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We investigate sharing of bipartite entanglement in a scenario where half of an entangled pair is
possessed and projectively measured by one observer, called Alice, while the other half is subjected
to measurements performed sequentially, independently, and unsharply, by multiple observers, called
Bobs. We find that there is a limit on the number of observers in this entanglement distribution
scenario. In particular, for a two-qubit maximally entangled initial shared state, no more than
twelve Bobs can detect entanglement with a single Alice for arbitrary – possibly unequal – sharpness
parameters of the measurements by the Bobs. Moreover, the number of Bobs remains unaltered for
a finite range of near-maximal pure initial entanglement, a feature that also occurs in the case of
equal sharpness parameters at the Bobs. Furthermore, we show that for non-maximally entangled
shared pure states, the number of Bobs reduces with the amount of initial entanglement, providing
a coarse-grained but operational measure of entanglement.

I. INTRODUCTION

Entanglement of a compound quantum system can be
seen as growing out of the fact that the best possible
knowledge of an entire system is not contained in the
best possible knowledge of its subparts, even for pure
states [1, 2]. This bizarre phenomenon marks a counter-
classical nature of quantum correlation, and its role in the
context of information theory can hardly be overempha-
sized. On the one hand, manifestation of entanglement
leads to a paradigm shift of our understanding of physical
laws by rejecting a local realistic description of nature –
the Bell theorem [3]. On the other hand, entanglement
is the key resource for tasks which cannot be performed
by classical resources [4]. Examples of such tasks in-
clude quantum dense coding [5], quantum teleportation
[6], and cryptography utilizing Bell’s theorem [7–9]. En-
tanglement has also been argued to play an important
role in the reduction of classical communication complex-
ity [10], quantum computing [11, 12], understanding of
many-body phenomena [13–15], emergence of classicality
[16–19], etc.

As with other resources, such as energy and informa-
tion, one would like to have a quantitative theory of en-
tanglement providing specific rules of detection, manip-
ulation, and quantification [4]. Determining whether a
state is entangled is one of the basic tasks of quantum
information. In principle, one can determine the full
quantum state via state tomography, and subsequently
apply a criterion for detection of entanglement. No-
table ones include partial transposition [20, 21], which
is necessary and sufficient for identifying entanglement
of two-qubit and qubit-qutrit states, majorization [22–
25], realignment [26–28], and covariance matrix crite-
ria. From the perspective of experimentally ascertain-
ing whether a state is entangled, entanglement witnesses
(EWs) [21, 29–38] play an important role, since they may
require only a few local measurements.

Detection of entanglement provides a qualitative an-
swer to our quest for understanding entanglement. The

next step is to quantify the same, and broadly there
are two approaches to do so, viz. “operational” and
“distance-based”. Distillable entanglement [39–42] and
entanglement of formation [40] are examples of opera-
tional measures of entanglement, that are conceptualized
via state preparation procedures, which in turn is related
to quantum information tasks like quantum communica-
tion. In distance-based approaches, state functions like
geometric measure of entanglement [43–47] and relative
entropy of entanglement [43, 48–50] have been proposed.
The basic and important property that all the measures
satisfy is that they do not increase, on average, under
local quantum operations and classical communication
(LOCC). They are in general hard to compute, even nu-
merically, after the corresponding state has been recon-
structed via state tomography, with the latter being ex-
perimentally costly. Experimental proposals for direct es-
timation of entanglement measures have been proposed,
but these still remain difficult with currently available
technology [51–54].

Undoubtedly, even partial preservation of entangle-
ment in a shared state in spite of a few cycles of local
operations performed by the sharing parties can be im-
portant for information processing schemes in which en-
tanglement is utilized as a resource. The question that
we are going to address in this paper is exactly along
these lines. One may be inclined to think that such
a scenario is related to the concept of “monogamy” of
quantum correlations [55, 56], which explores the extent
to which entanglement and other quantum correlations
– unlike classical correlations – cannot be shared arbi-
trarily between many parties. More precisely, Coffman
et al. [57] showed that if a system in possession of “Al-
ice” is already entangled with that of “Bob”, then Alice’s
system can have only a limited amount of entanglement
with a third system in possession of “Charu”. In the con-
text of violation of local realism, it was shown that for a
tripartite state shared between Alice, Bob, and Charu, if
Alice and Bob can demonstrate violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [58], then Alice
and Charu or Bob and Charu cannot [59–61]. Monogamy
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of entanglement has applications ranging from quantum
cryptography [7, 62, 63] to phase detection in many-body
systems [64–72].

An independent path for distribution of entanglement
between several observers, known as entanglement split-
ting, was introduced by Bruß [73], where it was asked
that whether it is possible for a party, possessing half
of a pure bipartite quantum state, to transfer some of
her/his entanglement with the other party to a third
party. Specifically, in the case of a singlet pair shared
between Alice and Bob, the question is to find the ex-
tent to which Bob’s entanglement with Alice can be
shared “symmetrically and isotropically” with a third
party, called “Badal”, so that she could teleport, imper-
fectly, a quantum state to both of them. Thus a channel
bifurcation is created with one input side (Alice), and
two output sides (Bob and Badal). Note that Bob’s ac-
tion is local in the sense that he does not act on Alice’s
side while it is not local with respect to Badal. It was
shown that independent of the amount of entanglement
of the initial state, it is always possible to split it be-
tween more than two objects and the splitting can go up
to an arbitrary number of objects. However, to have a
non-classical teleportation fidelity in the output, the ini-
tial entanglement has to be greater than some threshold
value depending on number of channel bifurcations. One
should also mention here the work by Bužek et al. [74],
which showed how entanglement of a pair can be locally
broadcast, and the later work which found that the same
cannot be performed if more than two pairs are required
at the output [75, 76].

In a related but different scenario, Silva et al. [77] ex-
plored a new fundamental question in the domain of vi-
olation of local realism: Can the violation of local real-
ism of an entangled pair be distributed among particles
with multiple observers, that act sequentially and inde-
pendently of each other? In this context, when Alice
possesses half of an entangled pair and several Bobs mea-
sure sequentially and independently on the other half, it
was shown [77, 78] that not more than two observers can
demonstrate violation of the CHSH inequality. See also
[79, 80]. Quantum steering [81–83] of a single system by
multiple observers has also been demonstrated recently
[84], going beyond the monogamy restriction on steering
[85].

In the present work, we inquire about the maximal
number of observers, called Bobs, possessing half of an
entangled pair and measuring sequentially and indepen-
dently, who can detect entanglement, while the other half
is possessed by another observer, called Alice, who per-
forms projective measurements. The success of sequen-
tial measurements in preserving entanglement depends
on the fuzziness present in each measurement apparatus.
For a maximally entangled initially shared state of two
spin-1/2 systems, we find that at most twelve Bobs can
detect entanglement with Alice provided the sharpness
parameter of each measurement apparatus used by Bobs
are allowed to be different. The result is in sharp con-

trast to the entanglement splitting [73] and sharing of
violation of local realism [77] scenarios. Interestingly, we
observe that the maximum number of Bobs who can suc-
cessfully detect entanglement after sequential and inde-
pendent measurements remains unaltered, even when the
shared initial state is not maximally entangled. Specif-
ically, the maximal number of Bobs remains invariant
at the value twelve until the entanglement of the ini-
tial pure state goes below 0.942 ebits. This result im-
plies that for the protocol at hand, maximally entangled
states do not possess any special status. For similar find-
ings, see [86–88]. We also observe that the maximum
number of Bobs, witnessing entanglement with a single
Alice, decreases with the decrease of the entanglement
content of the initially shared state. Therefore, the num-
ber of successful Bobs demonstrating entanglement de-
tection in this scenario, turns out to be an operational,
albeit coarse-grained, measure of entanglement. It may
be mentioned here that quantification of entanglement
from an operational perspective is an important task as
it potentially has practical ramifications. If we assume
that all the measurements performed by the Bobs are
equally weak, the maximal number that can identify en-
tanglement turns out to be five for a shared state having
entanglement not less than 0.924. The scenario of dif-
ferent sharpness parameters used by different Bobs can
appear when the Bobs are situated in different laborato-
ries but have near-noiseless quantum channels between
them. On the other hand, a plausible scenario where the
Bobs use the same sharpness parameter for their mea-
surements is when they act in the same laboratory (and
the same apparatus) but at different times.

We arrange the paper in the following way. In
Sec. II, we briefly discuss about detection of entangle-
ment through witness operators and about the unsharp
measurement formalism. In Sec. III, we describe the sce-
nario that we consider in this paper of distribution of
the resource state. Next, in Sec. IV, we demonstrate our
results, followed by concluding remarks in Sec. V.

II. GATHERING THE TOOLS

In this section, we briefly describe the idea of entan-
glement witnesses and unsharp measurements.

A. Entanglement witnesses

An important problem in quantum information is the
detection of entanglement in quantum state. Any (lin-
ear) observable which has at least one negative eigen-
value and has a non-negative average on all product
states, can be used to detect entanglement. These ob-
servables have been named as (linear) entanglement wit-
nesses (EWs)[21, 29, 30, 32–38], and provide an use-
ful method for experimental detection of entanglement.
More precisely, an entanglement witness is a Hermitian
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operator, denoted by W , that satisfies the following

∃ at least one ρ /∈ S, s.t. Tr(Wρ) < 0

while ∀ρs ∈ S, Tr(Wρs) ≥ 0, (1)

with S being the set of separable states. The existence
of such an operator is a consequence of the Hahn-Banach
theorem on normed linear spaces [89]. For every entan-
gled state, there exists an entanglement witness. Note,
however, given an entangled state, finding an optimal
witness operator may not be an easy task [37, 90, 91].

In practice, if entanglement is required as a resource
for a chosen information processing task, it is a partic-
ular entangled state that is aimed at, for implementing
the task. To confirm the entanglement present in such a
state, one is usually interested in performing the detec-
tion process using local measurements. Suppose the state
that required in an information processing task is the
two-party state, |ψ+〉〈ψ+|, where |ψ+〉 = 1√

2
(|01〉+ |10〉).

The preparation procedure may infuse some noise, and
resultant state shared between the two parties may turn
out to be

ρ = p|ψ+〉〈ψ+|+ (1− p)σ, (2)

where σ is a two-qubit density matrix and p is such that
ρ is positive semi-definite. Here, σ represents the noise
infusion, and 1 − p represents the strength of the noise.
Suppose that ||σ− 1

4 I⊗ I|| ≤ d, where d ≥ 0, and I is the
identity operator on the qubit Hilbert space. If d = 0,
then the noise is said to be “white”, but, in general, d
may not be zero. A witness operator that confirms the
entanglement in |ψ+〉 reads as [36]

W0 = |φ+〉〈φ+|TA =
1

4
(I⊗I+σz⊗σz−σx⊗σx−σy⊗σy).

(3)
It was shown that W0 is also “optimal” for |ψ+〉, in the
sense that 〈ψ+|W0|ψ+〉 = minW∈M〈ψ+|W |ψ+〉, where
M is the collection of all witnesses for states on C2 ⊗C2

[92]. The witness W0 remains optimal for the state ρ
in Eq. (2), provided d = 0 [36]. The advantage of this
witness operator is that to implement it in a laboratory,
the observers, who may be spatially separated, have to
perform three correlated local measurements in the bases
corresponding to the Pauli operators {σx, σy, σz}.

It may be noted that entanglement witnesses are not
only used for the detection of entanglement, but also for
its quantification. It was shown in [93] that any measured
negative expectation value of a witness can be turned
into a non-trivial lower bound on generic entanglement
measures. See also [94, 95].

B. Unsharp measurements

The quantum theory of measurement is counter-
classical in the sense that in order to obtain information
about the state, disturbance of the state becomes un-
avoidable, unless the state is diagonal in a measurement

basis. A von Neumann type measurement [96], dubbed
as “strong” measurement, transforms the initial state of
the system into one of the eigenstates of the measured ob-
servable, assuming the measurement to be of rank-1 and
repeatable. This type of measurement typically yields
a large amount of information about the measured sys-
tem, and leads to output states about which we have the
maximum information that is quantum mechanically ac-
cessible. See [97] in this regard. On the other hand, there
exist measurement schemes, such as weak measurements
[98], which provide less information about the system
while affecting it only weakly. It is important to mention
here that we consider weak measurements without the as-
sociated pre- and post-selection procedures. More specif-
ically, we employ the unsharp measurement formalism,
which are a special subset of general positive-operator
valued measurements (POVMs) [99]. In a practical situ-
ation, e.g. in a laboratory, measurements are almost al-
ways imprecise. This means that, for example, for a spin
measurement, the pointer states of the apparatus corre-
sponding to orthogonal spin states are not perfectly dis-
tinguishable. There is, therefore, the possibility of a non-
zero overlap between such pointer states. This fuzziness
of the apparatus states is captured by an unsharp mea-
surement. It is to be noted that the terminology that we
are using here identifies non-orthogonal POVM elements
with pointer states that are not completely distinguish-
able. It is also possible to consider distinguishable point-
ers in a larger Hilbert space, via the Naimark theorem
[100, 101]. For two-outcome measurements on the quan-
tum spin-1/2 space, the notion of unsharp measurement
can be captured by the operator, Eλ±|n̂ = (I ± λn̂.~σ)/2,

where ~σ = (σx, σy, σz), and n̂ is a three-dimensional unit
vector, with λ ∈ (0, 1] [102]. Here λ plays the role of
the parameter that quantifies “sharpness” of the mea-
surement. Indeed for λ = 1, Eλ±|n̂ correspond to pro-

jectors. Note that Eλ+|n̂ and Eλ−|n̂ are positive operators

that add up to the unit operator. Thus the set of effects
Eλn̂ = {Eλ+|n̂, E

λ
−|n̂} constitute a POVM. It is interesting

to know that the elements of the POVM can be written as
linear combinations of sharp projectors with white noise:

Eλ±|n̂ = λP±n̂ +
1− λ

2
I. (4)

Here, P±n̂ are the projectors corresponding to the sharp
measurement of a quantum spin-1/2 system in the direc-
tion n̂, so that P±n̂ are projectors of eigenvectors of n̂.~σ.
Unsharp measurements have variously been referred in
the literature as fuzzy, imprecise, or weak measurements
[99, 103].

Rule for determining post-measurement state:
In our subsequent analysis, the state of the system after
performing the measurements is required in order to eval-
uate the statistics of the sequential measurements. Under
unsharp measurements, the post-measured state is given,
within the generalized von Neumann-Lüders transforma-
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FIG. 1: (Color online.) Different Bobs, B1, ..., Bn, appear at
the same scene (laboratory) to perform measurements on the
same quantum particle on the Bob part of the Alice : Bob
partition. The laboratory of Alice is spatially separated from
that of the Bobs. In the schematic diagram, time-separation
is depicted along the horizontal axis, while space-separation
is represented along the vertical one.

tion rule [104], upto unitary freedom, as

ρ→ 1

p̃

√
Eλ±|n̂ρ

√
Eλ±|n̂, (5)

with probability p̃ = Tr
(√

Eλ±|n̂ρ
√
Eλ±|n̂

)
. This trans-

formation rule generalizes the projection postulate of
sharp measurements.

III. THE SCENARIO

Let us now describe the scenario in which we work in
this paper, for the distribution of the entanglement in
the resource state, and the corresponding arrangement
in the laboratories hosting the state. A two-qubit entan-
gled state is initially shared between two parties. One
of the qubits is possessed by Alice, who always performs
projective measurements, while the other qubit is pos-
sessed by n Bobs, say, B1, B2, . . . , Bn, who measure se-
quentially and independently. See Fig. 1. We now briefly
describe the operational implications for the conditions of
‘sequentiality” and “independence” of the measurement
strategy.

Sequentiality.– The first Bob measures weakly with
sharpness parameter λ1. After B1’s measurement, the
qubit comes into possession of the second Bob, B2, who
measures on it with sharpness parameter λ2. Similarly,
the other Bobs, viz. B3, B4, . . . , Bn−1, perform their
measurements when they get the particles, with their cor-
responding sharpness parameters, determined by their
apparatuses, except the last Bob, Bn, who measures
sharply, i.e. with a unit sharpness parameter, so that the
corresponding measurement is projection-valued. Such
scenario can occur when either after measurement, each
Bob sends his measured state via a noiseless channel to

the next Bob or B1, B2, . . . , Bn perform measurements in
the same laboratory but in different times. In each step,
Alice-Bob examine whether the state is entangled or not.
Independence.– We adopt the scenario where the Bobs

measure independently, which means that none of the
Bobs are aware of the measurement settings of the others
and hence the choice of a Bob’s measurement, say, Bi,
does not depend on the choices of previous measurements
performed on second particle by B1, B2, . . . , Bi−1. The
state possessed by a certain Bob is obtained by averaging
over all the measurements and outcomes performed by all
the previous Bobs.

It is important to stress here that the ordering of the
measurement performed by Alice and the measurements
of the Bobs is not important because the measurement
of Alice commutes with the measurements performed by
Bobs. However, the ordering between the measurements
performed by the Bobs is significant. For the purpose of
the treatment of the problem, we will assume that Alice
performs her sharp measurement after the measurements
of all the Bobs have been completed.

Let us now discuss about the modification of the wit-
ness operator (see Eq. (3)) which needs to be affected
due to the fact that unsharp measurements are being
performed by the Bobs.

A. Modification of the witness operator due to
unsharp measurements

The joint probabilities for the shared state due to a
sharp (projection) measurement by Alice and an unsharp
measurement by one of the Bobs, in an intermediate stage
of the measurement process, is of the form

Tr
(
ρ(P in̂ ⊗ Eλj|m̂)

)
, (6)

where ρ is the average output state from the previous
stage of the measuring process, i, j = ±, P in̂ is a projec-
tion operator corresponding to the projection measure-
ment by Alice, and Eλj|m̂ is a POVM element correspond-

ing to the POVM by the Bob of this stage. The expec-
tation value in the state ρ, corresponding to this joint
measurement is given by

Tr
[
(P+
n̂ − P

−
n̂ )⊗ (Eλ+|m̂ − E

λ
−|m̂)ρ

]
. (7)

Note that P+
n̂ − P

−
n̂ is just n̂.~σ. Let us denote it as σn̂.

Let us also denote Eλ+|m̂ − E
λ
−|m̂ as σλm̂. Then, we have

〈σn̂ ⊗ σλm̂〉 ≡ Tr
[
(P+
n̂ − P

−
n̂ )⊗ (Eλ+|m̂ − E

λ
−|m̂)ρ

]
= Tr

[
(P+
n̂ − P

−
n̂ )⊗ λ(P+

m̂ − P
−
m̂)ρ

]
= λ〈σn̂ ⊗ σm̂〉. (8)

Noting this relation and remembering that W0 = 1
4 (I ⊗

I+ σz ⊗ σz − σx ⊗ σx − σy ⊗ σy) was used (see Eq. (3))
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as the witness for the state |ψ+〉〈ψ+|, when λ = 1, we
propose the substitution 〈σn̂⊗σm̂〉 → λ〈σn̂⊗σm̂〉, in the
case of a general λ, so that the effective entanglement
witness in this case becomes

Wλ
0 =

1

4

(
I⊗ I+ σz ⊗ λσz − σx ⊗ λσx − σy ⊗ λσy

)
.

(9)

It is easy to check that Tr(Wλ
0 ρs) ≥ 0 for all separable

states ρs.

IV. SHARING OF ENTANGLEMENT BY
MULTIPLE BOBS

A. Maximally entangled initial state

Suppose that the maximally entangled pure state |ψ+〉
is shared between two spatially separated laboratories.
An entanglement witness for this state is given by W0 =
|φ+〉〈φ+|TA (see Eq. (3)).

Corresponding to the measurement by Alice and B1,
the entanglement witness Wλ1

0 acquires the expectation
value

Tr
[
|ψ+〉〈ψ+|Wλ1

0

]
=

1

4
(1− 3λ1). (10)

It is clear from the above expression that λ1 > 1/3 is re-
quired for detecting entanglement by B1, using the wit-
ness operator Wλ1

0 . Note that this value is lower than
the threshold value of sharpness parameter required to
demonstrate violation of Bell’s inequality (which requires
λ1 >

1√
2
) [77, 78]. This difference between the thresholds

of the violation of Bell’s inequality and entanglement de-
tection may be expected as violation of local realism has
been argued to require “stronger” quantum correlations
than just entanglement. In particular, Bell inequalities,
typically, form non-optimal witnesses [36, 105]. Such an
argument was possibly first put formed in 1989 by using
the Werner state [105], i.e. the state in Eq. (2) for d = 0,
which is entangled for 1

3 < p ≤ 1, while it violates Bell

inequality only for 1√
2
< p ≤ 1.

Let us now explore if there is the possibility for sub-
sequent observers at the laboratory of B1, viz. B2, B3,
. . ., to share residual entanglements with Alice that can
be detected through entanglement witnesses. Note that
the possibility for this to happen has been created be-
cause of the fact that B1 has performed an unsharp mea-
surement. Sharp measurements by both Alice and B1

would have resulted in a product state between the two
laboratories. Note that we are considering only rank-
1 measurements here, in the case of sharp (projection)
measurements. Note also, and this we have discussed in
Sec. III, that Alice’s sharp measurement does not pre-
clude B2’s ability to share entanglement with Alice.

As all the Bobs are ignorant about what measurements
were performed by previous Bobs in a given run of exper-
iment, we have to average over the previous Bob’s input

and output to obtain the state shared between Alice and
the Bob of the current stage of the experiment. After
performance of B1’s unsharp measurement, the average
state is given by

|ψ+〉〈ψ+| → ρλ1
1 =

1

3

∑
i,n̂

√
Eλ1

i|n̂|ψ
+〉〈ψ+|

√
Eλ1

i|n̂, (11)

where i = ±, n̂ = x̂, ŷ, ẑ. After some algebra, we obtain

ρλ1
1 =

1

4

[
pρψ+ + (1− p)I⊗ I

]
, (12)

where p = 1
3 (1 + 2

√
1− λ21).

In the next stage of the protocol, B2 measures un-
sharply on his part of ρλ1

1 with sharpness parameter λ2,
to check with Alice as to whether the state is entangled,
by using the entanglement witness Wλ2

0 . The reason for
using the same form of the entanglement witness as in
the first stage (when B1 is operating) is because the state
shared by Alice and B2, before their measurements, is in
the Werner form [36] and Wλ2

0 is an optimal EW opera-

tor for ρλ1
1 . With this state and these measurements, one

obtains

Tr[Wλ2
0 ρλ1

1 ] = −1

4

[
1− (1 + 2

√
1− λ21)λ2

]
. (13)

Now if λ1 = 1/3 in the first stage, then to detect entan-
glement in the second stage, the sharpness parameter λ2,
of B2, must be greater than 0.3465 (correct up to four
significant figures). This implies that B2 has to measure
with more precision than B1 to detect entanglement. If
both B1 and B2 are to detect entanglement in their re-
spective stages, then we must have λ1 = 1

3 + ε1, with

ε1 > 0 (but ε1 ≤ 2
3 ), and we must correspondingly choose

a λ2 for B2, so that − 1
4

[
1−
(
1+2

√
1− ( 1

3 + ε1)2
)
λ2
]
< 0.

Now in order to obtain the limit on the number of
Bobs who can detect entanglement with a single Alice,
we adopt the following procedure. In a similar way as
described above, B3 measures on the average state ob-
tained after measurements of B1 and B2. There is also
a threshold value of λ3 which is greater than λ1, λ2. In
general, for n number of Bobs, one can find the condition
of detection of entanglement by all the subsequent Bobs.
The corresponding threshold values would be increasing,
i.e., λ1 < λ2 < . . . < λn. This process of choosing further
Bobs can continue, with each Bob being able to detect
entanglement in the average shared state obtained from
the previous stage, as long as λn ≯ 1. From this condi-
tion, one can find the maximum number of Bobs sharing
entanglement with a single Alice so that the shared en-
tanglement can be detected through EWs.

For the maximally entangled state, |ψ+〉, shared ini-
tially between Alice and B1, we find that n = 12 i.e., at
most twelve Bobs, acting sequentially, can detect entan-
glement with a single Alice. The bound on the number
of Bobs in this case is significantly larger than the num-
ber of Bobs who can demonstrate violation of the CHSH
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inequality. Note that the average state becomes separa-
ble after twelve Bobs have performed sequential measure-
ments with threshold values of the sharpness parameters.

B. Non-maximally entangled pure initial state and
an operational entanglement measure: Singlet is not

special

In the preceding subsection, we found the limit on the
number of observers witnessing entanglement with single
Alice for a maximally entangled initial state. Now one
may ask: if the initial entanglement is not maximal, but
all other situations remaining the same, how many Bobs
can detect entanglement with Alice? We restrict to pure
shared states, and then the von Neumann entropy of the
local density matrix is a good measure of entanglement
[106]. If the number of Bobs scales with entanglement of
the initially shared state, then we can have an operational
measure of entanglement, via this corridor. We find that
this is exactly the case, albeit in a coarse-grained form.
On the way, we also find that the maximum number of
Bobs who can detect entanglement, that is initially pure,
with Alice remains unchanged for a finite range of near-
maximal local von Neumann entropy. It may be noted
that any two-qubit state with maximal local von Neu-
mann entropy is local unitarily equivalent to the singlet
state, 1√

2
(|01〉 − |10〉).

A pure bipartite state can always be written, upto lo-
cal unitaries, in the form |ψ〉 = a|01〉+b|10〉, where a and
b are real, and a2 + b2 = 1. The entanglement content
of this state can be quantified by the local von Neumann
entropy H(a2) = −a2 log2 a

2 − b2 log2 b
2. For this state,

the optimal entanglement witness remains the same as
before, i.e., it is W0 [36]. Suppose now that B1 measures
weakly, with the sharpness parameter λ1. Correspond-
ingly, the expectation value of Wλ1

0 is given by

E1 =
1

4
[1− (1 + 4ab)λ1]. (14)

Similarly, for the case when B1 and B2 measure weakly
with sharpness parameters λ1 and λ2 respectively, we get

E2 = Tr[Wλ2
0 ρλ1

a ]

=
1

4

[
1− 1

3
(1 + 4ab)(1 + 2

√
1− λ21)λ2

]
, (15)

where ρλ1
a is the average state after B1 performs his mea-

surement on |ψ〉. Note that ρλ1
a = ρλ1

1 for a = b = 1√
2
.

Here it should be mentioned that unlike the case of maxi-
mally entangled initial state, here, the average state after
weak measurement performed by a Bob becomes a mixed
entangled state with colored noise. Even for this en-
tangled state, W0 remains a useful entanglement witness
[36], although it is non-optimal. We however continue to
use the entanglement witness, W0, which is optimal for
any state in the class, a|00〉+ b|11〉. For n Bobs measur-
ing sequentially and independently, in the same way as in

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

n

FIG. 2: (Color online.) Conceptualizing a coarse-grained op-
erational entanglement measure. We consider the scenario
where the two separated laboratories share a pure two-qubit
state. The horizontal axis represents the entanglement of the
initial state, as measured by the von Neumann entropy, E ,
of one of the local states and is measured in ebits. The ver-
tical axis counts the number of Bobs (n) who can succeed
in detecting entanglement with Alice, and is dimensionless.
The monotonic nature of the function plotted implies that it
can act as an entanglement measure, and it is clearly oper-
ationally defined. However, the steps in the function points
to a coarse-grained nature of the measure. The existence of
a step of finite (i.e., non-zero) length on the extreme right
implies that the maximal number of Bobs remains fixed for
a certain range of E , thereby indicating that pure states with
maximal local entropy like the singlet, do not have a special
status in the scenario considered.

the preceding subsection, generalizing the above results,
we find that

En =
1

4

[
3n−1 − 1

3n−1
(1 + 4ab)λnΠn−1

i=1 (1 + 2
√

1− λ2i )
]
,

(16)

where n = 1, 2, 3, . . ..
We present our result in Fig. 2, which indicates how

many Bobs can detect entanglement with a single Al-
ice, for a given pure initial shared state. It is clear from
the figure that as the amount of local von Neumann en-
tropy in the initial pure state decreases, the number of
Bobs also decreases. It is also to be noted that except
for a zero-measure set of values of local entropy, for ini-
tial states having amounts of local entropy close to each
other, the number of successful Bobs remains the same.
Specifically, Fig. 2 shows that for each n, there exists
a continuous range of values of the local von Neumann
entropy of the initial pure state, such that n Bobs can
detect entanglement with Alice. For example, we observe
that at most twelve Bobs can detect entanglement with
a single Alice if the local entropy of the pure initial state
is more than 0.94 ebits. Let us stress here that there are
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FIG. 3: (Color online.) The case of equal sharpness for all
the observers measuring sequentially. The axis labelled λ rep-
resents the common sharpness parameter of all the Bobs in-
volved. The vertical axis stands for the maximal number of
Bobs (n) who are able to detect entanglement with a sin-
gle Alice. Both axes represent dimensionless quantities. Cir-
cles and dashes exhibit the cases when the initial shared pure
state is maximally entangled (E(|ψ〉) = 1) and when not so
(E(|ψ〉) = 0.914), respectively. Red, blue, green, violet, and
orange colors correspond to n = 1, 2, 3, 4, 5, respectively.

several situations known in the literature of quantum in-
formation where sharing a maximally entangled state is
critical. Examples include quantum dense coding, both
deterministic and probabilistic, and quantum teleporta-
tion [5, 6, 107–114]. On the contrary, the result obtained
here is an addition to those cases where it has been shown
that shared maximally entangled states do not have any
exceptional stature [86–88]. It may be interesting to note
that a coarse-grained measure of entanglement could still,
in principle, provide a special status to the singlet (or any
state that is local unitarily connected with the singlet) by
providing its highest value only for such states. This is
what happens, for example, in deterministic dense coding
[109–114], which has the same coarse-grained feature, but
the maximal value is still reserved for the singlets or its
local unitary cousins. Therefore, “number of Bobs” de-
fines a coarse but operational measure of entanglement.
This measure can also be extended to mixed entangled
initial states.

C. Equivalent measurement devices for all Bobs

We have until now, been working in the scenario where
the sharpness parameters of the measurement appara-
tuses of the different Bobs could be different. In this
subsection, we consider a situation which in some in-
stances can be more realistic than the one considered
before. Precisely, Bobs are now constrained to use mea-
surement devices with the same amount of sharpness.
This means that the apparatus specifications are such

that the associated sharpness parameters are the same
for all the Bobs, i.e., comparing with the previous case,
here we take λ1 = λ2 = . . . = λn = λ (say). In this
case, it is clear from the previous result that the common
sharpness parameter λ should be 1/3, or greater, so that
at least one Bob can succeed in detecting entanglement.

For a maximally entangled shared initial state, we find
that at most five Bobs can detect entanglement with a
single Alice. In Fig. 3, we consider a maximally, and
separately, a non-maximally entangled pure state, and
provide the number of Bobs who can detect entangle-
ment with Alice, under the restriction that all the Bobs
use measuring apparatuses with the same value of sharp-
ness, λ. Interestingly, there arises an optimal range of the
common sharpness parameter for which the number of
Bobs is the highest. For a maximally entangled initially
shared pure state, five Bobs can witness entanglement
when λ ∈ [0.45, 0.62] approximately. On the other hand,
if the initial shared pure state is a non-maximally entan-
gled, |ψ〉 with E(|ψ〉) ≈ 0.918, then the maximal number
of Bobs who can detect entanglement is four, and this
happens when λ ∈ [0.42, 0.75] approximately. Just like
in the preceding subsection, we continue to use the wit-
ness W0, for the state a|00〉 + b|11〉 with colored noise,
which is obtained after the second Bob has performed
his weak measurement. Note that for any given value of
entanglement in the initial state, there is a specific value
of the maximum number of Bobs who can detect entan-
glement with Alice, and this maximum is attained in a
certain range of the sharpness parameter. As shown in
the case of different measuring apparatuses, we also re-
port here that five Bobs can detet entanglement not only
for the maximally entangled initial state but for pure ini-
tial states with E & 0.924.

D. Quantum discord of the final output state

We want to explore here whether there is any quantum
correlation remaining after the last Bob’s successful de-
tection of entanglement with Alice. Such a quantum cor-
relation has of course to be independent of entanglement.
It is known that quantum discord [115–118] is a kind of
quantum correlation which persists even in systems with-
out entanglement. Let us consider the maximally entan-
gled state |ψ+〉 for which twelve Bobs measure on their
part of the subsystem with threshold values of sharpness
parameters. We find that the post-measurement aver-
aged state, obtained after the twelfth Bob has performed
his measurement, possesses a nonzero quantum discord
whose value is 0.0192 bits. It is interesting to note, there-
fore, that although there is no residual entanglement, in
the post-measurement averaged state, some non-classical
correlation persists, which can be quantified by quantum
discord.
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V. CONCLUSION

Distribution of a resource state, like that of an entan-
gled state, is the primary task of almost all quantum
information processing protocols. We investigated the
problem of detection of entanglement when half of an
entangled pair is possessed by an observer, called Alice,
and the other half is sequentially and independently mea-
sured by several observers, called Bobs.

We found that for a maximally entangled shared state,
at most twelve Bobs can detect entanglement with a sin-
gle Alice, provided the measurements performed by the
Bobs are weak or unsharp. The maximum number of
Bobs remains invariant over a continuous range of near-
maximal entanglement – up to 6% lower than maximal
– in the initial pure shared state. We also showed that
the maximum number of Bobs decreases with decrease of
entanglement content of the initially shared state, turn-
ing this number into an operational measure of entangle-
ment. We observed that although there is no entangle-
ment in the average state after the twelfth Bob has per-

formed his measurement, the state still possesses quan-
tum correlations in the form of quantum discord.

We also considered a more realistic scenario invoking
the same sharpness parameter for measurement devices
for all the Bobs. In this case, for maximal entanglement
in the initial state, there is a range of the common sharp-
ness parameter for which at most five Bobs can witness
the entanglement with a single Alice. For any other value
of entanglement in the initial pure state, there is an op-
timal number – lower or equal to five – of Bobs, and
this optimality occurs in a particular range of the asso-
ciated sharpness parameter. Again, the maximal num-
ber of Bobs remains unchanged for a continuous range of
near-maximal initial pure entanglement.
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