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Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet
and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in
the past to decompose a time series into components. Forecasting of these components combined with
random component could yield predictions. Using this ideology, wavelet and EMD analyses have been
incorporated separately which decomposes a time series into independent orthogonal components with
both time and frequency localizations. The component series are fit with specific auto-regressive models
to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary
streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall
sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and
twelve months ahead forecasts across both the methodologies. Based on performance measures, it is
observed that wavelet based method has better prediction capabilities over EMD based method despite
some of the limitations of time series methods and the manner in which decomposition takes place.
Finally, the study concludes that the wavelet based time series algorithm can be used to model events
such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have
been discussed that could extend the scope of applicability to other areas in the field of hydrology.

� 2013 Elesvier B.V. All rights reserved.
1. Introduction

Traditional time series forecasting is generally done using
regression techniques. In the case of regression model, a relation-
ship is built up between a set of explanatory variables and depen-
dent variables. The coefficients or parameters in the relationship
are obtained by various methods the earliest being Gauss’s ‘Least
Squares (LS)’ method in 1794. The LS method has poor extrapola-
tion properties and is sensitive to outliers in the time series.

Moving average, weighted moving average, linear exponential
smoothing, Kalman filters are some of the primitive forecasting
techniques used by several groups (Macaulay, 1931; Holt, 1957;
Muth, 1960; Winters, 1960; Brown and Meyer, 1961; Brown,
1962; Pegels, 1969). These forecasting techniques are advanta-
geous due to simplicity but disadvantageous due to ad hoc nature.
Chambers et al. (1971, 1974) and Makridakis and Hibon (1979)
gave comprehensive analysis of several smoothening techniques
across multiple time series.

Integrating the literature on existing forecasting techniques,
Box et al. (1970) formulated Auto Regressive Moving Average
(ARMA) models otherwise known as Box and Jenkins models. In
the field of hydrology, Box and Jenkins models have been used
for time series modeling of varied research interests some of which
are Yevjevich (1972), Hipel et al. (1977), McLeod et al. (1977), Pe-
gram et al. (1980), Salas et al. (1980), Loucks et al. (1981), Stedinger
and Vogel (1984), Hosking (1984), Bras and Rodríguez-Iturbe,
1985, Stedinger et al. (1985), Baker (1990), Worrall et al. (2003)
and Han et al. (2013). Toth et al. (2000) made a comparative anal-
ysis among ARMA model and ANN in obtaining real time flood
forecast information. Keskin et al. (2006) developed a streamflow
prediction model based on adaptive neural based fuzzy inference
system coupled with ARMA model. Mohammadi et al. (2006)
implemented goal programming for estimating parameters of
ARMA model and used the developed method for river flow fore-
casting. However ARMA technique models only linear and station-
ary processes which would be a limitation in case of non-
stationary and non-linear time series analysis. Apart from
Box and Jenkins models, numerous other forecasting techniques
have been developed along with their advancements with applica-
tions in the field of hydrology. Chang et al. (2007) and Chen et al.
(2013) developed methodologies using Artificial Neural Networks
(ANNs) for performing multi time steps ahead flood forecasting.
Chen and Chang (2009) formulated a hybrid ANN genetic algo-
rithm model and checked its applicability to reservoir streamflow
time series. Franchini et al. (2011) have used Muskingum–Cunge
routing models for real time streamflow forecasting. Asefa et al.
(2006) and Lin et al. (2006) used Support Vector Machines (SVM)
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for prediction of discharge time series. Preis and Ostfeld (2008) for-
mulated a coupled model tree-genetic algorithm scheme for the
prediction of flow and water quality load in watersheds.

Consider a time series which is decomposed by some means to
component time series that act as building blocks for time series. It
had been observed in several works (Armstrong, 1989; Temraz
et al., 1996; Zou and Yang, 2004; Gulhane et al., 2005; Hibon and
Evgeniou, 2005) that when these components were modeled inde-
pendently to forecast the future components and finally recon-
struct the forecasted components to arrive at the required future
time series, the quality of predictions was better, although the
method of decomposition was empirical in nature. Anderson
(1927) discussed about decomposing a time series into a number
of components in which noise was discussed in an intuitive man-
ner. A method of extracting cyclic and trend components from a
time series was formulated by Frisch (1931). The presently known
procedure of time series decomposition was introduced by Macau-
lay (1931). Wavelets (particularly Discrete Wavelet Transform
(DWT)) and Empirical Model Decomposition (EMD) are two meth-
ods that can decompose non-stationary and non-linear data into a
set of simpler components, which could be modeled easily. Apply-
ing the idea of modeling the decompositions, these two techniques
are used to obtain components that are later used for standard
time series analysis.

The objective of this study is to assess the predictability of
wavelet coupled and Empirical Mode Decomposition (EMD) cou-
pled Auto Regressive Moving Average (ARMA) models in forecast-
ing non-stationary hydrologic data. In both the scenarios, wavelets
and EMD are used to decompose a time series into simpler compo-
nents to which candidate ARMA models are fitted that calibrate
and predict each component independently. Finally the component
predictions are combined (added) to obtain time series forecast. US
Monthly streamflow volume data of four sites and IMD gridded
rainfall data of two sites are considered for this study. The analysis
is run to obtain two kinds of predictions one six steps ahead fore-
cast, and two twelve steps ahead forecast. The theory regarding
wavelets and EMD is presented first (in Sections 2 and 3) followed
by data description and decomposition algorithms used for the
analysis. The paper is concluded with discussion about the applica-
bility of the method with non-stationary data and possible future
directions in this area.
2. Wavelets

Most of the hydrologic data are non-stationary in nature
(Milly et al., 2007). Such a non-stationary time series consists
of events occurring for varying durations which can be ascer-
tained through time segmentation. On the other hand, identify-
ing periodicities that are responsible for occurrence of events
in a particular data, involves segmentation in the frequency do-
main. Fourier analysis and the associated spectrum analysis
developed by Wiener (1949) have become important tools in
analyzing stationary time series. However, these methods rely
on a notion of frequency that cannot accommodate time domain,
loosing importance of instantaneous frequency (Boashash, 1992).
This difficulty has come up due to the fact that time and fre-
quency are canonically conjugated which is addressed for the
first time by Heisenberg (1925) in the context of quantum
mechanics under the principle of uncertainty. In the present
case, the problem of uncertainty arises due to the fact that if res-
olution in the time domain is increased, resolution in the fre-
quency domain has to be compromised and vice versa. So, to
address non-stationarity, simultaneous information about time
and frequency is required which was later attempted through
Window Fourier Transform (WFT) (Nawab and Quatieri, 1988).
The backdrop of WFT lies in its emphasis on either low fre-
quency events (good frequency resolution) or noise (high fre-
quency) at an instant. This is because of existence of single
analysis window that remains constant during transform due
to which only one kind of information is obtained. Intuitively,
noise needs good time resolution (ability to identify noise by
trying to narrow down on time axis) and low frequency events
need good frequency resolution (ability to separate frequencies
more accurately). Only when this is achieved, complete knowl-
edge of the time series can be attained. Hence, there is necessity
to consider both low frequency as well as high frequency events
simultaneously which ultimately led to the concept of wavelets.

Wavelets have evolved out of two main drawbacks of Fourier
analysis, infinite domain of sine and cosine waves and lack of
time–frequency localization. Unlike sine and cosine waves, wave-
lets are localized by nature and are of discrete length, driven by
two parameters translation and dilation. Through these parame-
ters, time frequency localization property is achieved by adjusting
the widow automatically for low and high frequencies giving
importance to every frequency that one needs to extract. In this
context, a wave shown in Fig. 1a is an oscillating periodic function
of time whereas a wavelet, as in Fig. 1b shows the localized prop-
erty making it a localized wave.

Fig. 2 explains the flexibility of wavelets over WFT in time
frequency plane. In case of WFT (Fig. 2a), at a particular time
segment, width of window is constant all over the frequency
axis whereas in case of wavelet transform (Fig. 2b), window
width changes across frequency axis i.e., for higher frequencies,
time resolution is getting improved and vice versa indicating
time frequency localization.

Due to aforementioned advantages, wavelets came into popu-
larity in recent years in various fields. The first usage of wavelet
transform was proposed by Haar (1910) although the concept of
wavelets did not exist at that time. The theory was conceptualized
in 1981 by Morlet et al. (1982). The term ‘wavelet’ was introduced
by Grossmann and Morlet (1984). Meyer (1985) constructed sec-
ond wavelet called Meyer wavelet other than Haar wavelet which
was the only one in use till then. Mallat (1987) developed the con-
cept of multi resolution analysis. The wavelet function that is used
in any analysis is basically called as ‘mother’ wavelet (Heil and
Walnut, 1989). Once a function satisfies a set of admissibility crite-
ria (Daubechies, 1988), it is eligible as a mother wavelet.

With the improvements of Daubechies (1988) and Mallat
(1989a,b,c), wavelets have been implemented in varied fields
such as wave propagation, signal processing, geophysics, market-
ing and biology (Yu et al., 2013; Zheng et al., 2013; Papademe-
triou et al., 2013; Wang and Gupta, 2013). Daubechies (1992)
and Rao and Bopardikar (1998) are some of the books that pro-
vided lucid explanation on the theory of wavelets. Coming to
applications of wavelet in hydrology, Almasri et al. (2008) for-
mulated an approach to test existence of trends using wavelets
and applied it to temperature data in Sweden. Xiao-jie et al.
(2008), Adamowski et al. (2009) and Sang et al. (2012a) worked
on wavelet based trend identification in hydrologic time series.
Duport et al. (1996) implemented wavelets to merge panchro-
matic and multispectral data. Galford et al. (2008) demonstrated
the stability of wavelets over large extent of MODIS time series
to determine expansion of row-crops and intensification of the
number of crops grown in Brazil. Labat (2005) and Sang (2012)
made a comprehensive review of applications of wavelet analysis
in the field of hydrology.

Similar to Fourier analysis, wavelet transforms defined in con-
tinuous and discrete domains are called as Continuous Wavelet
Transform (Grossmann and Morlet, 1984) and Discrete Wavelet
Transform respectively. Since the present study uses the later type
of transform, only that part has been discussed further.



Fig. 1. Plot of (a) wave and (b) wavelet.

Fig. 2. Time frequency localization of (a) WFT and (b) wavelet transform.

L. Karthikeyan, D. Nagesh Kumar / Journal of Hydrology 502 (2013) 103–119 105
2.1. Discrete Wavelet Transforms (DWT)

DWT is used specially for discrete datasets (Daubechies, 1992;
Weng and Lau, 1994). The DWT choose such a subset of translation
and location parameters with which the calculations are made, so
that subsequently, discrete wavelet coefficients can be obtained
which represent the minimum number of components that are
needed to reflect the time series according to the mother wavelet
used. Let x[t] be a discrete time series of N observations 1, 2, . . ., N.

The discrete wavelet function is represented by

wu;vðtÞ ¼
1ffiffiffiffiffi
2u
p w

t � v2u

2u

� �
ð1Þ

where 2u is the scale parameter; v2u is the translation parameter
ðu;v 2 ZÞ; v is the location index (1 < v < 2�uN) that indicates the
nonzero portion of wavelet function in the normalizing factor 2�u/2;
u indicates the level of decomposition. Here the discretisation is
achieved by implementing the factor 2u in actual wavelet function
(Eq. (2)). During this, the consecutive values of discrete scales as well
as corresponding sampling intervals differ by the factor 2 the process
of which is called dyadic sampling (Rao and Bopardikar, 1998). DWT
coefficients of x[t] are obtained from

x00u;v � x00ð2u;v2uÞ ¼
Z 1

�1
x½t� 1ffiffiffiffiffi

2u
p w�

t � v2u

2u

� �
dt ð2Þ

Inverse Discrete Wavelet Transform can be applied to reconstruct
the time series from wavelet coefficients x00u;v (Daubechies, 1992;
Rao and Bopardikar, 1998) using
x½t� ¼
X1

u¼�1

X1
v¼�1

x00u;v2�u=2w
t � v2u

2u

� �
ð3Þ

As scale and decomposition level are decreased, the coefficients are
more localized in time resolution and hence high frequency compo-
nents can be identified whereas when they are increased, the coef-
ficients are more localized in frequency resolution and hence low
frequency events can be accessed. This process requires multi reso-
lution analysis of the data.
2.2. Multi Resolution Analysis (MRA)

The idea of MRA is to extract the resolutions in time domain
from finer scale to coarser scale using different dilates and trans-
lates of the mother wavelet under study. Dilates (scale parameter)
switches the resolutions while translates (location parameter) ap-
ply a particular scale parameter throughout the time series. Martí-
nez and Gilabert (2009) studied Normalized Difference Vegetation
Index (NDVI) time series using MRA to capture and describe intra
and inter annual changes in the data. Recently, considerable work
has been undertaken in fusion of wavelets with other techniques to
model a time series such as wavelet neural networks (Wang and
Ding, 2003; Nourani et al., 2009; Adamowski and Chan, 2011;
Wei et al., 2013), wavelet neuro fuzzy conjunction model (Partal
and Kis�i, 2007; Kis�i and Shiri, 2011) and wavelet support vector
machine conjunction model (Kis�i and Cimen, 2011). DWT is imple-
mented in a pyramid algorithm (Mallat, 1989b; Vishwanath, 1994;
Tan et al., 2011) to perform MRA (Kumar and Foufoula-Georgiou,
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1993; Rao and Bopardikar, 1998; Bayazit and Aksoy, 2001), which
takes into account its representation at multiple resolutions of
time and frequency. Intuitively, in a pyramid algorithm, wavelet
translates along finest resolution, filters out that corresponding
component, goes to next finer resolution, translates along, and fil-
ters out that component. This process continues depending upon
the number of levels to which the time series has to be decom-
posed. MRA achieves the decomposition by using the concept of fil-
ter banks associated with mother wavelet. A filter bank is called
two band filter bank in MRA since it consists of two sets of filters
(Tay and Kingsbury, 1993). One band is for decomposing (called
the analysis phase) the time series and the other is for reconstruct-
ing the time series (called the synthesis phase). Being a multi res-
olution analysis, each band of filters has two filters; low pass filter
(a) and high pass filter (b) [Table 1] of which a captures low fre-
quency which is termed as approximation (A) and b captures high
frequency component termed as detail (D).

The application of filter to the time series is influenced by two
steps (1) time series extension and (2) convolution of filter with
extended time series. When convolution is carried out on an
unmodified finite time series, at the ends (boundaries) of the ser-
ies, convolution may not be computed since the values next to
the boundaries are not defined (de Queiroz, 1992; Cohen et al.,
1993). So, in order to overcome this problem, time series is ex-
tended using time series extension methods (Strang and Nguyen,
1996) on either of the ends (step 1) and then step 2 is carried
out. Finally, values that are concerned with filter and original time
series are selected. Five time series extension methods are used in
the present study and the method producing best forecasts is se-
lected. To demonstrate how the extensions are made, a sample
Table 1
Two band filter bank in MRA.

Filter Phase

Analysis/decomposition Synthesis/reconstruction

Low pass ad ar

High pass bd br

Fig. 3. Time series ex
time series x = 1, 2, 3, 4, 5 (Fig. 3a) is taken and extended using
these techniques (Fig. 3b–f).

(1) Symmetric Extension (half-point) – sym.
(2) Symmetric Extension (whole-point) – symw.
(3) Anti-Symmetric Extension (half-point) – asym.
(4) Anti-Symmetric Extension (whole-point) – asymw.
(5) Simple constant extrapolation – sp0.

These methods are developed to only reduce to certain extent
the effect of boundaries on time series on application of filter. They
do not completely eradicate the problem at boundaries.

During the decomposition phase, the two time series obtained
from filter application will have redundant information (Strang
and Nguyen, 1996). This situation is monitored by having only half
of the series that come out of filter application, by the process
called downsampling by the factor 2 which involves retaining only
the even indexed values in a time series. During synthesis phase,
the downsampled components are upsampled which involves fill-
ing in zeros at odd indices to attain the length of the time series. In
these processes, filter application is done using convolution. The
following sections give an overview of convolution, downsampling
and upsampling processes.

2.3. Convolution

Consider two time series {ft: t = 1, 2, . . ., i} and {gt: t = 1, 2, . . ., j}
of length i and j respectively. Convolution of f and g yields vector h
of length i + j � 1 from the following equation.

ht ¼ f � g ¼
X

k

fkgt�kþ1 ð4Þ

where k ranges from max(1, t + 1 � j) to min(t, i). Further informa-
tion regarding convolution, is available in Strang and Nguyen
(1996).

2.4. Downsampling and upsampling

Let {et: t = 1, 2, . . ., n} denote a time series. Downsampling of et is
achieved by using operator d:(x1, x2, x3, x4, x5, x6, . . .) ? (x2, x4, x6, . . .)
tension methods.
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and upsampling of et is carried out by using operator U:
(x1, x2, x3, x4, . . .) ? (0, x1, 0, x2, 0, x3, 0, x4, 0, . . .) resulting in following
equations.

½dðeÞ�k ¼ fek : k ¼ 2;4;6 . . .g ð5Þ

½UðeÞ�k ¼
ek=2; k is even
0; k is odd

�
ð6Þ

Coming to mother wavelet, nearly fifteen families of mother
wavelets are available in literature (Misiti et al., 1996), some of
them are Daubechies family (Daubechies, 1992), Symlets (Misiti
et al., 1996), Coiflets (Daubechies, 1992), Biorthogonal wavelets
(Chui, 1992), etc. In present implementation, Daubechies 5
(db5) mother wavelet is used. Fig. 4 shows db5 mother wave-
let along with corresponding decomposition and reconstruction
filter banks of the wavelet.

Considering the mother wavelet and the number of levels of
decomposition selected, the following algorithm explains decom-
position of the time series into components that are of length equal
to that of the time series.

2.5. Algorithm of time series decomposition using DWT

(1) Let {xt e x: t = 1, 2, . . ., n} denote a time series. Let g denote
number of levels of decomposition.

(2) Select mother wavelet W and the kind of extension method
to apply over x. Let the selected wavelet’s filters be assigned
notations followed in Table 1.

(3) Compute approximation A01 and detail D01 using the Eqs. (7)
and (8) respectively which involves convolution operation
(Eq. (4))
A01 ¼ x � ad ð7Þ

D01 ¼ x � bd ð8Þ
(4) Downsample A01 and D01 to A001 and D001 (level one approxima-
tion and detail coefficients) by using the downscaling oper-
ator described in Eq. (5). The modified approximation ðA001Þ
and detail ðD001Þ coefficients are as follows.
Fig. 4. Daubechies (db5) mother wavelet along with its decom
A001 ¼ d A01
� �� 	

t ¼ fA
d
1;t : t ¼ 2;4;6; . . .g ð9Þ

D001 ¼ ½dðD
0
1Þ�t ¼ fD

d
1;t : t ¼ 2;4;6; . . .g ð10Þ
For a g level decomposition, steps 1–4 are carried out for g itera-
tions (maintaining constant W and extension method) by taking
approximation A00q (q – iteration number) from step 4 (Eq. (9)) as x
for the next iteration. So, for a 3 level decomposition, A001 obtained
at the end of first iteration is taken as x for the second iteration
and A002 obtained at the end of second iteration is taken as x for
the third iteration which results in final approximation A003. At the
end of each iteration, corresponding details (obtained from Eq.
(10)) are preserved. Finally, a g level decomposition results in g
number of details ðD001;D

00
2;D

00
3; . . . ;D00gÞ and one approximation ðA00gÞ.

(5) Upsample coefficients ðD001;D
00
2;D

00
3; . . . ;D00g;A

00
gÞ to ðD�1;D

�
2;

D�3; . . . ;D�g;A
�
gÞ using upsampling operator described in

Eq. 6. This modifies approximation and details as follows
A�g ¼ U A00g

 �h i

k
¼

A00g;k=2; k is even

0; k is odd

(
ð11Þ

D�q ¼ ½UðD
00
qÞ�k ¼

D00q;k=2; k is even

0; k is odd

(
; q ¼ 1;2; . . . ;g ð12Þ
(6) Compute A��g and D��q from ðA�g;D
�
qÞ and (ar, br) using following

equations.

�� �
Ag ¼ Ag � ar ð13Þ
D��q ¼ D�q � br ; q ¼ 1;2; . . . ;g ð14Þ
(a) Reconstruct A��g to the length n by repeating steps 5–6 (Eqs.
(11) and (13)) for g times resulting in obtaining the com-
pletely reconstructed approximation Ag.

(b) Reconstruct D��q to the length n by repeating steps 5–6 (Eqs.
(12) and (14)) for q times during which for the last (q � 1)
iterations, Eq. (16) is modified as D��q ¼ D�q � ar . In both pro-
cesses, the coefficients obtained at the end of each iteration
are given as input time series at the initiation of next itera-
tion. This step obtains a set of completely reconstructed
position and reconstruction filter banks.
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components D1, D2, D3, . . ., Dg, Ag which are of length n. The
summation of these components yields original time series
(Eq. (15)).
xt ¼ Ag þ
Xg

q¼1

Dq ð15Þ
3. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a non-stationary data
analysis technique (Huang et al., 1998; Magrin-Chagnolleau and
Baraniuk, 1999; Huang and Wu, 2008). It is developed out of the
fact that most of the time series in nature contain multiple fre-
quencies leading to existence of different scales simultaneously.
Application of EMD has picked up pace in the field of hydrology
due to its simplicity and lesser computational cost. Sang et al.
(2012b) used EMD along with the concepts of entropy to identify
periods in hydrologic time series. Lee and Ouarda (2012) simulated
non-stationary oscillations using EMD and nonparametric simula-
tion techniques. McMahon et al. (2008) devised a new approach to
generate rainfall sequences considering climatic phenomena using
EMD. Napolitano et al. (2011) discussed the aspects of artificial
neural network in hindcasting of daily stream flow data through
EMD. The method works in successively extracting these scales
from the time series in the form of Intrinsic Mode Functions
(IMF). An IMF by definition has to satisfy two conditions:

1. The difference between the number of local extremes and zero-
crossings must be zero or at most differ by one with the func-
tion being symmetric in time.

2. At any point, the mean value of the envelope, defined by local
maxima as well as that of envelope defined by local minima
must be zero.

This intuitively means that an IMF is obtained by eliminating
the effect of various locally occurring amplitude and frequency
modulations and eliminating asymmetries in corresponding time
series with respect to the zero level. Similar to the effect of
boundary distortion that occurs with wavelets, EMD also experi-
ences boundary effects. So, Huang et al. (1998) extended original
time series by appending artificial time series (called character-
istic waves) on both the boundaries. These characteristic waves
are constructed by many methods. Important of them are either
by repeating the implicit mode derived from extreme values at
boundaries or by extending either symmetrically or periodically
at boundaries. For the present study, only symmetric extension
is used as extension method since it is observed that the results
have not varied much due to change of extension methods.

EMD performs the decomposition of time series into IMFs by an
iterative procedure called ‘sifting’ explained in the following
algorithm.

3.1. Algorithm of time series decomposition using EMD

(1) Let {zt e z: t = 1, 2, . . ., n} denote a hydrologic time series that
will be input to the sifting process.

(2) Extract all the local extremes in z. Use an interpolation tech-
nique to connect all local maxima and minima to obtain
upper and lower envelopes respectively. Generally a cubic
spline interpolation (Hou and Andrews, 1978) is employed
(Rilling et al., 2003; Huang and Wu, 2008).

(3) Find difference between z and mean of two envelops
resulted in step 2 to obtain first sub time series p
(p = z � envelop’s mean).
(4) p is checked against IMF criteria which, if not met, steps 1–3
are iterated by substituting p as z and the process is repeated
until the resulting time series satisfies the criterion.

(5) Make final sub series p (resulting from step 4) as Ij, the jth
IMF, and the resulting residue as Rj (Rj = Rj�1 � Ij, where
R0 = z).

(6) Repeat steps 1–5 for N times, by initializing residue time ser-
ies Rj as z until final residue series RN becomes monotonic by
nature. The original time series can therefore be expressed
as (Eq. (16))
zðtÞ ¼
XN

j¼1

IðtÞj þ RðtÞN ð16Þ
4. Data

In order to test the methodologies of wavelet and EMD based
time series algorithms, monthly total streamflow volume and
monthly total rainfall data are used in the study. Streamflow data
is collected from USGS Hydro-Climatic Data Network (HCDN) CD-
ROM (Slack and Landwehr, 1994) consisting of 1659 sites of
streamflow records spread throughout United States, cumulatively
spanning for the period 1874–1988. Out of this, 1273 sites were
found to have continuous record which could be used for time ser-
ies analysis. For the present study, only data with continuous re-
cord are considered although sites with missed data can also be
modeled using data filling techniques (Simonovic, 1995; Starrett
et al., 2010; Elshorbagy et al., 2002). Since the aim of the study is
to analyze the performance of wavelets and EMD in forecasting
when the data is non-stationary, KPSS test (Kwiatkowski et al.,
1992) was performed on the selected 1273 sites. The results indi-
cated that for 489 streamflow records, the assumption of stationa-
rity is rejected at 95% confidence levels. The forecasting algorithms
presented in Sections 5 (wavelet) and 6 (EMD) were applied to the
selected records. For brevity, results pertaining to four streamflow
locations have been presented based on varied properties of the
data. Table 2 presents the criteria of site selection along with rea-
son behind the selection. Details of selected sites along with their
statistical properties are given in Table 3.

Monthly total rainfall data prepared from 0.5� � 0.5� resolution,
Indian Meteorological Department (IMD) daily gridded rainfall
data of Indian subcontinent over a period of 1971–2005 (Rajeevan
and Bhate, 2009) is used. It is observed that 1149 grid locations fall
in India. KPSS stationarity test is applied to the records at these
locations to discriminate stationary and non-stationary grid re-
cords. It is found that for 170 grids records the assumption of sta-
tionarity is rejected at 95% confidence level and these only are
considered for the present study. The forecasting algorithms pre-
sented in Sections 5 (wavelet) and 6 (EMD) were applied to these
170 grid locations. For brevity, results pertaining to two grid loca-
tions, from the state of Karnataka, are only presented in the current
study. The details of the rainfall locations are shown in Table 4.

4.1. Selection of candidate models for time series analysis

The number of candidate models affects the computational effi-
ciency of any forecasting technique. Although considerable re-
search has been done in the area of developing model selection
criteria (Akaike, 1974, 1978; Rissanen, 1978; Schwarz, 1978; Han-
nan and Quinn, 1979; Shibata, 1980; Voss and Feng, 2002; Seghou-
ane and Bekara, 2004), none of the works gave a directive in
selecting the upper limit for restricting the population of candidate
models which makes them uncertain. Order selection can be made



Table 2
Site selection criteria.

S.No Property Sites Remarks

1 Greater record length 1 Have proportionately more peaks to be predicted
2 Minimum record length 2 Check if wavelets and EMD could predict with lesser record lengths
3 Coefficient of variation between 1 to 2

ð1 6 Cv 6 2Þ
3, 4 Accuracy of predictions in high variability conditions could be accounted to predictability of model in

case of rainfall

Table 3
Details of selected streamflow sites.

Site Name (ID) Lat. Lon. Length (years) Mean (�105 m3) Std. Dev. (�105 m3) Cv

1 Mississippi River at Clinton (05420500) 41�4605000 90�1500700 115 35636.93 22465.53 0.64
2 North Fork River near Tecumseh (07057500) 36�3702300 92�1405300 44 542.97 393.65 0.73
3 War Eagle Creek near Hindsville (07049000) 36�1200200 93�5102000 18 207.32 288.99 1.39
4 Lopez Creek near Arroyo Grande (11141280) 35�1400800 120�2801700 21 8.23 14.83 1.80

Table 4
Details of selected rainfall sites.

Site Lat. (�) Lon. (�) Length (years) Mean (mm) Std. Dev. (mm) Cv

5 14 75 35 180.33 345.75 1.92
6 16 75 35 53.64 79.44 1.48
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based on Auto Correlation (AC) and Partial Auto Correlation (PAC)
curves in case of either pure AR or MA processes. Fig. 5 presents
sample AC and PAC for streamflow site Mississippi River at Clinton,
IA (site 1) and rainfall site 5.

It is observed that, in both the sites, numerous significant lags
have occurred both in AC and PAC plots which results in neither
pure AR nor pure MA processes leading to the ARMA models. Since,
number of significant lags is very high, with respect to principle of
parsimony, orders up to ARMA (6,4) are considered as candidate
model population. Model selection is based on minimum mean
square error criterion (Kashyap and Rao, 1976).
Fig. 5. Autocorrelation (AC) and Partial Autocorrelation (PAC) plots for streamflo
The component time series obtained on using decomposition
algorithm are modeled using standard ARMA models by
Box et al. (1970).

Fixing the number of levels of decomposition largely controls
the size of computational effort in this case of wavelet analysis.
For a time series of length n, Daubechies (1992) stated that the
maximum number of decompositions can be taken as log2 n.

Based on this formula, the maximum number of levels obtained
for the longest site data (site 1) is 11. Although Sang et al. (2010)
proposed a methodology of finding optimum number of decompo-
sitions using wavelet energy entropy and Mote Carlo simulations,
w site Mississippi River at Clinton, IA (a and b) and rainfall site 5 (c and d).
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they have concluded that the method was developed in the context
of de-noising and also it has to be tested on varied datasets. Since
the approximation time series gets smoother as the decomposition
level is increased, it is observed that the amount of information
carried by the time series is decreasing. According to this notion,
wavelet decomposition algorithm is carried out for all the non-sta-
tionary streamflow as well as rainfall sites (489 streamflow sites
and 170 rainfall locations, totaling 659 sites) from 1 to 11 decom-
positions and at every site for every decomposition, corresponding
approximation is used to calculate percentage variance ratio Vi,dec

(Eq. (17)).

Vi;dec ¼
varðAi;decÞ
varðdataiÞ

� 100; i ¼ 1;2; . . . ;659; dec

¼ 1;2; . . . ;11 ð17Þ

where var(Ai,dec) is the variance of approximation of ith site and dec
decomposition level; var(datai) is the variance of data at ith site.
Fig. 6 gives plots of average percentage variance ratio and average
performance of all the sites.

It can be seen from average percentage variance ratio plot that
the amount of variance explained is depleting, with increase in
number of decompositions. At one level decomposition, most of
the information from time series is retained in approximation
(84.6%) which cannot be ignored. Also, beyond 10 levels, less than
1% of variance ratio is explained by corresponding approximation
which does not possess important information. So, based on this
observation, upper and lower limits for all the sites are fixed as
ten and one.

4.2. Performance measures

For the present study, two measures Normalized Root Mean
Square Error (NRMSE) (Eq. (18)) and Nash–Sutcliffe Efficiency Index
(Ef) (Eq. (19)) are used.

NRMSE ¼ RMSE
xmax � xmin

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi�xiÞ2

n

r
xmax � xmin

ð18Þ

where xmax, xmim are maximum, minimum of observed values; yi, xi

are actual and predicted values of output; n is the number of values.
NRMSE, is the normalized version of RMSE. Eq. (18) depicts that
RMSE is normalized with reference to the range of observed values
to control the range of error outcomes. An NRMSE value of greater
than 1 means that the average root of squared deviation of pre-
dicted values from the observed (numerator) is greater than the
Fig. 6. Plot of average % variance ratio
range of observed values (denominator) suggesting poor model per-
formance. Ideally the error value should be 0. The equation of
NRMSE stated above need not be taken as standard since the nor-
malization could be carried out by any other means (maximum ob-
served value, mean, etc.) according to necessity.

To measure goodness of fit of any model calibration, tradition-
ally, the correlation coefficient was used despite its theoretical
applicability to only linear models having an intercept. The
Nash–Sutcliffe Efficiency Index or coefficient of Efficiency provides
an indication of how the predictions of model are carried out away
from mean which means that this measure could be used to com-
ment on model capabilities at extremes. Closer the Ef value to 1,
better the network fit. Ef is given by

Ef ¼ 1�
Pn

i¼1ðyi � xiÞ2Pn
i¼1ðyi � y

�
Þ

2 ð19Þ

where yi and xi are actual and obtained values of output; �y is the
mean of actual output values; n is the number of values. Ef values
can range from �1 to 1. A value of 1 corresponds to 100% accuracy
of predicted values with reference to the observed, whereas 0 indi-
cates that the model predictions are equal to mean of the observed
values, whereas Ef < 0 occurs when the variance explained by resid-
uals is greater than that of observed data which indicates poor per-
formance of model.

The following algorithms (Sections 5 and 6) provide an account
of calibration and validation of wavelet based time series analysis
as well as EMD based time series analysis methodologies.
5. Wavelet based time series analysis

(1) Let {yt e y: t = 1, 2, . . ., n} denote a hydrologic time series.
Select wavelet function W and decide candidate ARMA mod-
els to be used for analysis. Let the number of models selected
be K. Divide time series into calibration and validation data-
sets. Let them be ycalib(80 of y) and yvalid(20 of y) respec-
tively. Calibration data is divided into ycalib,1 (75% of ycalib)
and ycalib,2 (25% of ycalib). Let the range of decompositions
be gs; where s ¼ ½1;10�; s 2 Z.

Calibration:

(2) For a decomposition level in g (where g e gs), subject ycalib,1

to wavelet decomposition algorithm using wavelet function
W selected in step 1 to obtain components D1, D2, . . ., Dg, and
Ag.
versus number of decompositions.
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(3) Using a particular candidate model ARMA(p, q), compute q
step ahead forecast across all the components which would
result in component forecasts ðDf

1;D
f
2; . . . ;Df

g; and Af
gÞ. Store

these values.
(4) At the end of step 3, observed data record for q time steps is

obtained. Add this data to ycalib,1. Initialize the newly
appended outcome as ycalib,1.

(5) Repeat steps 2–4 by updating ycalib,1 with the observed data
obtained in step 4 until entire calibration period is covered.
During every iteration, for a particular candidate model
ARMA(p, q), q step ahead forecast across all the components
is performed and the forecasts across components are
respectively appended with previously stored components
forecast (step 3) to finally obtain components forecast
for complete calibration period ðDf

1;calib;D
f
2;calib; . . . ;

Df
g;calib; and Af

g;calibÞ.
(6) Perform steps 3–5 using all the selected candidate ARMA

models. For K candidate models, one would obtain K sets
of component forecasts at the end of step 5. Select best
model of K candidate models at each component by com-
paring corresponding calibration forecasts (obtained from
step 5) with observed components using minimum mean
square error criterion.

(7) Add the forecasts across components that are obtained by
using respective optimum ARMA models (from step 6) to
result in q step ahead calibration forecast for ycalib,2.

(8) Apply steps 1–7 for all the values of gs. Compare the calibra-
tion forecasts based on minimum NRMSE criterion and
select candidate decomposition models to be used for vali-
dation. A candidate g0 level decomposition model has
respective optimum ARMA models at each component to
perform q step ahead prediction. For the present study, five
decomposition models were selected out of ten and are used
for validation. Application of decomposition model involves
initially wavelet decomposition algorithm (to obtain compo-
Fig. 7. Flowchart of wavelet based
nents) and later component ARMA models (applied itera-
tively) to obtain q step ahead prediction for required time
period.

Validation:

(9) Calibration data ycalib is fed to candidate decomposition
models (from step 8) individually and corresponding q step
ahead forecasts are computed. Later, for every model output,
add the forecasts across components and select the best out-
come by comparing it with observed data record using min-
imum NRMSE criteria.

(10) Similar to step 4, the observed data for q steps is appended
with ycalib and step 9 is run again.

(11) Steps 9–10 are run for entire validation period and the opti-
mum forecasts at each iteration are appended, finally form-
ing q step ahead validation forecast yf

valid.

Fig. 7 explains flowchart of wavelet based time series analysis
algorithm.
6. EMD based time series analysis

(1) Let {yt e y: t = 1, 2, . . ., n} denote a hydrologic time series.
Decide candidate ARMA models to be used for analysis. Let
the number of models selected be K. Divide time series into
calibration and validation datasets. Let them be ycalib (80% of
y) and yvalid (20% of y) respectively. Calibration data is
divided into ycalib,1 (75% of ycalib) and ycalib,2 (25% of ycalib).

Calibration:

(2) Subject ycalib,1 to EMD decomposition algorithm to obtain
component IMFs and residue (I1, I2, . . ., In, and Rn).
time series analysis algorithm.
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(3) Using a particular candidate model ARMA(p, q), compute q
step ahead forecast across all the components (obtained
from step 2) which would result in component forecasts
ðIf

1; I
f
2; . . . ; If

n; and Rf
nÞ. Store these values.

(4) At the end of step 3, observed data record for q time steps is
obtained. Add this data to ycalib,1. Initialize the newly
appended outcome as ycalib,1.

(5) Repeat steps 2–4 by updating ycalib,1 with the observed data
obtained in step 4 until entire calibration period is covered.
During every iteration, for a particular candidate model
ARMA(p, q), q step ahead forecast across all the components
is performed and the forecasts across components are respec-
tively appended with previously stored components forecast
(step 3) to finally obtain components forecast for complete
calibration period ðIf

1;calib; I
f
2;calib; . . . ; If

n;calib; and Rf
n;calibÞ.

(6) Perform steps 3–5 using all the selected candidate ARMA
models. For K candidate models, one would obtain K sets
of component forecasts at the end of step 5. Select best
model of K candidate models at each component by com-
paring corresponding calibration forecasts (obtained from
step 5) with observed components using minimum mean
square error criterion.

(7) Add the forecasts across components that are obtained by
using respective optimum ARMA models (from step 6) to
result in q step ahead calibration forecast for ycalib,2.

(8) Establish decomposition model from the results of step 7
which has respective optimum ARMA models at each com-
ponent to perform q step ahead prediction. Application of
decomposition model involves initially EMD decomposition
algorithm (to obtain components) and later component
ARMA models (applied iteratively) to obtain q step ahead
prediction for required time period.

Validation:

(9) Calibration data ycalib is fed to decomposition model (from
step 8) to result in q step ahead forecasts. Later, the forecasts
obtained are added across components and the resulting
time series forecast is stored.
Fig. 8. Flowchart of EMD based ti
(10) Similar to step 4, the observed data for q steps is appended
with ycalib and step 9 is run again.

(11) Steps 9–10 are run for entire validation period and the opti-
mum forecasts at each iteration are appended, finally form-
ing q step ahead validation forecast yf

valid.

Fig. 8 explains flowchart of EMD based time series analysis
algorithm.
7. Results and discussion

The wavelet and EMD based forecasting algorithms discussed in
Sections 5 and 6 respectively are applied to four streamflow and
two rainfall locations to derive six months ahead forecasts (6
MAF) and twelve months ahead forecasts (12 MAF). In all the cases,
NRMSE is considered as criteria for model selection since the mea-
sure is obtained in a limited comparable range (due to normaliza-
tion). Along with the measure of NRMSE, Ef also is computed
between predicted and observed data to assess the ability of the
model in predicting extremes of the time series.

In case of wavelet based forecasting, five time series extension
methods are used (Section 2.2) since the forecasts are affected sig-
nificantly at some of the sites. It has to be noted from step 8 of
wavelet based algorithm (Section 5) that the forecasts for calibra-
tion period are obtained for a range of decompositions gs which, in
present study is considered to be from 1 to 10. Based on the fore-
casts during calibration period, out of ten models, five decomposi-
tion models are selected as candidates for validation purpose. This
process is carried out on all the sites considered for the analysis.
For brevity, the results pertaining to site 1 are presented for illus-
tration in Table 5. It has to be observed that for one site, results
during calibration correspond to performance of ten decomposi-
tion levels across five time series extension techniques used in
the study. So, for a particular extension technique, five best per-
forming decomposition levels were selected (with their corre-
sponding optimum component ARMA models) using optimum
NRMSE measure and are finally used for validation purpose.

Tables 6 and 7 present the quality of predictions for validation
period obtained using measures of NRMSE and Ef obtained for 6
me series analysis algorithm.



Table 5
Calibration results of site 1 represented by NRMSE across decomposition levels for five
extension techniques used.

Exten. Dec.

1 2 3 4 5 6 7 8 9 10

sym 0.94 0.84 1.02 0.99 0.94 0.93 0.92 0.90 0.90 0.90
symw 0.96 0.85 0.97 0.95 0.94 0.91 0.90 0.90 0.90 0.90
asym 0.98 1.00 1.22 1.28 1.24 1.22 1.22 1.22 1.22 1.22
asymw 0.92 0.87 1.06 1.24 1.47 1.56 1.43 2.01 2.02 3.76
sp0 0.94 0.84 0.97 0.95 0.92 0.92 0.93 0.93 0.93 0.93
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MAF and 12 MAF, across six sites, and five extension methods. The
best error measures in Table 6 are highlighted in bold italics. An
initial study of the results from the Tables 6 and 7 signaled that
the wavelet based forecasting method has performed compara-
tively well in predicting rainfall sites than that of streamflow sites
under both of the forecasting scenarios. In the case of site 1, the
optimum validation predictions are observed to perform well with
NRMSE values of 0.81 (6 MAF) and 0.82 (12 MAF). In both the cases,
effectively, sp0 extension technique is utilized. Corresponding to
this extension method, at site 1, Ef values of 0.35 (6 MAF) and
0.32 (12 MAF) [Table 7] are attained. The values of Ef imply that
the predictions are away from mean of the validation dataset
which indicate that the method might be successful to an extent
in predicting the extremes of the site 1 validation data. The out-
come of site 2 predictions illustrates that the best error measures
are pointed out at the symw extension technique with an NRMSE
of 1.04 (6 MAF) and 0.99 (12 MAF) and Ef of �0.08 (6 MAF) and 0
(12 MAF). It is seen that the prediction performances are weaker
compared to those of the previous site results. Particularly, Ef val-
ues, being close to zero in both cases, could lead to a situation that
the predictions might be fluctuating around the mean of the time
series. After examining the results of sites 3 and 4, it is observed
that the predictions of 6 MAF are better than that of 12 MAF. In
case of site 3, under 12 MAF, an optimum NRMSE of 1.07 and cor-
responding Ef value of �0.18 are obtained. This could result in
smoother predictions with a lesser possibility of obtaining peak
values. Similar interpretation can be drawn from the results of site
Table 6
NRMSE values for 6, 12 months ahead prediction across sites for wavelet based time serie

Site Wavelet based method

6 months ahead forecast error

sym symw asym asymw sp0

1 0.84 0.96 1.17 0.94 0.81
2 1.10 1.04 1.19 1.13 1.08
3 1.01 1.02 1.17 0.99 0.98
4 1.19 1.11 1.27 0.99 1.31
5 0.65 0.82 1.03 0.76 0.66
6 0.70 0.90 1.04 0.62 0.73

Table 7
Ef values for 6, 12 months ahead prediction across sites for wavelet based time series ana

Site Wavelet based method

6 months ahead forecast error

sym symw asym asymw sp0

1 0.29 0.07 �0.38 0.12 0.35
2 �0.21 �0.08 �0.43 �0.29 �0.18
3 �0.03 �0.07 �0.40 0.00 0.02
4 �0.44 �0.26 �0.64 0.00 �0.75
5 0.58 0.31 �0.07 0.42 0.55
6 0.50 0.19 �0.09 0.61 0.46
4 forecasts. In case of rainfall predictions, both sites 5 and 6
performed better in case of 6 MAF with low NRMSE values of
0.65 (site 5) and 0.62 (site 6). Correspondingly Ef values also indi-
cated good predictions in these cases. Under the scenario of 12
MAF, performance measures suggested that sites 5 and 6 could
result in smoother predictions of the time series.

When the results are examined from the standpoint of exten-
sion technique to be utilized for forecasting, it is seen that the opti-
mum predictions are obtained at different extensions without any
consistency, for both 6 MAF and 12 MAF. Also, at rainfall sites, sig-
nificant differences in the values of NRMSE (Table 6) are observed
across extensions methods particularly in the case 6 MAF. So, it
can be said that one cannot conclude upon the kind of extension
method to be used with time series and also choice of extension
method shall be an important factor in deciding the final forecasts.

In case of EMD based forecasting, the prediction results ob-
tained across six sites for 6 MAF and 12 MAF through NRMSE and
Ef measures are presented in Table 8. It is observed that in general,
EMD based forecasting algorithm underperformed when compared
with results from wavelet based forecasting methodology under
both the scenarios of 6 MAF and 12 MAF. Also, even in this method,
rainfall predictions in Table 8 are observed to be better than
streamflow forecasts. From the results of NRMSE it is seen that in
almost all the sites, 12 MAF yielded better results than 6 MAF.
From the results of Ef, it is inferred that EMD method would have
failed in predicting the peaks of the validation time series across
all the selected sites of the study. The forecasts selected from Ta-
bles 6 and 8 are presented site wise as well as prediction scenario
wise (6 MAF and 12 MAF) with each plot containing predictions
pertaining to two methods. Figs. 9–12 represent respectively the
6 MAF and 12 MAF results obtained from wavelet based method
and EMD based method across all the sites.

It is observed from Figs. 9 and 11 that, wavelet based analyses,
in most of the sites, have shown capabilities in predicting higher
extremes to an extent considering large time steps ahead of which
forecasts are made. This could turn out to be a critical factor in the
case of streamflow and rainfall and most importantly for a forecast
of longer time steps since there is a possibility of smoothening
which does not give much information.
s analysis by five extension methods.

12 months ahead forecast error

sym symw asym asymw sp0

0.85 0.92 1.00 0.82 0.82
1.22 0.99 1.17 1.38 1.19
1.15 1.08 1.15 1.23 1.07
1.04 1.10 1.33 1.52 1.35
0.96 0.95 1.08 0.99 0.98
0.99 0.93 0.94 0.91 0.97

lysis by five extension methods.

12 months ahead forecast error

sym symw asym asymw sp0

0.27 0.15 0.00 0.32 0.32
�0.51 0.00 �0.38 �0.92 �0.43
�0.36 �0.18 �0.34 �0.54 �0.18
�0.09 �0.24 �0.81 �1.35 �0.87

0.08 0.08 �0.18 0.01 0.03
0.01 0.12 0.10 0.16 0.06



Fig. 9. Prediction plots of six months ahead forecasts for six sites obtained based on wavelet based and EMD based time series analysis.

Table 8
NRMSE and Ef results for 6, 12 months ahead prediction across sites for EMD based time series analysis.

Performance measure Forecast Site

1 2 3 4 5 6

EMD based method
NRMSE 6 Months ahead 1.01 1.17 1.11 1.39 0.94 0.97

12 Months ahead 0.92 1.04 1.05 1.11 1.02 0.96

Ef 6 Months ahead �0.03 �0.37 �0.26 �0.97 0.10 0.05
12 Months ahead 0.14 �0.09 �0.12 �0.24 �0.06 0.07
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Also, it can be inferred from scatter plots (Figs. 10 and 12) that
the methods managed to capture the minima of the time series
effectively under both the scenarios of 6 MAF and 12 MAF. This as-
pect can be utilized in identifying dry periods in future with a rea-
sonable accuracy which can be attributed to possibility of future
droughts.

In the case of 6 MAF in Fig. 9, wavelet based method performed
well in estimating the peaks, although it failed to identify multi
peaks around same time scale. It is observed from the plots that
in most of the sites, 12 MAF (Fig. 11) are smoothened versions of
data fluctuating around mean for wavelet based predictions.

Furthermore, EMD based method, in general failed to predict
efficiently in both the scenarios (6, 12 MAF) as specified by the pre-
viously presented corresponding performance measures. Figs. 10
and 12 point out that the EMD based forecasts (represented by
blue dots) are slightly tending towards the mean of the data.

Impact of record lengths in case of streamflows (sites 1 and 2 of
Figs. 9 and 11) did not have any effect in forecast results for both
the methodologies. This could be due to the reason that the model
updation is carried out as blocks of data during calibration and val-
idation phases of the two methods (step 10 of Sections 5 and 6) due
to which the forecasting quality depends solely on block length
and is independent of data length.
Among the sites with high coefficient of variation (sites 3 and 4
of Figs. 9 and 11), site 3 has performed well with both methods in
tending to predict peaks for 6 MAF case although 12 MAF is
smoothened around the mean value. In case of site 4, the predic-
tions were poor. This could be because, it can be observed that
most of the values are skewed towards the low discharge values
and very few peaks are observed which increased the range of ob-
served values. Effectively, although coefficients of variation re-
mained high, values have occurred in the lower end of
streamflows which might make even the component time series
behave in similar fashion. Due to this, there can be a possibility
that time series models can model only lower values giving lesser
weight to peaks leading to poorer final predictions than that of site
3.

It is observed from the plots of site 3 in Figs. 9 and 11 that the
peaks have not been predicted properly in either of the methods. In
case of wavelet based method, this could be because the peaks are
considered under low frequency events which are filtered accord-
ingly by approximation or to some extent, by higher level details
depending up on the number of levels to which decomposition is
made. When these components in particular are not modeled
properly, this could be resulting in poorer prediction of peaks. So,
an improved methodology would be to model these components



Fig. 10. Scatter plots of six months ahead forecasts for six sites obtained based on wavelet based and EMD based time series analysis.

Fig. 11. Prediction plots of twelve months ahead forecasts for six sites obtained based on wavelet based and EMD based time series analysis.
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separately by some advanced forecasting technique, obtain the
forecasts, model rest of the components using standard time series
techniques, obtain the forecasts, add the forecasts of all the compo-
nents and check the predictability of the models. Similar explana-
tion could be applied in the case of EMD based technique. In this
case, low frequency capturing IMFs can be modeled separately
using advanced forecasting methods with rest of the IMFs being
forecasted by presently applied ARMA models and finally combine
the predicted components to obtain time series forecast.

Supporting the performance measures that are obtained previ-
ously, prediction plots of rainfall sites 5 and 6 in Fig. 9 demonstrate
that the wavelet based method yielded better 6 MAF compared to



Fig. 12. Scatter plots of twelve months ahead forecasts for six sites obtained based on wavelet based and EMD based time series analysis.
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EMD based method. So, it can be said that, with the current setup,
wavelet based algorithm can be applied for obtaining accurate
rainfall predictions at 6 MAF scenario.

Along with the present wavelet algorithm, decomposition
methodology followed by Zhou et al. (2008) is applied over site 1
data without using predictor–corrector model (that was used in
the later part of their work) at the end. The algorithm of Zhou
et al. (2008) involves decomposing entire data into components
and later calibrating and validating each component separately.
This does not agree with present method. It is observed that fore-
casts through the method of Zhou et al. (2008) were very accurate
when compared with present results. Fig. 13 shows the prediction
plot of 6 MAF and 12 MAF.

But, since the data is being decomposed first and later the com-
ponents are being divided into calibration and validation datasets,
Fig. 13. Wavelet based six months and twelve months ahead forecasts
some amount of future (validation) information is being sent into
the calibration system which is a modeling mistake. The proper
way of modeling would be to use data, decompose, forecast certain
number of values in components, at the end of which observed val-
ues are recorded, append these to previously used data, perform
decomposition again, forecast next set of values and so on. So, dur-
ing this process, data is being sent as blocks due to which there are
several breakages at the ends. These breakages in data lead to
boundary distortions when wavelet decomposition algorithm is
applied. In order to explain this, an experiment is carried out
where data decompositions were made in two cases, one in which
initially a 150 length data is subjected to one level decomposition
algorithm using db5 mother wavelet to obtain an approximation
and detail. In the second case, data is broken down into three
sub datasets each of 50 length and each of these sets are subjected
for site 1 obtained through the methodology of Zhou et al. (2008).



Fig. 14. Stem plots of differences between respective approximations and details of two cases.
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individually to one level wavelet decomposition algorithm using
same db5 mother wavelet. Later the three approximations and
three detail sets obtained from case two are appended respectively
to obtain final approximation and detail sequences each of 150
length that can be matched with the results of the first case. In
both the situations, symmetric extension method is used. Fig. 14
shows plots of difference between respective approximations and
details of the two cases.

From Fig. 14, it is observed that, in both approximation and de-
tail, at the joints i.e., at 50 and 100, significant spikes are observed
whereas for rest of the length the difference is zero. The occurrence
of spikes is due to the effect of boundary distortion. The rest of the
extension methods, though tried to reduce the variation, were not
successful enough in bringing the absolute difference to zero at
boundaries. Similar effects are observed in case of EMD with its
IMFs and residual at boundaries. This effect of boundary distortion
could be minimal in case of application of wavelets and EMD in
compression or denoising. For the present study, values at the
joints are of paramount importance since these are the values that
are modeled by ARMA.

Integrating the inferences from results and experiment con-
ducted, it can be said that effects of the models are twofold. One,
at the stage of decomposition, wavelets and EMD have significant
boundary distortions in their components. The values at bound-
aries are critical for component time series modeling. Two, model-
ing and forecasting the component time series for larger time steps
ahead such as 6 and 12 months might make the predictions
smoother not being able to capture the extremes of the data. On
the other hand, with these algorithms, prediction of shorter time
steps such as 1 month ahead does not make sense as the models
turn out to be computationally very expensive. So, there has to
be a clear tradeoff between boundary effects and component mod-
eling in influencing the results. It is interpreted that an inverse
relation exists between the number of times decomposition algo-
rithm need to be employed and the number of time steps ahead
of which forecasts are needed to be obtained. Suppose, if one does
require to forecast both 6 MAF and 12 MAF of ten years of monthly
time series using the proposed decomposition based forecasting
algorithms, it so happens that in the case of 6 MAF, due to lesser
number of time steps, time series methods would yield better pre-
dictions but on the other hand, the decomposition algorithms need
to be employed 20 times due to which the error that occurs due to
time series distortion at the ends also increases simultaneously. At
the same time, in the case of 12 MAF, time series algorithms are
needed to be used only 10 times which would decrease the error
due to distortions but simultaneously, smoother predictions are
expected from time series models due to greater time steps ahead
increasing the forecast error.
Now, it is seen from Table 8 that the predictions of 12 MAF are
better than that of 6 MAF in the case of EMD based forecasting re-
sults. From the inverse relation explained above, it can be inter-
preted that the better performance of 12 MAF could be due to
stronger impact of boundary distortions occurring during applica-
tion of EMD over the effect of smoothening due to longer time
steps ahead predictions. This situation did not occur with the
wavelet based method’s predictions which could be due to stron-
ger impact of weaker prediction capabilities of time series models
(inability to yield accurate predictions at lager time steps ahead
such as 12 MAF) over the effect of border distortions due to wave-
let decomposition.

So, to deal with boundary effects, some more extension meth-
ods can be explored both in wavelets as well as EMD. In case of
wavelets, the algorithm can be applied to some other wavelet func-
tion (such as symlets and biorthogonal wavelets) that have effects
on the components accordingly. When it comes to component
modeling, model selection criteria can be altered to verify if better
models are selected. Research can be carried out in extending the
domain of time series models that are applied to components of
such nonlinear time series models which can model the compo-
nents efficiently despite boundary effects.
8. Conclusions

For the present work, the predictability of wavelet based and
EMD based time series modeling techniques are studied under var-
ious case studies of monthly total streamflow (four non-stationary
sites) and monthly total rainfall (two non-stationary sites) loca-
tions. The basic modeling technique in both algorithms is to
decompose a time series into components and forecast them indi-
vidually, the reconstruction of which yields future time series pre-
dictions. The results indicate that both the models have predicted
the lower extremes of time series at longer time steps ahead from
which it can be said that the algorithms can be used to model
droughts despite stationarity issues which is an important factor
for tropical countries like India.

With the current setup, wavelet based algorithm can be applied
to rainfall data to result in accurate 6 months ahead forecasts.

Further research can be undertaken to modify extension tech-
niques in both the models in order to suppress the boundary ef-
fects or a possibility of using different wavelet all together can
also be explored. The domain of modeling techniques applied to
components can be shifted towards nonlinear time series models
that can read the boundary effects more efficiently.

With a reasonable accuracy, wavelets based method is prefera-
ble over EMD based method in predicting some of the maxima in
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the data at lesser time steps ahead such as six months. So, modify-
ing the model parameters of wavelet algorithm such as mother
wavelet, model selection criteria and pitching in nonlinear time
series analysis, there is a rich possibility that the wavelet algo-
rithms can be even used to for flood modeling.
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