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ABSTRACT: The predictability of a chaotic series is limited to a few future time steps due to its 
sensitivity to initial conditions and the exponential divergence of the trajectories. Over the years, 
streamfl ow has been considered as a stochastic system. In this study, the chaotic nature of daily 
streamfl ow is investigated using autocorrelation function, Fourier spectrum, correlation dimension 
method (Grassberger-Procaccia algorithm) and false nearest neighbour method. Embedding 
dimensions of 6-7 obtained, indicate the possible presence of low-dimensional chaotic behaviour. 
The predictability of the system is estimated by calculating the system’s Lyapunov exponent. A 
positive maximum Lyapunov exponent of 0.167 indicates that the system is chaotic and unstable 
with a maximum predictability of only 6 days. These results give a positive indication towards 
considering streamfl ow as a low dimensional chaotic system than as a stochastic system. Prediction 
is done using local polynomial method for a range of embedding dimensions and delay times. The 
uncertainty in the chaotic streamfl ow series is reasonably captured through the ensemble approach 
using local polynomial method.

KEYWORDS: Streamfl ow; chaos; correlation dimension; Lyapunov exponent; nearest 
neighbour; non-linear prediction; local polynomial prediction.

REFERENCE: Dhanya, C. T. & Nagesh Kumar, D. 2013, “Predictability and chaotic 
nature of daily streamfl ow”, Australian Journal of Water Resources, Vol. 17, No. 1, pp. 1-12,
http://dx.doi.org/10.7158/W12-024.2013.17.1.

1 INTRODUCTION

The development of various climate models 
that numerically integrate an adequate set of 
mathematical equations of physical laws governing 
the climatic processes marked a major breakthrough 
in the routine weather prediction. The mathematical 
equations in these climate models form a non-linear 
dynamical system in which an infi nitesimally small 
uncertainty in the initial conditions will grow 
exponentially even under a perfect model, leading 
to a chaotic behaviour (Smith et al, 1998). Such 

sensitivity of any deterministic system to a slight 
change in the initial conditions leads to a vast change 
in the fi nal solution and is often known as “butterfl y 
effect” in the fi eld of weather forecasting (Lorenz, 
1972). Hence, Earth’s weather can be treated as a 
chaotic system with a fi nite limit in the predictability, 
arising mainly due to the incompleteness of initial 
conditions. The exponential growth with time of 
an infi nitesimal initial uncertainty 

0
 is given by 

the highest Lyapunov exponent  (Wolf et al, 1985; 
Rosenstein et al, 1993). Hence, the separation or 
uncertainty after t time steps ahead is given as 

0
t

t e   . The predictability of a chaotic system is 
therefore limited (i) due to the indefi niteness in the 
initial conditions (given a perfect model) and also 
(ii) due to the imperfection of the model. 

Modelling of many weather phenomena have been 
done so far employing the concept of stochastic 
systems. However, a large number of studies 
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employing the science of chaos to model and predict 
various hydrological phenomena have emerged 
only in the past decade (Elshorbagy et al, 2002; 
Islam & Sivakumar, 2002; Jayawardena & Lai, 1994; 
Porporato & Ridolfi , 1996; 1997; Puente & Obregon, 
1996; Rodriguez-Iturbe et al, 1989; Liu et al, 1998; 
Sangoyomi et al, 1996; Sivakumar et al, 1999; 2001; 
Sivakumar, 2001; Shang et al, 2009; Wang & Gan, 
1998; Dhanya & Kumar, 2010; 2011a). Most of these 
studies dealt with scalar time series data of various 
hydrological phenomena like rainfall, runoff, 
sediment transport, lake volume, etc. In these cases, 
since neither the mathematical relations nor the 
infl uencing variables are known, the state space in 
which the variable is lying is reconstructed from the 
time series itself using phase space reconstruction 
method by Takens (1981). 

The phase space reconstruction provides a simplifi ed, 
multi-dimensional representation of a single-
dimensional non-linear time series. According to 
this approach, given the embedding dimension m 
and the time delay , for a scalar time series Xi where 
i = 1, 2, ..., N, the dynamics can be fully embedded in 
m-dimensional phase space represented by the vector:

 Yj = (Xj, Xj+, Xj+2, ..., Xj+(m–1)) (1)

Now, the dynamics can be interpreted in the form of 
an m-dimensional map fT such that Yj+T = fT(Yj) where 
Yj and Yj+T 

are vectors of dimension m; Yj being the 
state at current time j and Yj+T being the state at future 
time j+T. The approximation of fT can be done using 
either a global or a local non-linear model. 

The dimension m can be considered as the minimum 
number of state variables required to describe the 
system, which is commonly estimated through 
Grassberger-Procaccia algorithm (GPA) (Grassberger 
& Procaccia, 1983a), and the false nearest neighbour 
(FNN) method (Kennel et al, 1992). The optimum  
is usually determined using either autocorrelation 
function or the mutual information method (Frazer 
& Swinney, 1986). For an exponential autocorrelation 
function, delay time can be chosen as the lag time 
at which the autocorrelation crosses the zero line 
(Holzfuss & Mayer-Kress, 1986) or falls below the 
threshold value e–1 (Tsonis & Elsner, 1988). Another 
method is to take  as the lag time corresponding to 
the fi rst minimum of the mutual information function.

The outcomes of these studies affi rm the existence of 
low-dimensional chaos, thus indicating the possibility 
of only short-term predictions. Better predictions 
can be obtained using the chaotic approach since 
it takes into account the dynamics of the irregular 
hydrological phenomena from a chaotic deterministic 
view, thereby reducing the model uncertainty. Also, 
the dynamic approach employing chaotic theory 
outperforms the traditional stochastic approach in 
prediction (Jayawardena & Gurung, 2000). Most 
of these studies rely only on the low correlation 
dimension as a measure of the chaotic nature of 

the time series and as an estimate of embedding 
dimension. Osborne & Provenzale (1989) claimed that 
a low correlation dimension can also be observed for a 
linear stochastic process. Hence, it is advised to assess 
the chaotic nature and to determine the embedding 
dimension and delay time by employing a variety of 
methods (Islam & Sivakumar, 2002; Dhanya & Kumar, 
2010; 2011b). Since different methods will give slightly 
different embedding dimensions and delay times 
for a single series, one should opt for an ensemble of 
predictions with a set of these parameters in order 
to capture the uncertainty in parameter estimation 
(Dhanya & Kumar, 2010).

The aim of this paper is to analyse the chaotic behaviour 
and predictability of a streamfl ow series employing 
various techniques. Autocorrelation method is used 
for preliminary investigation to identify chaos and 
also to determine the delay time for the phase space 
reconstruction. Optimum embedding dimension is 
determined using correlation dimension and FNN 
algorithms. Phase space prediction is done using 
local polynomial method and the model performance 
and convergence is analysed.

2 PREDICTABILITY AND
CHAOTIC NATURE

A variety of techniques have emerged for the 
identifi cation of chaos which include correlation 
dimension method (Grassberger & Procaccia, 
1983a), FNN algorithm (Kennel et al, 1992), non-
linear prediction method (Farmer & Sidorowich, 
1987), Lyapunov exponent method (Kantz, 1994), 
Kolmogorov entropy (Grassberger & Procaccia, 
1983b), and surrogate data method (Theiler et al, 
1992). In this study, correlation dimension, FNN 
method and Lyapunov exponent are employed to 
analyse the chaotic nature of the time series. 

2.1  Lyapunov Exponent

One of the basic characteristics of a chaotic system is 
the unpredictability due to the sensitive dependence 
on initial conditions. The divergence between 
the trajectories emerging from very close initial 
conditions will grow exponentially, hence making 
the system difficult to predict even after a few 
time steps. Lyapunov exponent gives the averaged 
information of divergence of infi nitesimally close 
trajectories and thus the unpredictability of the 
system. Let st1 

and st2 be two points in two trajectories 
in state space such that the distance between them 

is 1 2 0 1t ts s    . After t time steps ahead, the 

distance 1 2t t t t ts s     , t << 1, t >> 1 follows 
an exponential relation with initial separation 

0
,

ie. 0
t

t e   , where  is the Lyapunov exponent 
(Kantz, 1994). Since the rate of separation is different 
for various orientations of initial separation vector, 
the total number of Lyapunov exponents is equal to 
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the number of dimensions of the phase space defi ned, 
ie. a spectrum of exponents will be available. Among 
them, the highest (global) Lyapunov exponent 
need only be considered, as it determines the total 
predictability of the system. 

Many algorithms have been developed to calculate 
the maximal Lyapunov exponent (Wolf et al, 1985; 
Rosenstein et al, 1993; Kantz, 1994). The exponential 
divergence is examined here using algorithm 
introduced by Rosenstein et al (1993). For calculating 
the maximum Lyapunov exponent, one has 
to compute:

 
   0

0

0
0

1

1 1
ln

t t

N

t t t t
t s U st

S t s s
N U s

 
 

     
 

   (2)

where 
0t

s  are reference points or embedding vectors, 

and  
0t

U s  is the neighbourhood of 
0t

s  with diameter 

. For a reasonable range of  and for all embedding 
dimensions m which is larger than some minimum 
dimension m

0
, if S(t) exhibits a linear increase, then 

its slope can be taken as an estimate of the maximal 
Lyapunov exponent . 

The exponential divergence of the nearby trajectories 
and hence an unstable orbit (chaos) is indicated 
by a positive . Negative Lyapunov exponents are 
characteristic of dissipative or non-conservative 
systems. Their orbits attract to a stable fi xed point 
or periodic orbit. Zero Lyapunov exponents are 
exhibited by conservative systems for which the orbit 
is a neutral fi xed point. For more details, refer Kantz 
& Schreiber (2004).

2.2 Correlation dimension method

In correlation dimension method, the correlation 
integral C(r) is estimated using the GPA (Grassberger 
& Procaccia, 1983a) which uses the reconstructed 
phase space of the time series as given in equation (1). 
According to this algorithm, for an m-dimensional 
phase space, the correlation integral C(r) is given by:

     
 

,
1

2
lim

1
i jN

i j
i j N

C r H r Y Y
N N

  

  
   (3)

where H is the Heaviside function, with H(u) = 1 for 
u > 0 and H(u) = 0 for u ≤ 0, where u = (r – |Yi – Yj|), 
r is the radius of the sphere centred on Yi or Yj, and 
N is the number of data. For small values of r, the 
correlation integral holds a power law relation on r, 
C(r) ~ rd, where d is the correlation dimension of the 
attractor. The correlation exponent or the dimension, 
d can be calculated from the slope of the plot of 
logC(r) versus logr.

For a chaotic series, the correlation exponent saturates 
to a constant value on increasing the embedding 
dimension m and the nearest integer above that 
saturation value indicates the number of variables 

necessary to describe the evolution in time. On the 
other hand, if the correlation exponent increases 
without reaching a constant value on increase 
in the embedding dimension, the system under 
investigation is generally considered as stochastic. 
This is because, contrary to the low dimensional 
chaotic systems, stochastic systems acquire large 
dimensional subsets of the system phase space, 
leading to an infi nite dimension value. 

However, the sole presence of fi nite, non-integer 
dimension correlation dimension is not suffi cient to 
indicate the presence of a strange attractor. Osborne 
& Provenzale (1989) opposed the traditional view 
that stochastic processes lead to a non-convergence 
of the correction dimension by demonstrating 
that “coloured random noises” characterised by 
a power law power spectrum exhibit a fi nite and 
predictable value of the correlation dimension. 
While the saturation of correlation dimension 
in low dimensional dynamic systems is due to 
the phase correlations, for the above mentioned 
stochastic systems it is mainly due to the shape of 
the power spectrum (power law). Hence, it would 
be worthwhile to repeat the correlation dimension 
on fi rst numerical derivative and phase randomised 
signal of the original data, to distinguish low 
dimensional dynamics and randomness (Provenzale 
et al, 1992). In the case of stochastic systems, due to 
the change in the spectral slope on differentiation, 
the correlation dimension of the differentiated signal 
will be much larger than that of the original signal. 
For low dimensional dynamic systems, correlation 
dimension will be almost invariant.

Phase randomised signal of the original data can 
be obtained by generating stochastic surrogate data 
of the same Fourier spectra as that of the original 
data. The Fourier phases are then randomised and 
are uniformly distributed. In the case of phase 
randomised data, the correlation dimension will be 
the same as that of the original data, provided the 
convergence of the dimension is forced only by the 
shape of the power spectrum and not due to any 
low-dimensional dynamics.

Another approach is to compute the correlation 
integral of the fi rst (numerical) derivative of the 
signal. If the system is stochastic, then the correlation 
dimension of the differentiated signal will be 
much larger than that of the original signal. This 
behaviour is due to the change in the spectral slope 
on differentiation. But for low dimensional dynamic 
systems, correlation dimension will be almost 
invariant, since the saturation is in fact due to the 
chaotic nature and not due to the power law shape 
of power spectrum. For more details, refer Kantz & 
Schreiber (2004).

2.3 False nearest neighbour method

The concept of FNN is based on the concept that if 
the dynamics in phase space can be represented by 
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a smooth vector fi eld, then the neighbouring states 
would be subject to almost the same time evolution 
(Kantz & Schreiber, 2004). Hence, after a short 
time into the future, any two close neighbouring 
trajectories emerging from them should still be 
close neighbours. In the present study, the modifi ed 
algorithm by Hegger & Kantz (1999) in which the 
fraction of FNNs are computed in a probabilistic 
way has been used. 

The basic idea is to search for all the data points 
which are neighbours in a particular embedding 
dimension m and which do not remain so, upon 
increasing the embedding dimension to m+1. 
Considering a particular data point, determine its 
nearest neighbour in the mth dimension. Compute 
the ratio of the distances between these two points 
in the m+1th and mth dimensions. If this ratio is larger 
than a particular threshold f, then the neighbour is 
false. When the percentage of FNNs falls to zero (or 
a minimum value), the corresponding embedding 
dimension is considered high enough to represent 
the dynamics of the series. For more details, refer 
Kantz & Schreiber (2004).

2.4 Local polynomial method

As discussed before, the state space is reconstructed 
using Takens theorem in equation (1). The prediction 
at T time steps ahead is then done by mapping 
the dynamics into a m-dimensional map using the 
function Yj+T = fT(Yj). The selection of a non-linear 
model for fT can be made either globally or locally. 
The global approach approximates the map by 
working on the entire phase space of the attractor and 
seeking a form, valid for all points. Neural networks 
and radial basis functions adopt the global approach. 
In the second approach which works on local fi tting, 
the dynamics are modelled locally piecewise in 
the embedding space. The domain is broken up 
into many local neighbourhoods and modelling is 
done for each neighbourhood separately, ie. there 
will be a separate fT valid for each neighbourhood. 
The complexity in modelling fT is thus considerably 
reduced without affecting the accuracy of prediction. 
One such approach is local approximation by Farmer 
& Sidorowich (1987), in which the prediction of Yj+T is 
done based on values of Yj and k nearest neighbours 
of Yj. Yj+T is taken as a weighted average of the k 
nearest neighbours.

In the present study, the prediction is done using 
local polynomial method. The applications of local 
polynomial approach have been demonstrated 
by various studies to analyse flood frequency 
(Apipattanavis et al, 2010), to predict hydrologic 
extremes (Lee & Ouarda, 2010), and forecasting 
time series (Regonda et al, 2005). The procedure for 
prediction using local polynomial method is as follows:

1. The state space is constructed for a specific 
embedding dimension and delay time. 

2. A limited radius of infl uence or number of nearest 
neighbours (say  × total number of points) is 
fi xed around the current state of the system, Yj. 

3. The nearest neighbours, Ynn falling near to Yj are 
obtained along with their future states, Ynn+1

. 

4. A local function is fi tted between Ynn and Ynn+1
, 

ie. Ynn+1 = f (Ynn). In local polynomial method, the 
function, f is a polynomial with order greater or 
equal to 1. 

5. Now, the current state, Yj can be mapped into 
the T time steps into future using the expression
Yj+T = f(Yj) + . 

The mathematical details of local polynomial method 
can be found in Loader (1999). In this study, local 
polynomial is fi tted using LOCFIT, which can be 
found from Lucent Technologies (2001). 

3 DATA USED

The daily streamfl ow data at Basantpur station of 
Mahanadi basin, India, for the period June 1972 to 
May 2004 is considered for the present study. The 
location map of the Basantpur station on Mahanadi 
basin is shown in figure 1(a). The frequency 
histogram of the daily streamfl ow series for the 
study period is shown in fi gure 1(b). The streamfl ow 
is widely varying from 0 to 3.5×104 Mm3 (million 
cubic metres), with maximum frequency falling in 
the range of 0-1000 Mm3. Major portion of the annual 
streamfl ow is received in the monsoon months of 
July, August and September. The non-monsoonal 
fl ows are almost invariant, while the monsoon fl ows 
show large deviations from the mean.

4 RESULTS AND DISCUSSIONS

4.1 Preliminary investigation of chaos

As a preliminary investigation, the autocorrelation 
function and Fourier spectrum are plotted and are 
shown in figures 2(a) and 2(b) respectively. The 
initial exponential decay of autocorrelation function 
indicates that the streamflow may be of chaotic 
nature. The periodic behaviour of the autocorrelation 
function for higher lags is due to the seasonal 
periodicity. The power spectrum is also exhibiting a 
broad band form clearly visible for a large frequency 
range and a power law shape, ie. P(f)  f– with 
   1.35. The choice of the delay time  is made 
using the autocorrelation method and the mutual 
information method (Frazer & Swinney, 1986). In 
autocorrelation method, the lag time at which the 
autocorrelation function attains a zero value (fi gure 
2(a)), ie. 74th day is considered as the delay time. The 
mutual information obtained for various lag times 
are shown in fi gure 2(b). The delay time for the phase 
space reconstruction is the fi rst minimum value, 
which is at 79th day.
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4.2 Determination of predictability:
Lyapunov exponent

Lyapunov exponent provides a measure of the 
exponential growth due to infi nitesimal perturbations. 
The maximal Lyapunov exponent is calculated 
employing the algorithm by Rosenstein et al (1993) 
which is based on the nearest neighbour approach. 
The variation of S(t) with time t for Basantpur 
station at dimensions m = 4 to 6 is shown in fi gure 
3. The slope of the linear part of the curve gives the 
maximum Lyapunov exponent. A positive slope of 

around 0.167 confi rms the exponential divergence of 
trajectories and hence the chaotic nature of the daily 
streamfl ow. The inverse of the Lyapunov exponent 
defi nes the predictability of the system, which is 
around 7 days. 

4.3 Determination of embedding dimension

4.3.1 Correlation dimension method

The correlation integral C(r) is calculated according 
to GPA for embedding dimensions 1 to 40. A plot 

  

Fig ure 1: (a) Location map of the Basantpur station on Mahanadi basin. (b) Frequency histogram of 
Basantpur daily streamfl ow for the period June 1972 to May 2004 (frequency ordinate is in 
log scale).

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

A
ut

oc
or

re
la

tio
n

Lag time (days)   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300

M
ut

ua
l I

nf
or

m
at

io
n

Delay time (days)

Fig ure 2: (a) Autocorrelation function, (b) variation of mutual information with lag time,
and (c) Fourier spectrum of Basantpur streamfl ow data.
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Fig ure 4: (a) Variation of correlation integral with radius on a log-log scale for embedding
dimensions from 1 to 40; (b) variation of correlation exponent with embedding dimension; 
and (c) variation of correlation exponent with embedding dimension for original data, phase 
randomised data and fi rst derivative of data.

of correlation integral C(r) versus radius r on a log-
log scale for embedding dimensions m = 1 to 40 is 
shown in fi gure 4(a). For each of the embedding 
dimensions, slope of C(r) versus r over the clear 
scaling region gives the corresponding correlation 
exponent. The variation of the correlation exponent 
with the embedding dimension is shown in fi gure 
4(b). The correlation exponent is increasing with 
embedding dimension and reaching a constant 
saturation value at embedding dimension m ≥ 18, 
which is an indication of the existence of chaos in 

the streamfl ow series. The saturation value is slightly 

different for different regions. The saturation value 

of 5.21 at an embedding dimension m = 18 indicates 

that the number of variables dominantly infl uencing 

the streamfl ow dynamics is approximately 6. The 

low correlation dimension also suggests the possible 

presence of low-dimensional chaotic behaviour. 

The power spectrum of the Basantpur streamfl ow 

series is showing a power law behaviour with   1.35 

as shown in fi gure 2(b). Since the convergence of the 

correlation dimension can also be exhibited by some 

stochastic series due to its power law behaviour 

of power spectrum, it is recommended to perform 

the correlation dimension method on the first 

derivative and the phase randomised data of the 

original signal. A comparison of the variations of 

correlation exponent with embedding dimension 

for the fi rst derivative of data, phase randomised 

data and original data are shown in figure 4(c). 

While the variation of correlation exponent of fi rst 

derivative is almost identical to that of the original 

data with almost the same saturation value, the 

correlation dimension of the phase randomised 

data set is not converging at all. This eliminates the 

possibility of linear correlations forcing the saturation 

of correlation exponent and thereby confi rms the 

presence of a low dimensional strange attractor in 

the streamfl ow series. 

(a) (b)

(c)
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4.3.2 False nearest neighbour method

The modifi ed FNN algorithm by Hegger & Kantz 
(1999) is applied on the streamflow series. The 
threshold value f is fixed at 5. The variation of 
the fraction of FNNs for different embedding 
dimensions is shown in fi gure 5. The fraction of 
nearest neighbours is falling to a minimum value 
at an embedding dimension of 7, indicating that 
minimum 7 variables are necessary to explain the 
entire system. This is in close agreement with the 
value obtained by the correlation dimension method. 

4.3 Local polynomial prediction

An ensemble of predictions is done using local 
polynomial approach with a range of embedding 
dimension from 4 to 6 and delay time from 71 to 80. 
State space is constructed for the specifi ed range of 
embedding dimension and delay time. The order of 
the polynomial is fi xed as 2. Training of the model is 
done for each combination (of embedding dimension 
and delay time) taking daily streamfl ow data for 
the period June 1972 to May 2003. Finally, ensemble 
of prediction is obtained for the year (June 2003 to 
May 2004). The mean daily ensemble predictions 
for lead time = 1 is shown in fi gure 6. A comparison 
of cumulative probability distributions (CDF) of 
ensembles and the observed series for lead time = 1 
is shown in fi gure 7. The ensemble is able to catch 
the observed streamflow probabilities well with 
its range. Hence it can be concluded that the local 
polynomial model is able to reproduce the observed 
variations in the streamfl ow time series with much 
less uncertainty. 

The prediction accuracy in terms of correlation 
between the observed and the ensemble for various 
lead times is demonstrated in figure 8. As the 
lead time increases, the accuracy of prediction is 
decreasing. This is also evident from fi gure 9 which 
demonstrates the variation in absolute deviation 
(box plots) for various lead times. In addition, from 
fi gure 8, it can be also observed that the uncertainty 

Fig ure 6: Ensemble of mean daily streamfl ow 
for embedding dimension = 6 and 
delay time = 74.

Fig ure 7: Cumulative density functions of daily 
streamfl ow. The ensemble CDFs and 
also the observed streamfl ow CDF are 
shown.

Fig ure 8: Box plots of correlation between 
observed and ensemble for various 
lead times.
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Fig ure 5: Variation of fraction of false nearest 
neighbours with embedding 
dimension.

in predictions measured in terms of the width of the 
box plots (maximum/minimum), shown as bar plots 
in fi gure 9, is steadily increasing with respect to lead 
time. This shows the even though, local polynomial 
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Fig ure 9: Box plots of absolute deviation 
between observed and ensemble for 
various lead times. The widths of box 
plots are shown as bar plots.

method is able to capture the inherent dynamics 
in streamfl ow series, the chaotic nature limits the 
predictability of streamfl ow series, with increase in 
lead time. 

The skill of the prediction is assessed with reference 
to the climatological (observed) values as the 
control or reference forecasts. The quality of the 
ensembles generated using local polynomial 
prediction is ascertained using two measures: (i) rank 
probability skill score (RPSS) and (ii) rank histograms 
(Wilks, 2005).

To compute RPSS, the dataset is divided into n 
categories. The RPSS is calculated as the sum of 
the squares of the difference of the cumulative 
probabilities of each of the predicted-observed data 
pair. RPS is given by:

 2

1

n

i i
i

RPS P O


   (4)

where Pi is the cumulative probability of the forecast 
for category i and Oi is the cumulative probability 
of the observation for category i. Similarly, the RPS 
value for the climatological dataset is also computed. 
Finally, RPS score is calculated as:

1
clim

RPS
RPSS

RPS
   (5)

where RPS is the mean RPS of all observation-

forecast pairs and climRPS  is the mean RPS of 
climatological forecast. An RPSS value of 1.0 indicates 
a perfect forecast and a negative value indicates 
an output worse than climatology. An RPSS of 0.0 
implies no improvement in skill over the reference 
climatological forecast, RPSclim. For more details, refer 
Wilks (2005) and Dhanya & Kumar (2010). 

The RPSS values for the ensembles predictions for 
different lead times are computed by dividing the 

dataset into 10 categories based on the 10th, 20th, 
30th, 40th, 50th, 60th, 70th, 80th and 90th percentile values 
derived from the observed dataset. The overall 
RPSS values for the daily rainfall for different lead 
times are shown in fi gure 10. Positive RPSS values 
for all the lead times indicate a better forecast than 
the climatological forecast. However, the skill of 
the predictions decreases as the lead time increases, 
which again is due to the chaotic nature of the 
streamfl ow series as discussed before.

Rank histogram is used to evaluate the reliability and 
probable predictability of the targeted parameter by 
the ensembles. Let there be n observation forecast 
pairs and nens ensemble forecasts corresponding to 
each observation. Assuming the ensembles and also 
the observations are having the same probability 
distribution, for each ensemble forecast-observation 
pair, the rank of the observation is likely to take any 
of the values i = 1, 2, 3, ..., nens + 1. These ranks of the 
observation for each of the n data points are plotted 
to generate the rank histogram. A fl at histogram 
indicates an ideal rank histogram whereas an 
U-shaped one indicates ensemble members from a 
less variable distribution. On the other hand, a dome 
shape histogram indicates too large ensemble spread. 
For more details, refer Wilks (2005) and Dhanya and 
Kumar (2010). 

The rank histograms of ensemble predictions for 
different lead times are obtained and compared with 
the climatological rank histogram. The ensemble 
prediction rank histograms are relatively flatter 
than the climatology rank histogram. The rank 
histograms of climatology and ensemble prediction 
for lead time 10 days are shown in fi gure 11. As can 
be seen from the histograms, climatology is biased 
towards the lower ranks, ie. climatology is unable 
to capture the low rainfall values in the prediction 
period. The ensemble histograms are relatively fl at 
over the middle region, but biased towards the lowest 
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Fig ure 10: Rank probability skill scores of the 
ensemble predictions for various lead 
times.
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and highest ranks which indicates the difficulty 
in capturing the extremes. Even so, the overall 
performance of ensemble prediction is better when 
compared to the climatology as the reference forecast. 

5 CONCLUSIONS

The recent interest in non-linear dynamics and 
also chaos theory has drawn attention towards 
considering streamfl ow as a chaotic system which 
is much sensitive to initial conditions and short 
term predictability. The present study was aimed 
at analysing the chaotic nature of streamfl ow series 
using different techniques. The daily streamfl ow data 
at Basantpur station of Mahanadi basin, India, for the 
period June 1972 to May 2004 is used for the study. 

The positive Lyapunov exponents of the three regions 
confi rm the unpredictability of the systems. The 
predictability of daily streamfl ow series is limited to 
only 7 days. The behaviour of streamfl ow dynamics 
was investigated using correlation dimension 
method with GPA. The clear scaling region in the 
C(r) versus r plot on a log-log scale and also attaining 
a correlation exponent saturation value of 5.21 
indicate a low dimensional chaotic behaviour of the 
streamfl ow series. 

Since coloured random noises also exhibit a fi nite 
correlation dimension value, the above method is 
repeated on phase randomised data and on fi rst 
derivative of the streamfl ow series. The correlation 
dimensions of phase randomised data are not 
converging, while those of fi rst derivative are almost 
same as of the original data. This elucidates that the 
saturation of correlation dimension is not due to the 
inherent linear correlation in the data; but because of 
the low dimensional chaotic dynamics present in the 
data. Since one should not confi rm the chaotic nature 
based on the correlation dimension method alone, 
FNN method is also employed to determine the 
optimum embedding dimension. The fraction of false 
nearest neighbours is falling to a minimum value 

at an embedding dimension of 7, which indicates 
that the optimum embedding dimension of the 
streamfl ow series is 7. These results suggest that the 
seemingly irregular behaviour of streamfl ow process 
can be better explained though a chaotic framework 
than through a stochastic representation. The chaotic 
nature of streamfl ow series is modelled through a 
local polynomial approach and prediction is done 
for various lead times. The skill of the ensemble 
predictions are compared with the climatology using 
rank probability skill score and rank histograms. The 
local polynomial predictions have shown an overall 
skilled performance than climatology reference. 
It has been observed that the ensemble approach 
using local polynomial model is able to capture the 
dynamics of chaotic streamfl ow series reasonably 
well for various lead times.
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