steady state heating has taken place in this parameter space.
We will see in the next subsection that this is not the case when
a different thermal bath is considered.

It is evident from Figs. 1 and 2 that better cooling is achieved
when g is high, x is high, and y is low. Lower Tmin with in-
crease in g is expected as the cooling occurs for the three-body
interaction with specific initial bias and higher value of the in-
teraction strength provides better cooling. Note also that as
the transient cooling occurs in single-shot scenario, the Tmin
is achieved in the initial stage of the dynamics, which is mostly
dominated by the unitary interaction. Hence, the transient cool-
ing in this regime also gets better when the bath couplings are
small. As is seen from Fig. 2, for a fixed value of y, Tmin is
lower if x is higher, as {pi} varies linearly with 10−x, whereas
for a fixed value x, Tmin is lower if y is lower, as p3 is the
strongest bath coupling parameter and it varies linearly with
10−y .

Note here that the time, tmin, required to attain the minimum
temperature during transient refrigeration, is a complex func-
tion of the system as well as the qubit-bath interaction param-

eters. In the standard models of thermalization for the three-
qubit quantum refrigerator used in this paper, high values of
the qubit-bath interaction parameters tend to keep the qubits
in thermal equilibrium with their respective heat baths, while
the inter-qubit interaction strength, g, drives them away from
equilibrium. The time of optimal transient cooling is inversely
proportional to the interaction strength g, but it occurs, in the
reset model, much later than the half time period π/g, as the
bath coupling strengths exceed the interaction strength g (see
[26, 28]).
Effect of system parameters. It is interesting to ask how the
performance of the refrigerator is modulated by the parameters
of the system. To investigate this, we choose the temperature
of the hottest bath, i.e., T3, as the tuning parameter, and study
the variation of the minimum temperature, Tmin, achieved dur-
ing transient refrigeration, against T3, when the choice of the
qubit-bath interaction parameters do not allow steady-state re-
frigeration. For this purpose, we choose the values of {pi} ac-
cording to the CIP, and restrict ourselves to the region marked
by “R” in Fig. 2. Fig. 3 depicts the variations of Tmin and
tmin against T3 for different sets of values of {pi}, governed
by different sets of values of x and y. The minimum tem-
perature achieved by the transient refrigeration, without the
steady-state refrigeration, is found to decrease monotonically
with increasing values of T3. On the other hand, the corre-
sponding values of tmin is found to increase very slowly with
T3. This proves the transient refrigerator to be advantageous,
in the sense that for a fixed set of qubit-bath interaction param-
eters chosen according to the CIP, a lower temperature can be
achieved at effectively the same time, by increasing the temper-
ature of the hot bath. However, we point out here that Tmin can
not be indefinitely lowered with increasing T3. For sufficiently
high value of T3, Tmin attains a saturation at a minimum value.
Also note that the relative positions of the graphs of Tmin as
well as tmin corresponding to different values of (x, y) and g,
clearly suggests that the variations of Tmin as well as tmin are
non-monotonic with respect to the qubit-bath interaction pa-
rameters and the qubit-qubit interaction parameter. This is also
supported by the data shown in Fig. 2.
Fast and steady cooling. Let us now study a situation where
we relax the condition T s1 ≈ T1. We are now interested to
change CIP in such a way that an occurrence of SSC takes place
very fast, and the steady state temperature, T s1 , is the minimal
temperature. Such phenomenon emerges by interchanging κ1
and κ2, which, following Eq. (8), leads to κ1 ≤ κ2. As an
example, we consider the case of x = 2.5 and y = 1, such
that p1 = 10−2.5, p2 = 10−3.5, and p3 = 10−1.5, for which
the variation of Tc(t) is depicted in Fig. 4(a) for g = 10−3,
5 × 10−3, and 10−2. The temperature of the cold qubit de-
creases rapidly with time, and becomes steady at a temperature
much lower than its initial temperature, given by min

t
Tc(t).

The value of T s1 is found to increase with decreasing g. More-
over, note that for these parameter values, unlike previous stud-
ies in [24], Tc(t) does not show any oscillation with t.

Let us introduce the quantity δc = T1−T s1 , which quantifies
the maximum cooling that is obtained in the scenario. We de-
fine the “half-time”, t1/2, as the time at which Tc(t) = T1− δc

2 .
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In the case of the damped coherence dynamics, the half-time
provides a measure of how fast the temperature of the cold
qubit approaches its minimum value, which is the steady state
temperature. The lower the value of t1/2, the faster is the ap-
proach of the cold qubit to its steady state. However, even when
the coherence dynamics is not damped, a lower value of t1/2
indicates that there is a possibility of significantly fast cooling
of the cold qubit before it reaches its steady state.

As in the previous case, we investigate whether this phe-
nomenon occurs in a considerable region of the parameter
space. In order to do so, we focus on the region 2 ≤ x ≤ 4
and 1 ≤ y ≤ 3 over the (x, y)-plane. Fig. 4(b)-(c) depicts the
variations of (b) T s1 , and (c) t1/2 as functions of x and y for
g = 10−2. Note that in contrast to the previous case of tran-
sient refrigeration, substantial steady state cooling takes place
in the present situation, as can be clearly understood from the
range of the values of T s1 .

Note. For the purpose of demonstration, we plot in Fig. 1 only
those dynamics profiles where no initial oscillation of Tc(t)
takes place. However, initial oscillation of Tc(t) is indeed pos-
sible from the CIP, depending on the values of g and {pi}. In
most of the cases corresponding to CIP, damped coherence dy-
namics is observed when one approaches steady state cooling
(eg. Fig. 4), which implies a faster cooling without precise
time control.

Cooling power and coefficient of performance: We now
study the cooling power and coefficient of performance (COP)
of the three-qubit transient refrigerator [18, 20, 25, 32, 33],
where the qubit-bath interaction parameters are chosen accord-
ing to CIP. The heat current to qubit i (i ∈ {1, 2, 3}) from
the corresponding bath, known also as the cooling power, as a
function of t is given byQi(t) = Tr[Hipi(τi⊗Triρ(t)−ρ(t))],
where Hi is the local Hamiltonian of the ith qubit, so that
Hi = k

2Eiσ
z
i . A positive value of the heat current, Q1, in-
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dicates a cooling of the first qubit. The COP of the refrigerator
is given by the ratio, ε = Q1

Q2
. Fig. 5(a) shows the variation

of the cooling power corresponding to the cold qubit as a func-
tion of time with different values of g, with the values of the
qubit-bath interaction parameters chosen to be of the form in
Eq. (8) for which TC without SSC occurs, and with κ1 and
κ2 interchanged, for which fast and steady cooling takes place.
We choose x = 3.5, y = 2.5 for demonstration. Note that
in the cases where TC without SSC takes place, the cooling
power is sufficiently high compared to the case where fast and
steady cooling take place for the same value of the parame-
ters (x, y), as indicated by the value of the multiplicative factor
with the cooling power in Fig. (5)(a). Also, in the case of TC
without SSC, the cooling power goes to zero when the steady
state of the system is attained, since there is no cooling in the
steady state. This is in contrast to the non-zero steady value
of the cooling power in the steady state when fast and steady
cooling takes place. Fig. 5(b) depicts the variation of the COP
with time, where the values of {pi} are taken to be the same
as in Fig. 5(a). For all values of t, the COP in the case where
TC without SSC takes place is always greater than or equal
to the same in the case where only SSC occurs. Moreover,
during the time-interval when TC takes place, the COP is sub-
stantially higher than the same in the case where TC does not
occur. These findings imply a thermodynamic advantage in the
case of necessarily transient refrigeration, when compared to
the steady-state cooling.

B. Thermalization by memoryless qubit-bath interaction

Let us now move to a more realistic scenario, under the stan-
dard Born-Markov assumption of a memoryless system-bath
interaction. Our aim is again to find out a range of parameters
which can be tuned in such a way that the refrigeration occurs
only in the transient regime. The dynamics of this model is

governed by a quantum master equation of the Lindblad form,
given in Eq. (4). The difference of this model from the previous
one lies in the choice of the bath. In this case, each qubit is cou-
pled to a bath constituted of an infinite set of harmonic oscilla-
tors having a broad range of frequencies, ω. The total Hamil-
tonian of the bath is given by H̃b =

∑3
i=1 ~νi,kb

†
i,kbi,k, where

we assume the baths to be spatially well separated to neglect
any interaction between them. Here, νi,k is the frequency of
the mode k of the bath i, and the b’s are the bosonic mode oper-
ators. The interaction Hamiltonian between the qubits and the
baths is given by H̃sb =

∑3
i=1Ai⊗Xi, whereAi = σxi are the

Lindblad operators responsible for transitions between differ-
ent eigenstates of the fully-coupled Hamiltonian H̃loc + H̃int,
and Xi =

∑3
i=1(ηi,kbi,k + η∗i,kb

†
i,k) are the collective bath co-

ordinates. Here, the subscript “sb” stands for “system-bath”,
and the strength of the qubit-bath couplings are denoted by
ηi,k. The Hamiltonian describing the system consisting of
the three qubits and their respective baths is then given by
H̃tot = H̃loc + H̃int + H̃b + H̃sb. We assume that the spectral
function corresponding to the bath i is of the form of an Ohmic
spectral function, given by J̃i(ω) = αiω exp(−ω/Ω) where
αi is the dimension-less coupling strength defining the qubit-
bath coupling, and Ω is the “cut-off frequency”, such that the
memory time of the baths ∼ Ω−1. Since we are interested in
the Markovian dynamics, Ω must be much larger than a typical
frequency ω, while αi � 1 [26].

We now consider the specific case of this thermalization
model, where the dissipation rates are much smaller than the
coupling strength, g. Following [26], one can derive the
Markovian master equation for the three-qubit system in this
model described above. Here, the operation Φ in the master
equation is given by

Φ(ρ) =
∑
i,ω

γ̃i(ω)ϕωi (ρ), (10)

where {γ̃i(ω)} represents the incoherent transition rates be-
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Figure 6. (Color online) Necessarily transient refrigerator for thermalization with collections of harmonic oscillators as local heat baths.
(a) We plot Tc(t) against t, choosing x = 4 and y = 1, and {αi; i = 1, 2, 3} as in Eq. (8), for different values of g. (b) The variation of Tmin

with T3 for the case when g = 0.5. All other relevant parameters are as in panel (a). (c) The occurrence of fast and steady cooling, with and
without transient cooling, is depicted in this panel for different values of g. We have interchanged α1 and α2, while keeping the value of (x, y)
to be the same as in (a). (d) Variation of the coefficient of performance as a function of time for g = 0.8 in two different scenarios: one where
TC without SSC takes place (as shown in (a), with the relevant parameters unchanged), and the other one where fast SSC takes place without TC
(as shown in (c), with the relevant parameters unchanged). The value of the coefficient is considerably larger in the former case for all values of
t, compared to the latter. All quantities are dimensionless.

tween the eigenstates of the Hamiltonian H̃loc+H̃int. In terms
of the spectral functions of each bath, γ̃i(ω) can be obtained as
[26]

γ̃i(ω) =

{
J̃i(ω){1 + f(ω, β̃i)}, (ω > 0)

J̃i(|ω|)f(|ω|, β̃i), (ω < 0)
(11)

where f(ω, β̃) = {exp(~β̃ω) − 1}−1 represents the Bose-
Einstein distribution. The operation ϕωi in Eq. (10) is given
by [26]

ϕωi (ρ) = Lωi ρLω†i −
1

2
{Lω†i Lωi , ρ}

where the Lindblad operators, {Lωi }, have the explicit forms

given by

LE1
1 = |111〉 〈011|+ |100〉 〈000| ,

L(E1+g)
1 = (|+〉 〈001| − |110〉 〈−|)/

√
2,

L(E1−g)
1 = (|110〉 〈+|+ |−〉 〈001|)/

√
2,

LE2
2 = |110〉 〈100|+ |011〉 〈001| ,

L(E2+g)
2 = (|+〉 〈000|+ |111〉 〈−|)/

√
2,

L(E2−g)
2 = (|111〉 〈+| − |−〉 〈000|)/

√
2,

LE3
3 = |111〉 〈110|+ |001〉 〈000| ,

L(E3+g)
3 = (|+〉 〈100| − |011〉 〈−|)/

√
2,

L(E3−g)
3 = (|011〉 〈+|+ |−〉 〈100|)/

√
2, (12)

with |±〉 = (|010〉 ± |101〉)/
√

2. Going to the dimensionless
form, we see that the second term on the right-hand-side of Eq.
(5) can be written as

~
k

Φ(ρ) =
∑
i,ω

γi(ω)ϕωi (ρ), (13)
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where γi(ω) = ~
kγi(ω), and J(ω) = ~

k J̃(ω). The transitions
between a pair of eigenstates of Hloc+Hint, having an energy
difference corresponding to ω, is governed by the operator Lωi ,
while a similar operation corresponding to an energy difference
of −ω is represented by L−ωi = Lω†i . Note here that for the
rotating wave approximation to be a valid one, in the present
case, one has to consider a parameter space where a typical
time-scale of the system is much smaller than the dissipation
time, implying min{Ei, g} � max{γi} [26].
Refrigeration in a necessarily transient regime. To obtain
cooling only in the transient regime, CIP plays an important
role to tune the qubit-bath interaction parameters, {αi}, like in
the previous case. For the purpose of demonstration, we choose
x = 4 and y = 1. We set the other system parameters as E3 =
1, and T3 = 2, and E2 is fixed by the equation E2 = E1 +E3,
withE1 = 1 and T1 = 1. The corresponding variation of Tc(t)
as a function of t is depicted in Fig. 6(a) for different values of
g in the range 0.5 ≤ g ≤ 1.5. It is clear from the figure that
for a low value of g, the steady state temperature of the cold
qubit may be lower than its initial temperature, T1. However,
with increasing g, the value of T s1 increases, and eventually
crosses T1, thereby moving over to a region where a steady
state heating of the cold qubit takes place. In this scenario,
the necessity of a transient refrigeration of the cold qubit is
pressing, and is obtainable at a sufficiently low time, as shown
in the figure. Moreover, one should note that in the previous
model, we were unable to find any range of parameters where
T s1 > T1, which is observed in this model.

A word on the occurrence of the steady state heating in the
case of the harmonic oscillator bath model is in order here.
Note that the unitary dynamics swaps the populations of the
states |101〉 and |010〉. Heating of qubit 1 implies increasing
the population of the state |010〉. However, the initial condi-
tion of the dynamics corresponding to the three-qubit absorp-
tion refrigerator involves a bias where the population of the
state |010〉 is higher than the population of the state |101〉.
Therefore, the heating of the qubit 1 is not possible by the in-
teraction unitary itself. But due to the strong coupling here,
transitions occur between the eigenstates of the Hamiltonian
Href = Hloc + Hint. It can be seen from the Lindbladian
operators {Lwi }, that cooling as well as heating is possible due
to the transitions in the dissipative dynamics. The net result,
i.e., whether heating or cooling will actually occur, depends on
the transition rates. Steady state heating for large interactions
indicates the dominance of the transitions in large time. In con-
trast, in the case of the reset model, as the thermalization of the
qubits brings them to their corresponding initial thermal states,
the temperature of the cold qubit cannot be increased due to
thermalization. Hence, no steady state heating is observed for
the reset model.
Robustness. In Fig. 6(b), we test the robustness of the CIP
for a necessarily transient cooling to take place, by considering
small perturbations to the CIP. We take the same form of per-
turbations as discussed in Sec. II A, and find that similar to the
case of the reset model, for small perturbations, the phenomena
of TC without SSC remains unchanged, although quantitative
changes may take place to the minimum achievable tempera-
ture, or the time when the minimum temperature is achieved.

Fast and steady cooling. We now mention the case where the
possibility of fast and steady cooling exists with the low values
of g. For example, consider the plots of Tc(t) as functions
of t for different values of g in the range 0.5 ≤ g ≤ 1.5,
as presented in Fig. 6(c). Here also, we consider α1 =
10−(x+y), α2 = 10−x and α3 = 10−(x+y) to generate such
dynamics, and we choose x = 4 and y = 1 for the purpose of
demonstration. All the other system parameters are set to the
same values as in the case of the transient refrigeration. We
find that for low values of g, the cooling occurs considerably
fast, and the steady state value is the coldest temperature at-
tainable by the cold qubit, while for high values of g, the SSC
can take place simultaneously with a TC, as is clear from Fig.
6(c).
Variation with T3. Similar to that for the reset model, here also
we check the variation of the minimum temperature attained by
the refrigerator as a function of the temperature of the hot bath.
We find that with increase of T3, Tmin at first remains constant
at Tmin = T1, and then on further increase of T3, it monoton-
ically decreases. The variation of tmin with T3 is a slow one.
This implies that one has to increase the temperature of the
hot qubit above a critical value to obtain TC. Besides, it shows
that the under the present model of qubit-bath interaction also,
transient refrigeration without steady-state refrigeration can be
made advantageous with an increase in the temperature of the
hot bath. Also, as in the case of the reset model, the CIP is
robust against small perturbations with respect to the display
of the phenomena of transient refrigeration without the steady
state refrigeration.
Performance. Similar to the case of the reset model, we study
the cooling power and COP in the case of the present model
also. Here, the heat current from qubit i (i ∈ {1, 2, 3}) to
the corresponding bath [20], at time t, is given by Qi(t) =

Tr[H̃ref

∑
ω γ̃i(ω)ϕωi (ρ)], and the COP is ε = Q1

Q3
. Here,

H̃ref = H̃loc + H̃int. Note here an apparent difference be-
tween the definitions of the heat currents here and in the case
of the reset model. These are however equivalent, consider-
ing that the reset model assumes the interaction strength g to
be small. In Fig. 6(d), the variation of the cooling power cor-
responding to the refrigerator in two different scenarios is de-
picted for g = 0.8. The first scenario is the one where TC
without SSC takes place, while in the second, SSC occurs with
or without TC. It is clear from the figure that the COP is larger
in the former case than that in the latter for all t, thereby im-
plying thermodynamic advantage in the former than the latter.
Frozen minimum temperature. Let us now systematically in-
vestigate the range of (x, y) values where transient cooling is
required for the three-qubit system to act as a refrigerator. We
choose the region defined by 4 ≤ x ≤ 5, and 0 ≤ y ≤ 1, which
is justified by the validity of the quantum master equation and
the form of the operator Φ (Eq. (10)). In Fig. 7(a), the varia-
tions of T s1 as a functions of x and y are presented for a fixed
value of g = 1.5. It is clear from Fig. 7(a) that in the entire re-
gion of the (x, y)-plane considered, a steady state heating takes
place, and transient cooling is the only option to use the three-
qubit system as a refrigerator for the cold qubit. Similar to that
in the reset model, we again determine the value of Tmin by
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performing a scan over the dynamics profiles up to t = 5×104.
We find that for all the points in the region considered over the
(x, y)-plane, the cold qubit reaches its minimum temperature
very fast. This time of reaching the minimum temperature is
negligible compared to the typical large times required by the
cold qubit to attain its steady states. Curiously, over the entire
region considered, the value of Tmin is effectively frozen at a
value Tmin = 0.842, with the variation occuring only in the
fourth decimal place. This provides one the liberty to choose
an appropriate set of values for x and y, when the transient
refrigeration is implemented in the laboratory.

Note here that in contrast with the reset model discussed
earlier, the present model is operating in the strong coupling
regime, where the interaction g is much larger than the qubit-
bath coupling strengths. Here, the initial dynamics is dictated
by the coherent dynamics and the temperature of the cold qubit
oscillates with time period π/g. The minimum temperature
here is achieved in the first half cycle, i.e., at π/2g, and the
minimum temperature is independent of the bath couplings.

To investigate whether a substantial region in the parameter
space can be found where fast SSC takes place, we focus on
the same region over the (x, y)-plane as discussed in the case
of transient cooling, bounded by 4 ≤ x ≤ 5, and 0 ≤ y ≤ 1.
We find that such a cooling phenomenon is present in a con-
siderable part of our region of interest on the (x, y)-plane, as
also obtained in the case of the reset model in Fig. 4(b). The
variations of T s1 , as a function of x and y, is presented in Fig.
7(b), which also gives further basis to believe in the generic na-
ture of the observation of the previous model. With increasing
g, the value of the steady state temperature increases (as also
shown in Fig. 6(c)), and after a critical value, the dynamics
pattern changes in such a way that the steady state temperature
is no longer the minimum temperature of the cold qubit.

III. QUANTUM CORRELATIONS OF THE NECESSARILY
TRANSIENT REFRIGERATOR

We now investigate the properties of bipartite and multipar-
tite correlations in the parameter space of the models discussed
in this paper.

A. Bipartite quantum correlations

We start with the bipartite quantum correlations, as mea-
sured by logarithmic negativity (LN) [34–36], denoted by
L, from the entanglement-separability domain, and quantum
discord (QD) [37–39], denoted by D, from the information-
theoretic domain. Since the initial state of the dynamics, gov-
erned by the master equation given in Eq. (4), is a product
state, both LN and QD are zero in all bipartitions for the three-
qubit state at t = 0. As the system evolves in time, one expects
generation of bipartite quantum correlations in different bipar-
titions of the three-qubit system at t > 0. This is indeed the
case when LN in the case of the reset model is considered. For
example, we consider the parameter values x = 3.5, y = 2.5,
and plot LN against t in the bipartition 1 : 23 in Fig. 8(a),
keeping g = 10−2. All the other system parameters are kept
at the values as in Fig. 2. We find that LN increases at first,
reaches a maximum, and then decreases sharply to be zero at
t ∼ 200, which is low compared to the large time scale (∼ 105)
considered in this paper. Let us denote the maximum possible
value of LN in 0 ≤ t ≤ 500 for the bipartition 1 : 23 by Lm1:23.
In the inset of Fig. 8(a), we plot Lm1:23 as a function of x and y.
The maximum value of Lm1:23 that is attained in the (x, y)-plane
considered in Fig. 8(a) is ∼ 0.016, which is considerably low.
Similar qualitative features are found in the case of L2:13 and
L3:12 also.
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Note that in major portions of (x, y)-plane considered in Fig.
8(a), the values of Lm1:23 are low – a feature shared qualitatively
by Lm2:13 and Lm3:12. Comparing Lm1:23 with Tmin (compari-
son between the region “R” marked in Fig. 2(b), and inset of
Fig. 8(a)), we find that Lm1:23 possesses higher values when-
ever Tmin is low in the region “R”. The value of Lm, in all
bipartitions, decreases with decreasing g.

Fig. 8(b) depicts the variation of QD, D1:23, in the bipar-
tition 1 : 23 in the case of the reset model, with all the pa-
rameters being identical to that used in the case of LN. We
find thatD1:23 increases with t at first, attains a maximum, and
then decreases slowly with increasing t. The slow decay of QD
with increasing t is in contrast with the sharp decrease of LN.
Similar to LN, in the present case also, one can define Dm1:23
corresponding to the bipartition, 1 : 23. In the inset of Fig.
8(b), Dm1:23 is plotted as a function of x and y in the region
“R”, showing a qualitatively similar variation of Dm1:23 to that
of Lm1:23. The maximum value of Dm1:23, found in the region
“R”, is higher than that corresponding to LN. Similar to the
case of LN, Dm1:23 has higher values whenever Tmin acquires
comparatively lower values in the region “R, in the case of the
reset model. Therefore, it seems that for the reset model, a low
value of temperature of the cold qubit in the transient regime
with the parameter values considered in this paper is related to
high quantum correlations generated in the bipartition 1 : 23.
The qualitative behavior of QD in the other two bipartitions are
similar to that in the bipartition 1 : 23.

In the more realistic model discussed in Sec. II B, for all sets
of parameters values, (x, y), considered in Fig. 7, no bipartite
entanglement is generated in any of the bipartitions for t > 0.
However, QD is found to be generated in all the bipartitions
at t > 0 for the collection of values of (x, y) chosen in Fig.
7. Fig. 8(c) depicts the variation of D1:23 as a function of t,
with x = 4, y = 1, and g = 1.5. All the other parameters
are set at values as in Fig. 7. The dynamics of QD is found
to be oscillatory at first. The oscillation dies out as t increases,
and the system approaches towards its steady state. The maxi-
mum value of QD is reached during the oscillatory part of the
dynamics. The variation of Dm1:23, as a function of x and y, is
represented in the inset of Fig. 8(c), where g = 1.5, and similar
range of (x, y) values, as presented in Fig. 7, is chosen. The
other parameter values are kept fixed at values as in Fig. 7. We
observe that high values of Dm1:23 are found when x is low, and
y is high, which is in contrast to the findings in the reset model,
where both Lm1:23 and Dm1:23 are high when x is high and y is
low.

B. Multipartite correlations

Next, we consider the properties of multiparty correlations
in the time-evolved state of the reset model and the realistic
model discussed in this paper. As a measure of the tripartite
total correlation, we consider the tripartite total mutual infor-
mation, given by Itot [40, 41], and plot its variation against t
in he case of the reset model (Fig. 8(d)) and the realistic model
(Fig. 8(e)). The values of the qubit-bath interaction parameters
are set to values similar to those in Fig. 1 for the reset model,

and in Fig. 6 for the realistic model. We find that in the case
of the reset model, the value of Itot increases with t at first,
reaches a maximum, and then decreases to attain a saturation
value close to zero at high t. This feature remains unaltered in
the entire region R, marked in Fig. 2. Let us denote by Imtot,
the maximum value of Itot that is attained during the evolution
of the system under the reset model, for a fixed set of values of
x and y. In the inset of Fig. 8(d), we plot the variation of Imtot
as a function of x and y in the region R. Note that similar to
the bipartite correlations discussed in Sec. III A, the values of
Imtot is high when x is high and y is low.

On the other hand, in the case of the realistic model, a typ-
ical evolution of Itot involves an initial oscillation, and then
a saturation at a non-zero value for high t, as depicted in Fig.
8(e). Similar to the previous case, here also we consider the
variation of Imtot as function of x and y in the region R marked
in Fig. 7. Although in most of the regions on the (x, y)-plane,
the value of Imtot is low, which is in agreement with the find-
ings in case of the reset model, comparatively high values of
Imtot are found when both x and y are low, in contrast to what
is found for the reset model.

We now discuss the generation of multiparty quantum cor-
relations in the models discussed in this paper. Note here
that there are only a few computable measures of multiparty
quantum correlations, in both entanglement-separability and
information-theoretic domains. A quantification of multipar-
tite quantum correlations, in terms of bipartite quantum cor-
relations, can be obtained in terms of the monogamy scores,
given by δQ [42–44], corresponding to the chosen bipartite
quantum correlation measures. However, since no coherence is
generated during the dynamics in the present scenario, all the
two-qubit reduced density matrices obtained from the three-
qubit time-evolved state, under both the models, are diagonal
in the computational (product) basis. This implies that in a cer-
tain bipartition, say, 1 : 23, the values of δL and δD are given
by L1:23 and D1:23, respectively, the features of which have
been discussed in Sec. III A. To investigate whether any gen-
uine tripartite entanglement is generated during the dynamics,
we focus on an entanglement witness,W [45, 46], which indi-
cates the presence of genuine tripartite concurrence [47] when
W > 0. We find that in both the reset and the realistic mod-
els, for qubit-bath interaction parameters chosen from regions
of the (x, y)-plane in Fig. 2 (reset model) and Fig. 7 (realistic
model), the value ofW is never positive during a typical evolu-
tion of the three-qubit state (see Fig. 8(f)). This indicates that
no genuine tripartite entanglement is generated during the evo-
lution, under both reset and realistic models of thermalization,
when the qubit-bath interaction parameters are chosen accord-
ing to CIP, such that transient refrigeration occurs without the
steady-state refrigeration.
Note: We use two different sets of system parameters to carry
out the study of quantum correlations for two different mod-
els of thermalization considered in this paper, and report the
different behaviors of quantum correlations that are found in
the chosen models. More specifically, in the case of the reset
model, we choose E2 = 101, T2 = 1, E3 = 100, T3 = 100,
while for the realistic model of thermalization, we choose
E2 = 2, T2 = 1, E3 = 1, T3 = 2, with the latter values being
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Figure 8. (Color online) Bipartite and multipartite correlations in necessarily transient refrigerator. Variations of (a) LN for the reset
model, (b) QD for reset model, and (c) QD for the realistic model in the bipartition 1 : 23, as functions of t are depicted in the top row of panels.
For demonstration, we choose x = 3.5, y = 2.5, g = 10−2 for the reset model, and x = 4, y = 1, g = 0.5 for the realistic model, while all
the other parameters are fixed at the same values as in Fig. 2 and Fig. 7 for the reset model and the realistic model, respectively. In the insets of
(a)-(c), variations of (a) Lm

1:23 for the reset model, (b) Dm
1:23 for the reset model, and (c) Dm

1:23 for the realistic model, as functions of x and y are
exhibited. We have chosen g = 10−2 and g = 1.5 for the reset and the realistic model, respectively, for demonstration. All the other parameters
are fixed at the same values as in Figs. 2 and 7. In the bottom row of panels, we show variation of the tripartite total mutual information, Itot,
for (d) the reset model and (e) for the realistic model. We also depict the behavior of (f) the genuine tripartite concurrence detector,W , for the
reset and the realistic models, as functions of t. The values of different parameters chosen for demonstration are similar to those in (a), (b), and
(c). In the insets of (d) and (e), variations of Imtot for (d) the reset model and (e) the realistic model, as functions of x and y are shown. All the
other parameters are fixed at the same values as in the insets of (a), (b), and (c). All the quantities plotted in all the panels are dimensionless.

chosen to avoid violations of the Markov approximation. Note
here that if similar values of the system parameters were used
for both the models, then the behavior of quantum correlations
would have been quite alike. For example, if we choose the en-
ergy and temperature values in the reset model to be the same
as the harmonic oscillator bath model, no bipartite entangle-
ment is generated during the dynamics.

IV. CONCLUSION

In conclusion, we study the three-qubit self-contained quan-
tum absorption refrigerator in the transient regime. We obtain
ranges of parameters of the system’s dynamics where it is nec-
essary to consider refrigeration in the transient regime. We pro-
pose a canonical form of the qubit-bath interaction parameters
that facilitates the consideration of such a transient refrigera-
tion without steady state cooling. We consider two different
models of thermalization for the three-qubit absorption refrig-
erator, where the dynamics of the system is governed by the
quantum master equation under Born-Markov approximation.

We show that there exist situations where the cooling of the
cold qubit is possible only in the transient regime, while the
steady state does not provide any advantage regarding cooling.
In a realistic scenario, where the local heat-baths are modeled
by infinite collections of harmonic oscillators, and the qubit-
bath interactions are defined by Ohmic spectral functions, we
demonstrate that a steady state heating is possible, which em-
phasizes the necessity of transient cooling in order to obtain
refrigeration.

We find that in the space of the system parameters and the
parameters defining the qubit-bath interactions, there exists
substantial regions where transient cooling without the steady
state cooling takes place. With a modified canonical form of
the qubit-bath interaction parameters, we show that a fast cool-
ing of the cold qubit is also possible, where the coldest tem-
perature is attained at the steady state. We also comment on
the robustness of the canonical form of the qubit-bath inter-
action parameters with respect to the occurrence of transient
cooling without a steady-state cooling, and discuss the cooling
power and coefficient of performance of such a refrigerator in
the case of both the models considered. Furthermore, we study
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the behavior of bipartite as well as multipartite quantum cor-
relations in the three-qubit quantum refrigerator in a parameter
space where transient cooling is the only option for refrigera-
tion. We find that the system for which the thermalization pro-
cess is modeled by heat baths consisting of an infinite number
of oscillators, there appears a phenomenon of freezing of the
minimum attainable temperature of the cold qubit with respect

to change in system parameters. We find that the qualitative
features of the cooling phenomena as well as the behavior of
quantum correlations in the two apparently different models of
thermalizations are strikingly similar. However, the potential
of this finding to be generic for any appropriate model of ther-
malization in the three-qubit quantum absorption refrigerator
setup is a topic requiring further investigation.
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