
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260405562

Ranking of global climate models for India using multicriterion analysis

Article  in  Climate Research · August 2014

DOI: 10.3354/cr01222

CITATIONS

92
READS

2,904

2 authors:

Some of the authors of this publication are also working on these related projects:

Guest Editor, ISH Journal of Hydraulic Engineering, Special issue on “Evolutionary Algorithms in Water Resources Engineering” View project

Rainfall Analysis from Satellite Data View project

Srinivasa Raju Komaragiri

BITS Pilani, Hyderabad

70 PUBLICATIONS   2,213 CITATIONS   

SEE PROFILE

D Nagesh Kumar

Indian Institute of Science

251 PUBLICATIONS   6,466 CITATIONS   

SEE PROFILE

All content following this page was uploaded by D Nagesh Kumar on 30 July 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/260405562_Ranking_of_global_climate_models_for_India_using_multicriterion_analysis?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/260405562_Ranking_of_global_climate_models_for_India_using_multicriterion_analysis?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Guest-Editor-ISH-Journal-of-Hydraulic-Engineering-Special-issue-on-Evolutionary-Algorithms-in-Water-Resources-Engineering?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Rainfall-Analysis-from-Satellite-Data?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasa-Raju-Komaragiri?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasa-Raju-Komaragiri?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/BITS-Pilani-Hyderabad?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasa-Raju-Komaragiri?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Nagesh-Kumar?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Nagesh-Kumar?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Science?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Nagesh-Kumar?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/D-Nagesh-Kumar?enrichId=rgreq-881c94253713b436a7892b88234462cd-XXX&enrichSource=Y292ZXJQYWdlOzI2MDQwNTU2MjtBUzoyNTY4NzQxNTUwODE3MjhAMTQzODI1NDk3OTkzMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


CLIMATE RESEARCH
Clim Res

Vol. 60: 103–117, 2014
doi: 10.3354/cr01222

Published online June 17

1.  INTRODUCTION

Changes in the concentration of greenhouse gases
and in the radiative balance of the atmosphere cause
corresponding changes in temperature and precipi-
tation patterns (Bates et al. 2008). One of the impor-
tant impacts of future climate changes on society will
be changes in regional water availability for various
purposes such as drinking water supply and irriga-
tion, and the occurrence of extreme events, including
floods and droughts. To address this problem, global
climate models (GCMs) have been developed to sim-
ulate the present climate and are gaining importance
due to their ability to project future climate changes

and consequently their impacts, e.g. on hydrologic
systems (Smith & Chiew 2010, Pitman et al. 2012).

The climate system is represented in a simplified
form in GCMs, with combinations of models for dif-
ferent components of the climate system. While
GCMs demonstrate significant skill at continental
and hemispheric spatial scales and incorporate a
large proportion of the complexity of the global sys-
tem (Reichler & Kim 2008), they are inherently un -
able to represent local subgrid-scale features and
dynamics. However, in considering impacts of global
climate changes, the focus is primarily on societal
responses to the local and regional consequences of
the projected large-scale changes.
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Xu (1999) inferred that the accuracy of GCMs (1)
de creases with increasingly finer spatial and tempo-
ral scales; (2) decreases from free tropospheric vari-
ables to surface variables, while the variables at the
ground surface have direct use in water balance
computations; (3) decreases from climate-related
variables — i.e. wind, temperature, humidity and air
pressure — to precipitation, evapotranspiration, run -
off and soil moisture, while the latter variables are of
key importance in hydrologic regimes.

The uncertainties associated with the formulation
of GCMs arise due to a number of factors and lead to
significant variability across model simulations of fu -
ture climates. These factors include effects of aero -
sols that are differently parameterised in different
GCMs, initial and boundary conditions for each
GCM, para meter and model structure of GCMs, ran-
domness, and future greenhouse gas emissions.
These uncertainties accumulate from various levels,
from the GCM to the downscaling levels and may
propagate down to the local levels, which may, in
turn, affect the adaptation studies that would be used
as the basis for implementation. In other words, cli-
mate model simulations at a local or regional scale
can be highly uncertain (Mu jum dar & Nagesh Kumar
2012). Moreover, in many regional hydrologic assess-
ments, time and resource constraints limit the num-
ber of GCMs that can be used in determining impacts
(Wilby & Harris 2006). An additional complexity is
the lack of ob served data to evaluate the GCM out-
puts in modelling a future climate. All of these
aspects necessitate evaluating the available GCMs
with more accuracy. Knutti et al. (2010) suggested
that the skill or performance of the models needs to
be defined by comparing simulated patterns of
 present-day climate with the observed data.

Simple, effective and meaningful metrics, indi -
cators,  measures or criteria are required to rank the
GCMs across time and space to evolve a subset of
models that can be employed for hydrological model-
ling applications (Randall et al. 2007, Tebaldi &
Knutti 2007). These metrics may strengthen the con-
fidence level of outputs of GCMs, as these are the
main inputs to the regional climate models or down-
scaling methods, and the evolved forecasts of hydro-
logic variables incorporating the impact of climate
changes are used in planning mitigation measures. A
brief literature review related to the various perform-
ance metrics is presented next.

Giorgi & Mearns (2002) introduced the reliability
ensemble averaging (REA) method for calculating
average, uncertainty range and a measure of reliabil-
ity of simulated climate changes at the sub-continen-

tal scale from ensembles of 9 different atmosphere−
ocean general circulation model simulations with 2
emission scenarios. They considered 2 reliability cri-
teria: (1) performance of the model in reproducing
present-day climate and (2) convergence of the sim-
ulated changes across models. The REA method was
applied to mean seasonal temperature and precipita-
tion changes for the late decades of the 21st century,
over 22 land regions of the world. Similar studies
were reported by Murphy et al. (2004) and Dessai et
al. (2005).

Perkins et al. (2007) evaluated 14 GCMs using a skill
score approach which is based on their ability to simu-
late daily rainfall and daily minimum and maximum
temperatures for 12 regions of Australia. The evalua-
tion was based on how well each climate model could
capture the observed probability density functions for
each variable and each region. They concluded that
theskillscoremethodologyisuseful inassessingwhich
of the climate models should be used by the impact
groups. Similar studies were reported by Maxino et al.
(2008), Perkins et al. (2009, 2013) and Anandhi et al.
(2011). Suppiah et al. (2007) assessed the performance
of 23 models with respect to how well they reproduced
patterns of seasonal average temperature, mean sea
level pressure and rainfall over the Australian conti-
nent. They reduced the size of the sample to 15 by
rejecting those models which frequently failed to meet
certain root mean square error (RMSE) and spatial cor-
relation thresholds across the 4 seasons. Gleckler et
al. (2008) developed the model climate performance
index (MCPI) and the model variability index (MVI),
whicharebasedontherelativeerror/RMSEmethodol-
ogy. They suggested developing a broad suite of met-
rics to characterize the model performance from which
it may be possible to identify the optimal subsets for
various applications. Tang et al. (2008) asses sed the
model convergence by exploring en semble mean
square, ensemble spread and the ratio of  signal- to-
noise, and concluded that predictions from different
models vary markedly if the model convergence is
poor. Mujumdar & Ghosh (2008) fo cused on modelling
GCM and scenario uncertainty using the possibility
theory in projecting stream flow of the Mahanadi
River in Hirakud, India. Three GCMs with 2 green -
house emission scenarios were used. They used the
C-coefficient, which is based on a cumulative distribu-
tionfunctionofthedataasaperformancemeasure,and
ranked the GCMs by scenario.

Smith & Chandler (2009) adopted a similar ap -
proach to that of Suppiah et al. (2007), but restricted
their assessment to rainfall only to assess the per-
formance of 22 GCMs, for the case of Australia. John-
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son & Sharma (2009) developed a variable conver-
gence score (VCS) method to rank 8 variables based
on the coefficient of variation of an ensemble of 9
GCMs for the case study of Australia. They men-
tioned that this methodology allows for quantitative
assessment between different hydro-climatic vari-
ables. They concluded that there is no widely accep -
ted metric for assessing climate models as a whole.
Macadam et al. (2010) ranked 17 GCMs for each
20 yr period, based on grid box-wise root mean
square differences. They used the ‘turnover’ princi-
ple, which relates the percentage of GCMs ranked in
the top ‘n’ for 1 time period that are not among the
top ‘n’ for the following time period. Reshmi Devi &
Nagesh Kumar (2010) presented a state-of-the-art
review on intercomparisons of GCMs for hydrologic
predictability which can be used as the basis for
ranking GCMs. Raje & Mujumdar (2010) formulated
an uncertainty modelling methodology whereby, in
addition to GCM and scenario uncertainty, the un -
certainty in the nature of the downscaling relation-
ship was explored with a generalised uncertainty
measure using the Dempster-Shafer evidence theory.
They used 3 GCMs for 3 scenarios: A2, A1B, B1. The
methodology was tested for projecting the monsoon
stream flow of the Mahanadi River at the Hirakud
Reservoir in Orissa, India. The results showed an
increasing probability of extreme, severe and moder-
ate droughts due to climate change. Fordham et al.
(2011) made efforts to select a suitable ensemble of
GCMs for Australia based on 20 GCMs for 4 seasons
individually. Precipitation was considered as a cli-
mate variable. Complementary comparison metrics,
namely, bias, correlation, RMSE, Reichler-Kim index
and Taylor-index, were considered. Ojha et al. (2013)
ap plied the VCS method for the case of India. They
used an ensemble of 17 GCMs and ranked 10 vari-
ables. The results indicated higher consistency
across GCMs for pressure and temperature, and
lower consistency for precipitation and related vari-
ables. Regional assessments, while broadly consis-
tent with the overall results, indicated low conver-
gence in atmospheric attributes for the north-eastern
part of India.

It is evident from the above literature review that in
most of the studies, either the error-based approaches
(Suppiah et al. 2007, Gleckler et al. 2008, Tang et al.
2008, Smith & Chandler 2009, Macadam et al. 2010,
Fordham et al. 2011) or the skill score-based ap-
proaches (Perkins et al. 2007, 2009, 2013, Maxino et
al. 2008, Anandhi et al. 2011) were considered inde-
pendently while ranking GCMs. No comprehensive
study has been reported wherein error-based and

skill score approaches were jointly ap plied for rank-
ing GCMs. No decision-making ap proach has been
used to date for ranking. In addition, a number of per-
formance metrics, used by various researchers else-
where, have not been used for Indian climate condi-
tions for assessing their suitability and applicability.

Bearing the above knowledge gap in mind, the
objectives of the present study are formulated as fol-
lows. (1) Identify performance indicators: 5 perform-
ance indicators were chosen, namely, the  correlation
coefficient (R), normalised RMSE (NRMSE), ab solute
normalised mean bias error (ANMBE), average ab -
solute relative error (AARE) and skill score (SS), for
the climate variable ‘precipitation rate’. (2) Develop a
suitable methodology for determining the weights of
these 5 indicators. The Entropy method was em -
ployed to determine the weights of the 5 indicators.
(3) Develop a methodology for ranking of GCMs:
exploring the applicability of a multicriterion deci-
sion making outranking method, viz. PROME THEE-
2 (Preference Ranking Organisation Method of
 En richment Evaluation). (4) Demonstrate the appli-
cability of the Spearman rank correlation (rS) to eval-
uate the association between the different ranking
patterns. (5) Evaluate the suitability of GCMs for
India and for 4 river basins in India (Godavari,
Krishna, Mahanadi and Cauvery). (6) Develop a sim-
ple but effective methodology for forming GCM
ensembles.

We selected a total of 11 GCMs to be ranked which
is a subset of the 23 available GCMs used as part of
the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change (Meehl et al. 2007).
The abbreviations of the selected 11 GCMs and the
organisations involved are presented in Table 1.
These 11 GCMs were evaluated for India (covering
73 grids of 2.5° × 2.5°) using the 5 performance indi-
cators described above. An effort was also made to
rank the GCMs for 4 river basins (Godavari, Krishna,
Mahanadi and Cauvery) in peninsular India. The
Upper Malaprabha catchment in Karnataka, India,
was chosen to demonstrate the Entropy and
PROMETHEE-2 methods. Fig. 1 presents a flow chart
of the present methodology, and Fig. 2 shows the
location of the Upper Malaprabha catchment and the
4 river basins. 

2.  PERFORMANCE INDICATORS

A performance indicator or metric is a quantifiable
measure for any GCM to determine how well it
 simulates the observed data. As mentioned in the lit-
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erature review above, different researchers have
chosen different performance indicators. In the pres-
ent study, we considered 5 indicators, namely, R,

NRMSE, ANMBE, AARE, and SS, among the numer-
ous performance indicators that are currently avail-
able (Milton & Arnold 2007, Wilks 2011). Of these 5,

106

Start

Formulate payoff matrix of 11 GCMs versus performance indicators (R, NRMSE, ANMBE, AARE and SS 
can be computed from Eq. 1 to 5) for each grid point

Determine weights of indicators (R, NRMSE, ANMBE, AARE, SS) by Entropy method for each grid point 

Apply PROMETHEE-2 (Preference Ranking Organisation METHod of Enrichment Evaluation)
(Inputs: Payoff matrix, weights of indicators) for each grid point 

Determine pairwise difference between values of GCMs for each indicator dj (a,b); determine type of  
criterion function, indifference and/or preference threshold values for each indicator

Compute preference function, multicriterion preference Index 

Compute net φ value for each GCM and corresponding rank

Select the best/most suitable GCM that has the highest net φ value  

Any need to specify another set of parameters?

Print results

Stop

Yes

No

Fig. 1. Methodology for the selection of suitable global climate models (GCMs). Performance indicators are R: correlation coef-
ficient, NRMSE: normalised root mean square error, ANMBE: absolute normalised mean bias error, AARE: average absolute 

relative error, SS: skill score

S.No                          GCM                                                              Organisation                                                          Acronym

1                    BCCR-BCCM 2.0                         Bjerknes Centre for Climate Research, Norway                           BCCR
2                    INGV-ECHAM 4                         Istituto Nazionale Di Geofisica E Vulcanologia, Italy                   ECHAM
3                    GFDL2.0                                        Geophysical Fluid Dynamic Laboratory, USA                               GFDL2.0
4                     GFDL2.1                                        Geophysical Fluid Dynamic Laboratory, USA                               GFDL2.1
5                     GISS                                              Goddard Institute for Space Studies, USA                                     GISS
6                    IPSL-CM 4                                    Institut Pierre Simon Laplace, France                                            IPSL
7                    MIROC3                                        Centre for Climate Research, Japan                                               MIROC3
8                    MRI-CGCM2                                Meteorological Research Institute, Japan                                      CGCM2
9                    NCAR-PCMI                                 Parallel Climate Models, NCAR, USA                                            PCMI
10                  UKMO-HADCM3                        UK Met Office, UK                                                                           HADCM3
11                  UKMO-HAD GEM1                     UK Met Office, UK                                                                           HADGEM1

Table 1. Details of GCMs considered and their acronyms
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NRMSE, ANMBE and AARE are in the error-based
category. As there are neither agreed measures of
performance nor superiority of any one indicator that
can be used to rank models, an attempt was made by
em ploying the 5 performance indicators simultane-
ously to evaluate the GCMs.

(1) The R provides information on the strength of
the linear relationship between the observed and the
computed values. R values vary between −1 and +1,
where a value close to 1.0 indicates good model per-
formance.

(1)

where rxy is the R between observed and projected
values x and y; xi is the observed value; xav is the
mean of observed values; yi is the projected value; yav

is the mean of projected values; sx and sy are the stan-
dard deviations of x and y, respectively; and n is the
number of observations.

(2) NRMSE is a measure of the difference between
the observed values and the model projected values.

(2)

Smaller values of NRMSE indicate better perform-
ance of the model. Ideally, a value of 0 is preferred.

(3) ANMBE is computed as

(3)

Here again, smaller values indicate better perform-
ance of the model, and ideally, a value of 0 is preferred.

(4) AARE is the average of the absolute values of
relative errors and is expressed as

(4)

where .

Smaller values again indicate better performance
of the model, and a value of 0 is preferred.

(5) SS (Perkins et al. 2007) provides a measure of
similarity between 2 probability density functions
(PDFs), which allows comparison across the entire
PDF, and is expressed as

(5)

where nb is the number of bins used to calculate the
PDF for a given region, fm is the frequency of values in
the given bin from the chosen GCM, and fo is the fre-
quency of values in the given bin from the ob served
data. If a model simulates the observed conditions
perfectly, the SS is 1, which is the total sum of the
binned values in a given PDF. If a model simulates the
observed PDF poorly, the SS will be close to 0.

3.  METHODS

(1) The Entropy method was employed to deter-
mine the weights of indicators (Pomerol & Romero
2000, Raju & Nagesh Kumar 2010). The weights of
indicators for each grid depend on the formulated
gridwise payoff matrix, i.e. GCMs versus perform-
ance indicator array (see Table 1 for the Upper Mala -
prab ha catchment). The main advantage of the En -
tropy method is that the weights are determined for
each indicator without the intervention of a decision
maker, which is expected to reduce the undue bias
towards any indicator. An added advantage of this
method is that the variation of weights of indicators
across the various grid points provides an opportu-
nity for the water resources planner to understand
their importance to the outcome. The methodology is
based on the amount of information available (mea-
sured by its entropy value) and its relationship with
the importance of the criterion. Pomerol & Romero
(2000) explained the Entropy method in the following
steps:

For the given normalised payoff matrix, pij, (where
i is the index for GCMs; j is the index for indicators),
entropy Ej for indicator j for the set of GCMs is com-
puted as

( )( )
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Fig. 2. Location of the Upper Malaprabha catchment and the
Godavari, Krishna, Mahanadi and Cauvery River basins in 
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for j = 1, …, J (6)

where i = 1, …, N is the number of GCMs (11 shown
in Table 1) and j is the number of indicators (5 shown
in Table 1).

Degree of diversification, Dj, of the information
provided by the outcomes of indicator j is

for j = 1, …, J (7)

Normalised weights of indicators are computed as 

(8)

If the entropy value is high, the uncertainty con-
tained in the criterion vector is high (step 1; Eq. 6),
diversification of the information is low (step 2;
Eq. 7), and correspondingly the criterion is less im -
portant (step 3; Eq. 8).

(2) PROMETHEE-2, a multicriterion decision-mak-
ing (MCDM) method of outranking nature, was em-
ployed to rank the GCMs (Brans et al. 1986, Pomerol
& Romero 2000, Raju & Nagesh Kumar 2010). This
method uses the preference function. Mathematically,
preference function Pj(a,b) is based on the pairwise
difference dj(a,b) between the evaluations fj(a) and
fj(b) of GCMs a and b for indicator j, the chosen crite-
rion function, the indifference qj and the preference
thresholds pj. Six types of criterion functions are avail-
able: (i) the usual criterion, (ii) a quasi criterion, (iii) a
criterion with linear preference and no indifference
area, (iv) a level criterion, (v) a criterion with linear
preference and indifference area, and (vi) a Gaussian
criterion. In this study, the usual criterion function was
employed in which even a slight positive difference
dj(a,b) counts while comparing 2 GCMs i.e.

(9)

In the other criterion functions, either the indiffer-
ence parameter qj (representing the largest differ-
ence that is considered negligible in comparing 2
GCMs using that indicator) or the parameter pj (rep-
resenting the smallest difference that justifies a strict
preference for one of the two GCMs using that indi-
cator) or both are required. It may be difficult to pre-
cisely identify these parameters, which may create
more uncertainty (Brans et al. 1986). The multicrite-
rion preference index, π(a,b), a weighted average of
the preference functions Pj(a,b) for all the indicators,
is defined as:

(10)

(11)

(12)

(13)

where wj is the weight assigned to the indicator j;
φ+(a) is the outranking index of a in the GCM set N;
φ–(a) is the outranked index of a in the GCM set N;
φ(a) is the net ranking of a in the GCM set N, and J is
the number of indicators. The GCM having the high-
est φ(a) value is considered to be the most suitable
GCM.

(3) The Spearman rank correlation, rS, is useful to
determine the measure of association be tween the
ranks achieved in 2 different scenarios. If Ua and Va

denote the ranks achieved by the above situation(s)
for the same GCM a, then R is defined as (Gibbons
1971):

(14)

where Da is the difference between ranks Ua and Va

achieved by the same GCM a, and N is the number of
GCMs. R values vary between −1 and +1.

(4) Nested bias correction (NBC; Johnson &
Sharma 2011, 2012) is an approach that compensates
for some of the shortcomings of GCM-predicted rain-
fall values, corrects for systematic biases of GCM
outputs (e.g. mean, standard deviation, lag-one cor-
relation) at multiple timescales, and allows the use of
GCM outputs directly in hydrologic studies. When
combined with spatial disaggregation, bias correc-
tion techniques can provide model inputs at a range
of scales suitable for hydrologic studies (Hashino et
al. 2007, Johnson & Sharma 2009, 2011, 2012, Mehro-
tra & Sharma 2010, Mehrotra et al. 2013). In the pres-
ent study, we followed the approach suggested by
Johnson & Sharma (2011, 2012), with the exception
that bias in the lag-one autocorrelation statistic at the
various time scales was neglected.

The NBC approach represents a nested procedure
which addresses bias across pre-specified multiple
timescales which are as follows: Denoting a variable
for month i in year k as yi,k:

(i) Standardisation to create y’i,k by subtracting the
model monthly mean (μmod,i) and dividing by the
standard deviation (σmod,i) for that month as shown in
Eq. (15):

(15)
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(ii) Interposition of the mean (μobs,i) and standard
deviation (σobs,i) of reanalysis data to create a trans-
formed time series y*i,k at the monthly level:

(16)

(iii) Aggregation of transformed monthly series
(y*i,k) into the annual scale zk. The standardisation
and transformation steps are repeated at the annual
time step.

(iv) Transformation of the annual time series to z*k
which exhibits the mean and standard deviation in
the recorded annual data.

Subsequent to the above steps, the raw GCM sim-
ulation at the monthly time step is transformed by the
NBC to:

(17)

where Yi,k represents the NBC-transformed variable.
Using the transformation of Eq. (17), the corrections
at monthly and annual scales can be applied to the
monthly time series at the same time to create a 1-
step correction (Srikanthan 2009). In Eq. (17), 

is a weighing factor, i.e. the ratio of the 

monthly corrected value to the raw GCM value for
month i and year k, multiplied by the ratio of the
yearly corrected value to the aggregated GCM rain-
fall for year k. The above equations were used to
transform the GCM simulations for the current
 climate.

4.  DATA AND RESULTS

4.1.  Data

The National Centers for Environmental Predic-
tion-National Center for Atmospheric Research
(NCEP/  NCAR) reanalysis precipitation rate data
were used as a proxy to the observed data (Kalnay et
al. 1996, Kistler et al. 2001). The NCAP/NCAR
monthly data at a grid resolution of 2.5° × 2.5° for the
period 1950− 1999 (50 yr and 12 mo = 600 monthly
data) were used for the analysis. While there are
known uncertainties in this dataset due to changes in
the observing systems, the modelling deficiencies
and human-induced errors in assimilation, the uncer-
tainty in NCEP/NCAR datasets varies across vari-
ables (Kistler et al. 2001, Ojha et al. 2013). The cho-
sen GCMs use grid cells of different sizes with
non-uniform placement. The outputs of all the GCMs
were interpolated to a common grid (2.5° × 2.5°),

since these were to be compared against the reanaly-
sis data. These outputs were interpolated using the
weighted mean of the 4 nearest values, with weights
being assigned based on the inverse square distance
relationship (Johnson & Shar ma 2009). To smooth the
changes in the variable projections, a spatial filtering
process was adopted wherein each grid cell value was
replaced by the average of the 9 neighbouring grid
cells. Bias correction as discussed in Section 3 recog-
nizes that the GCM outputs for the current climate
may have biases when compared to the ob served
data. The correction process adjusts the GCM outputs
to match the mean and variance of the recorded his-
torical data. In this case, grid cell averaged data were
corrected for bias. Bias correction was carried out for
each pixel on a monthly basis.

In the present study, gridwise (various latitude and
longitude combinations resulting in 73 grids) studies
were explored to assess how the individual GCMs
should be prioritised with reference to the 5 chosen
indicators using PROMETHEE-2. However, the aver-
age ranking approach (Bui 1987) was employed to
aggregate the perspective for all of India (for all
73 grid points), as well as for the 4 chosen river
basins (Godavari, 22 grids; Krishna, 17; Mahanadi,
15;  Cauvery, 8).

4.2.  Case study of upper Malaprabha catchment

4.2.1.  Analysis of indicators

For demonstration of the Entropy and PRO ME -
THEE-2 methods, we chose the Upper Mala prabha
catchment, Karnataka State, India, located be tween
15° 00’ and 16° 12’ N and between 74° 14’ and
76° 05’ E. The catchment area of the river up to the
dam site (2564 km2) was considered in this study.

Table 1 presents the values obtained for the 5 indi-
cators (R, NRMSE, ANMBE, AARE and SS, Eqs. 1−5)
for the 11 chosen GCMs. Minimum or 0 error is desir-
able in the case of NRMSE, ANMBE and AARE,
whereas an ideal value of 1 is desirable for R and SS.
A negative sign is placed before the values related to
NRMSE, ANMBE and AARE to make them maximisa-
tion type and to be compatible with R and SS in
Table 1. Table 1 shows that in the case of R (Eq. 1),
MIROC3 was correlated well with the observed data
with a value of 0.8416, whereas a minimum R was ob-
served for PCMI with a value of 0.3553. R was com-
puted from a temporal perspective (600 data sets) for
each grid point. This aspect is extended spatially for
all 73 grid points covering India.
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Similar trends were observed for SS (Eq. 5). In this
case, MIROC3 shows 85.67% similarity with the ob -
served PDFs, whereas PCMI shows only 62.83% sim-
ilarity. In the case of the NRMSE indicator (Eq. 2),
MIROC3 is the preferred GCM, with an NRMSE
value of −0.6224, whereas IPSL is the least preferred
(NRMSE = −1.2539). For ANMBE (Eq. 3) as well,
MIROC3 is the preferred GCM (−0.0613) whereas
IPSL is the least preferred (−0.7082). For AARE
(Eq. 4), CGCM2 and ECHAM are the most and least
preferred GCMs, respectively. The above analysis
indicates that each indicator responds differently for
various GCMs. In the present study, an effort was
made to explore all 5 indicators simultaneously to
assess their applicability (and their relative contribu-
tion) while ranking the GCMs.

4.2.2.  Application of the Entropy method

All indicator values in Table 2 were normalised 

using to ensure that the criterion with a larger 

range would not dominate the criterion with a
smaller range, and to make them compatible with the
requirements of the Entropy method. Table 2 also
presents total entropy Ej (Eq. 6), the degree of diver-
sification Dj (Eq. 7) and the normalised weight wj of
each indicator (Eq. 8). Among the 5 indicators,
ANMBE has the highest importance value (54.81%),
which means that its effect on ranking of GCMs is
significant. The total contribution of R, NRMSE and

SS is less than 20%, whereas AARE contributes
26.4%.

4.2.3.  Application of PROMETHEE-2

The usual criterion function was employed (Brans
et al. 1986). In the case of the usual criterion (Eq. 9),
the elements of the preference function matrix are ei-
ther 0 or 1 (Raju & Nagesh Kumar 2010). For example,
the pairwise difference of values in Table 2, between
BCCR and GFDL2.0, for R is 0.7751 − 0.7868 =
−0.0117 and so the corresponding value of the prefer-
ence function under the usual criterion (Eq. 9) is 0 (as
−0.0117 < 0). Conversely, the pairwise difference be-
tween GFDL2.0 and BCCR for R is 0.0117 and the cor-
responding value of the preference function is 1 (as
0.0117 > 0). In this way, the pairwise preference func-
tion values are computed for each indicator. Weights
estimated by the Entropy method, hereafter termed
the varying weight (VW) scenario, were 0.0976,
0.0729, 0.5481, 0.2640 and 0.0174 (for R, NRMSE,
ANMBE, AARE and SS, re spectively), and were used
to compute the weighted preference function values,
i.e. the multicriterion preference index (Eq. 10).
These values are presented in Table 3. All diagonal
values are 0 because of the comparison of a GCM
with itself. Table 4 presents φ+, φ– and φ values corre-
sponding to each GCM and the ranking pattern of the
GCMs. For example, in the case of MIROC3, the av-
erage of the values in the row corresponding to
MIROC3 (Eq. 11) in Table 3, i.e. the sum of all ele-
ments in that row/ (number of elements − 1) = (1 + 1 +

( )

( )
1

f i

f i

j

j
i

N

∑
=

GCM                                                           R                         NRMSE                   ANMBE                    AARE                         SS

BCCR                                                      0.7751                    −0.7960                   −0.2744                   −1.7127                    0.7717
ECHAM                                                  0.7866                    −0.7573                   −0.1619                   −1.8639                    0.6833
GFDL2.0                                                 0.7868                    −0.8286                   −0.4157                   −0.8080                    0.8150
GFDL2.1                                                 0.7395                    −0.7871                   −0.1551                   −1.2731                    0.8350
GISS                                                        0.8275                    −0.8221                   −0.4786                   −0.7539                    0.7783
IPSL                                                         0.4740                    −1.2539                   −0.7082                   −1.0124                    0.6583
MIROC3                                                 0.8416                    −0.6224                   −0.0613                   −1.3811                    0.8567
CGCM2                                                  0.7708                    −0.9386                   −0.4985                   −0.6556                    0.7550
PCMI                                                       0.3553                    −1.1779                   −0.4899                   −1.6149                    0.6283
HADCM3                                               0.8018                    −0.8793                   −0.5092                   −0.8002                    0.8100
HADGEM1                                             0.8064                    −0.9422                   −0.5686                   −0.7010                    0.7883
Total entropy (Eq. 6)                              0.9896                    0.9922                   0.9416                   0.9719                    0.9982
Degree of diversification (Eq. 7)           0.0104                    0.0078                   0.0584                   0.0281                    0.0018
Normalised weights (Eq. 8)                   0.0976                    0.0729                   0.5481                   0.2640                    0.0174

Table 2. Values of 5 performance indicators obtained for the 11 chosen global climate models (GCMs) for the Upper Mala-
prabha catchment, India. GCMs are described in the ‘Introduction’. Performance indicators are R: correlation coefficient,
NRMSE: normalised root mean square error, ANMBE: absolute normalised mean bias error, AARE: average absolute relative 

error, SS: skill score
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0.736 + 0.736 + 0.736 + 0.736 + 0.736 + 1 + 0.736 +
0.736)/10 = 0.8152 (φ+). Similarly, the average of the
values in the column corresponding to MIROC3
(Eq. 12) in Table 3, i.e. the sum of all elements of that
column/(number of elements − 1) = (0 + 7×0.264)/10 =
0.1848 (φ–). The value of φ (Eq. 13) is the difference
between φ+ and φ–, which is 0.6304 in this example. φ
values of other GCMs are also presented in Table 4.
The GCM having the highest φ value is considered
best. Table 4 shows that MIROC3 has the highest φ
value of 0.6304 and is therefore considered the best
model (Rank 1), followed by GFDL2.1 with a φ value
of 0.3848. IPSL is ranked lowest due to its low φ value
of −0.7130. MIROC3, GFDL2.1 and GISS occupy the
first 3 positions.

Similar efforts were also made by adopting equal
weights (hereafter termed the equal weight, EW, sce-
nario), i.e. 0.2 each to the 5 indicators. Table 5
presents the corresponding multicriterion preference
index values. Table 4 presents the resultant values of

φ+, φ–, φ and ranking pattern corre-
sponding to the EW scenario. In this
scenario, MIROC3, GISS and GFDL2.1
occupy the first 3 positions with φ val-
ues of 0.72, 0.32 and 0.28. The lowest
positions are occupied by IPSL and
PCMI, with a φ value of −0.72.

4.2.4.  Application of the Spearman
rank correlation

Ranks obtained for 11 GCMs using
PROMETHEE-2 in the VW scenario
and EW scenario are shown in
Table 4. For computing the Spearman
rank correlation, rS (Eq. 14), the Da

values are −2, −2, 0, −1, 1, 0, 0, −2, 0,
3 and 3, and the Da

2 values are 4, 4, 0, 1, 1, 0, 0, 4, 0,
9 and 9, respectively. The value is 32, and the
corresponding correlation coefficient value is 0.8545.

MIROC3, GISS and GFDL2.1 occupied the first 3
positions in both the scenarios. Hence these 3 GCMs
were explored further for downscaling/hydrological
modelling applications.

4.3.  Case study of India

4.3.1.  Application of the Entropy method

A similar process to that described in Section 4.2.2
was repeated for all 73 grid points. We observed (re -
sults not presented) that weights varied by indicator
and by grid. R varied from 0.25 to 89.72%; NRMSE:
0.47−24.80%; ANMBE: 5.37−82.86%; AARE: 0.72−
44.01% and SS: 0.24−10.61%. Of the 73 evaluations,
the first position was occupied 63 times by ANMBE, 8

2Da∑
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                     BCCR    ECHAM   GFDL2.0    GFDL2.1    GISS       IPSL    MIROC3   CGCM2   PCMI    HADCM3   HADGEM1

BCCR             0.0000     0.2814        0.6210        0.0976     0.6210    0.7360    0.0000       0.7360    0.7360       0.6210          0.6210
ECHAM         0.7186     0.0000        0.6210        0.1705     0.6210    0.7360    0.0000       0.7186    0.7360       0.6210          0.6210
GFDL2.0        0.3790     0.3790        0.0000        0.3616     0.5655    1.0000    0.2640       0.7360    1.0000       0.6384          0.6384
GFDL2.1        0.9024     0.8295        0.6384        0.0000     0.6384    0.7360    0.2640       0.6384    1.0000       0.6384          0.6384
GISS               0.3790     0.3790        0.4345        0.3616     0.0000    1.0000    0.2640       0.7360    1.0000       0.9826          0.7186
IPSL               0.2640     0.2640        0.0000        0.2640     0.0000    0.0000    0.2640       0.0000    0.3790       0.0000          0.0000
MIROC3        1.0000     1.0000        0.7360        0.7360     0.7360    0.7360    0.0000       0.7360    1.0000       0.7360          0.7360
CGCM2         0.2640     0.2814        0.2640        0.3616     0.2640    1.0000    0.2640       0.0000    0.4519       0.8121          0.8850
PCMI             0.2640     0.2640        0.0000        0.0000     0.0000    0.6210    0.0000       0.5481    0.0000       0.5481          0.5481
HADCM3      0.3790     0.3790        0.3616        0.3616     0.0174    1.0000    0.2640       0.1879    0.4519       0.0000          0.6384
HADGEM1    0.3790     0.3790        0.3616        0.3616     0.2814    1.0000    0.2640       0.1150    0.4519       0.3616          0.0000

Table 3. Multicriterion preference index values using entropy-based weights (varying weight scenario) for the Upper Malaprabha 
catchment for 11 global climate models

GCM                  Varying weight scenario            Equal weight scenario
                         φ+           φ–           φ      Rank         φ+           φ–           φ      Rank

BCCR            0.5071   0.4929  0.0142    6         0.4600   0.5400  −0.0800    8
ECHAM       0.5564   0.4436  0.1127    5         0.4800   0.5200  −0.0400    7
GFDL2.0       0.5962   0.4038  0.1924    4         0.6200   0.3800  0.2400    4
GFDL2.1       0.6924   0.3076  0.3848    2         0.6400   0.3600  0.2800    3
GISS             0.6255   0.3745  0.2511    3         0.6600   0.3400  0.3200    2
IPSL              0.1435   0.8565  −0.7130   11        0.1400   0.8600  −0.7200   11
MIROC3       0.8152   0.1848  0.6304    1         0.8600   0.1400  0.7200    1
CGCM2        0.4848   0.5152  −0.0304    7         0.4400   0.5600  −0.1200    9
PCMI            0.2793   0.7207  −0.4413   10        0.1400   0.8600  −0.7200   10
HADCM3     0.4041   0.5959  −0.1918    8         0.5400   0.4600  0.0800    5
HADGEM1  0.3955   0.6045  −0.2090    9         0.5200   0.4800  0.0400    6

Table 4. Values of φ+, φ–, φ (defined in Section 3) and ranks of global climate 
models (GCMs) for the Upper Malaprabha catchment
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times by R and 2 times by AARE. NRMSE and SS
never attained the first position. Of the 5 indicators,
ANMBE is thus the preferred one. This may be due to
its simple and effective deviation principle. In further
studies, the 2 indicators NRMSE and SS could be
eliminated or used as complimentary indicators so
that only the relevant indicators need to be analysed.
However, in such a situation, weights of indicators
will significantly change and accordingly, the rank-
ing of GCMs may also be affected. We also at -
tempted to analyse the weight distribution in differ-
ent ranges over the 73 grid points obtained by the
Entropy method (Table 6). Table 6 shows that the
number of grid points within 10% weight range are
38, 67, 2, 18 and 72 in the case of R, NRMSE,
ANMBE, AARE and SS, respectively, although
ANMBE and R are spread out across almost all
weight ranges.

To our knowledge, this is the first application of the
Entropy method for determining the weights of per-
formance indicators that can be used to rank GCMs.

4.3.2.  Application of PROMETHEE-2

A similar process of application of PROMETHEE-2
as described in Section 4.2.3. was repeated for the 73
grid points, and an analysis of the results is presented
in Table 7. Table 7 shows that in the VW scenario,
GFDL2.0, MIROC3, BCCR and HADCM3 occupied
the first position 17, 13, 10 and 8 times (totalling 48
among a possible 73). In the EW scenario, GFDL2.0,
MIROC3, HADCM3 and BCCR occupied the first
position 20, 15, 10 and 9 times (totalling 54). These 4
GCMs alone thus occupied the first position 65.75
and 73.97% of 73 grid points in the VW and EW sce-
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                     BCCR    ECHAM   GFDL2.0    GFDL2.1    GISS       IPSL    MIROC3   CGCM2   PCMI    HADCM3   HADGEM1

BCCR                0.0           0.4              0.4              0.2           0.4          0.8          0.0             0.8          0.8             0.4             0.4000
ECHAM            0.6           0.0              0.4              0.4           0.4          0.8          0.0             0.6          0.8             0.4             0.4000
GFDL2.0           0.6           0.6              0.0              0.4           0.4          1.0          0.2             0.8          1.0             0.6             0.6000
GFDL2.1           0.8           0.6              0.6              0.0           0.6          0.8          0.2             0.6          1.0             0.6             0.6000
GISS                  0.6           0.6              0.6              0.4           0.0          1.0          0.2             0.8          1.0             0.8             0.6000
IPSL                  0.2           0.2              0.0              0.2           0.0          0.0          0.2             0.0          0.6             0.0             0.0000
MIROC3           1.0           1.0              0.8              0.8           0.8          0.8          0.0             0.8          1.0             0.8             0.8000
CGCM2            0.2           0.4              0.2              0.4           0.2          1.0          0.2             0.0          0.8             0.4             0.6000
PCMI                0.2           0.2              0.0              0.0           0.0          0.4          0.0             0.2          0.0             0.2             0.2000
HADCM3         0.6           0.6              0.4              0.4           0.2          1.0          0.2             0.6          0.8             0.0             0.6000
HADGEM1       0.6           0.6              0.4              0.4           0.4          1.0          0.2             0.4          0.8             0.4             0.0000

Table 5. Multicriterion preference index values for the Upper Malaprabha catchment (equal weight scenario) for 11 global climate 
models

Weight range      R      NRMSE    ANMBE    AARE      SS
(%)

≤10                       38          67               2             18          72
>10 and ≤20        16           4                –             21           1
>20 and ≤30         8            2                3             25           –
>30 and ≤40         3            –                4              8            –
>40 and ≤50         3            –                8              1            –
>50 and ≤60         2            –               16             –            –
>60 and ≤70         1            –               26             –            –
>70 and ≤80         –            –               11             –            –
>80 and ≤90         2            –                3              –            –
>90 and ≤100       –            –                –               –            –

Table 6. Distribution of weights over 73 grid points obtained
by the Entropy method (varying weight scenario) into vari-
ous ranges. Performance indicators are R: correlation coeffi-
cient, NRMSE: normalised root mean square error, ANMBE:
absolute normalised mean bias error, AARE: average 

absolute relative error, SS: skill score
GCM          VW              EW 
                            First      Second             First      Second

BCCR                    10             7                      9              7
ECHAM                 5             11                     3             11
GFDL2.0               17             7                     20            15
GFDL2.1                4              6                      2              3
GISS                       2              1                      –              4
IPSL                        –              2                      2              3
MIROC3               13             9                     15            12
CGCM2                 6              6                      8              4
PCMI                      4              4                      3              1
HADCM3              8             12                    10             9
HADGEM1            4              8                      1              4

Table 7. Number of times each global climate model (GCM)
occupied the first and second positions in varying weight 

(VW) and equal weight (EW) scenarios
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narios, respectively. The remaining 7 GCMs occu-
pied the first position only 34.25 and 26.03%.

In the VW scenario, HADCM3, ECHAM, MIROC3
and HADGEM1 occupied the second position 12, 11,
9 and 8 times (totalling 40), and in the EW scenario,
GFDL2.0, MIROC3, ECHAM and HADCM3 occu-
pied the second position 15, 12, 11 and 9 times
(totalling 47). These 4 GCMs alone occupied the sec-
ond position 54.79 and 64.38% in the VW and EW
scenarios, respectively, whereas the remaining 7
GCMs occupied this position only 45.21 and 35.62%.
Fig. 3 presents the spatial distribution of GCMs occu-
pying the first and second positions in the VW and
EW scenarios.

4.3.3.  Spearman rank correlation

A similar process as described in Section 4.2.4 was
repeated for the 73 grid points. The average R value
over the 73 grid points is 0.7876, representing an
important relationship (Raju & Nagesh Kumar 2010),
whereas the minimum and maximum R values are

0.0818 and 0.9909. A low value of R occurred at grid
point 7.5°N × 77.5°E. On the other hand, a high value
of R was observed at 22.5° N × 75° E. Overall, 67 out
of 73 (91.8%) grids points have R values >0.5, indica-
ting substantial relationships (Raju & Nagesh Kumar
2010).

4.3.4.  Ranking of GCMs for India

An effort was also made to rank the GCMs for all of
India (over 73 grid points) for the precipitation rate.
The average ranking method (i.e. average of all ranks
corresponding to each GCM over 73 grid points) as
suggested by Bui (1987) was used for this purpose. In
the VW scenario, HADCM3, GFDL2.0 and MIROC3
occupied the first 3 positions, whereas in the EW sce-
nario, GFDL2.0, MIROC3 and HAD CM3 occupied the
first 3 positions. In this regard, 3 GCMs (HADCM3,
GFDL2.0, MIROC3) occur in both scenarios based on
average rankings. PCMI, GISS and IPSL occupied the
last 3 positions in both VW and EW scenarios.

From the extensive studies made (i.e. computing
performance indicators for all GCMs for 73 grid
points, analysing suitability of GCMs for 73 grid
points individually for 2 weight scenarios, and com-
puting rs values be tween 2 weight scenarios for each
grid point), we infer that no single GCM can be rec-
ommended for India as a whole, and so an ensemble
of GCMs must be determined. The GCMs which oc -
cupied (1) the first 3 positions in average ranking per-
spective, i.e. HADCM3, GFDL2.0 and MIROC3, (2)
the first position (48 of 73 grid points in VW and 54 of
73 grid points in EW perspective) , namely, GFDL2.0,
MIROC3, HADCM3 and BCCR, and (3) the second
position (40 of 72 grid points in VW and 47 of 73 grid
points in EW), namely, GFDL2.0, HADGEM1, HAD -
CM3, ECHAM and MIROC3 (Section 4.3.2), were
taken into consideration. Accordingly, the en semble
of GFDL2.0, MIROC3, BCCR, HADCM3, ECHAM
and HADGEM1 among the available 11 GCMs is
suggested for India for precipitation rate. However,
further ana lysis, such as evaluating GCMs for more
climatic variables (e.g. temperature), is re quired
before adopting these models for down scaling.

4.4.  Case study of selected river basins in India

The suitability of the GCMs for 4 river basins (Go-
davari, Krishna, Maha nadi and Cauvery) was also
evaluated. Locations of these basins are presented in

Fig. 3. Spatial distribution of global climate models (GCMs)
occupying (a) the first position in the varying weight (VW)
scenario, (b) the second position in the VW scenario, (c) the
first position in the equal weight (EW) scenario and (d) the 

second position in the EW scenario
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Fig. 2. Details of these basins are avail-
able in the Integrated Hydrological
Data Book (Central Water Commission
2012).

Table 8 presents the suitability of
GCMs in VW and EW scenarios in
terms of the first and second positions
among the chosen grids (variable
between river basins). The GCMs
which occupied the first 3 positions in
VW and EW scenarios (using average
ranking) are also presented. These sta-
tistics indicate that for each basin, no
single GCM can be recommended;
thus an ensemble of GCMs is sug-
gested. GCMs which occupy the first 3
positions (average ranking approach)
and GCMs which occupy the first and
second positions in both the VW and
EW approaches (analogous to Section
4.3.2) are considered for determining
the suitable ensembles. 

The composition of the ensembles
for India and the 4 river basins is pre-
sented in Table 9, which shows that 9
out of 11 GCMs are covered in the 5
ensembles leaving out IPSL and PCMI.
GFDL2.0 is present for all 5 regions fol-
lowed by CGCM2 and HADCM3 (4
times each). BCCR, GFDL2.0, MIROC3
and HAD CM3 are present both for
India and for the Godavari River basin.
Similarly, BCCR, GFDL 2.0 and
MIROC3 are present both for India
and for the Krishna River basin;
ECHAM, GFDL2.0 and HADCM3 are
present both for India and the
Mahanadi River basin, and GFDL2.0
and HADCM3 are present both for
India and the Cauvery River basin.

It is interesting to note that even
though the 4 river basins form part of
India, different ensembles are pro-
posed for the individual basins. How-
ever, if only a single GCM is to be
used, GFDL2.0 can be considered. 

5.  SUMMARY AND CONCLUSIONS

We used 5 performance indicators (R, NRMSE, AN-
MBE, AARE and SS) to rank 11 GCMs (BCCR,
ECHAM 4, GFDL2.0, GFDL2.1, GISS, IPSL, MIRO C3,

CGCM2, PCMI, HADCM3 and HADGEM1) for India
for a given climate variable, viz. precipitation rate.
The Entropy method was employed to de ter mine the
weights of the indicators, and an  out ranking-based
multicriterion decision-making (MCDM) method,

River    Suitability          Suitability             First 3                Suggested 
basin     (first position)          (second          positions for           ensemble
                                              position)     (average ranking)   both scenarios

Godavari
VW                                                                                        GFDL2.0, 
             GFDL2.0(5)         BCCR (5)              GFDL2.0               MIROC3, 
             MIROC3 (5)        MIROC3 (4)          BCCR                    BCCR, 
             BCCR (4)             GFDL2.1(3)          HADCM3             HADCM3, 
             HADCM3 (3)      CGCM2(3)                                         CGCM2, 
             GFDL2.1(2)         ECHAM (2)                                        GFDL2.1 
             CGCM2 (2)         GFDL2.0 (2)                                       

EW        BCCR (6)             GFDL2.0 (9)         GFDL2.0               
             GFDL2.0(5)         BCCR (3)              HADCM3             
             CGCM2(5)          MIROC3 (3)          BCCR                    
             MIROC3(4)         GISS (2)                                              
             HADCM3(2)       HADCM3 (2)                                      

Krishna
VW                                                                                                GFDL2.0,
             GFDL2.0 (5)        MIROC3 (4)          GFDL2.0               BCCR,
             MIROC3 (3)        CGCM2 (4)          BCCR                    CGCM2,
             CGCM2 (3)         BCCR (3)              CGCM2                MIROC3,
             BCCR (2)             GFDL2.0 (2)                                       GISS
             GFDL2.1 (2)

EW        CGCM2 (7)         GFDL2.0 (8)         GFDL2.0,             
             MIROC3 (4)        GISS (3)                CGCM2,              
             BCCR (3)             BCCR (2)              BCCR                    
             GFDL2.0 (2)

Mahanadi
VW                                                                                          GFDL2.0,
             GFDL2.0 (5)        ECHAM (4)          GFDL2.0               HADCM3,
            HADCM3 (4)      HADCM3 (3)        HADCM3             GFDL2.1, 
            BCCR (2)             GFDL2.0 (2)         GFDL2.1               CGCM2, 
                                         GFDL2.1 (2)                                       ECHAM
                                         CGCM2 (2)

EW        GFDL2.0 (8)        GFDL 2.0 (5)        GFDL 2.0              
            BCCR (2)             HADCM3 (4)        HADCM3             
            CGCM2 (2)         CGCM2 (3)          CGCM2                
            HADCM3 (2)      GFDL 2.1 (2)

Cauvery
VW                                                                                          GFDL2.0,
             GFDL2.0 (3)        CGCM2 (3)          GFDL2.0               CGCM2,
                                          PCMI     (2)           CGCM2                GISS,
                                                                        GISS                     HADCM3

EW        CGCM2 (3)         GFDL2.0 (3)         GFDL2.0
             MIROC3 (2)        GISS (2)                CGCM2 
                                                                        HADCM3

Table 8. Suitability of global climate models (GCMs) for the selected river
basins based on their positions in the varying weight (VW) and equal
weight (EW) scenarios. The numbers of occurrences of GCMs are given in 

parentheses. GCMs appearing <2 times are not presented

A
ut

ho
r c

op
y



Raju & Nagesh Kumar: Climate model ranking for India

PROMETHEE-2, was used to rank the 11 GCMs. Our
study provided an opportunity to assess the relevance
of the Entropy and PROME THEE-2 methods. To our
knowledge, this is the first MCDM application for In-
dia, along with a simple but effective weight estima-
tion procedure, i.e. the En tropy method. The resulting
ranking patterns may change with the addition of
more indicators, more variables, different GCMs and
changes in indicator weights. However, the same
methodo logy can be used in similar situations.

The following conclusions can be drawn from our
study.

(1) A quantitative evaluation of performance indi-
cators for each GCM is useful and provides an oppor-
tunity for improved evaluation of the GCMs.

(2) Weights obtained by the Entropy method over
73 grid points vary from 0.25 to 89.72% for R; from
0.47 to 24.80% for NRMSE; from 5.37 to 82.86% for
ANMBE; from 0.72 to 44.01% for AARE; and from
0.24 to 10.61% for SS.

(3) Out of the 73 cases, the first position was occu-
pied 63 times by ANMBE, 8 times by R and 2 times by
AARE, whereas NRMSE and SS never attained the
first position. Thus ANMBE is considered to be the
preferred indicator.

(4) Among the 5 indicators, ANMBE was given
high importance (0.5481) for the case study of the
Upper Malaprabha catchment, which means that its
effect on ranking of GCMs is significant. The com-
bined contribution of R, NMSE and SS was <0.20.

(5) MIROC3, GISS and GFDL2.1 occupied the first
3 positions in the VW and EW scenarios for the Upper
Malaprabha catchment. The Spearman rank correla-
tion coefficient, rS, was found to be a good indicator
to assess the association between the ranking pat-
terns obtained with the VW and EW scenarios. The
average R value was 0.7876, whereas minimum and
maximum R values over 73 grid points were 0.0818
and 0.9909. Low values of R are mainly due to consid-
erable differences in ranking between VW and EW

scenarios, and this aspect may be analysed in depth
with more data in future analyses.

(6) As no single GCM can be recommended, we
recommend the ensemble of GFDL2.0, MIROC3,
BCCR, HADCM3, ECHAM and HADGEM1 for India
as a whole.

(7) With regard to individual river basins, the
ensemble of GFDL2.0, MIROC3, BCCR, HADCM3,
CGCM2 and GFDL2.1 is suggested for the Godavari
River basin; GFDL2.0, BCCR, CGCM2, MIROC3 and
GISS for the Krishna River basin; GFDL2.0, HAD -
CM3, GFDL2.1, CGCM2, and ECHAM for the Maha -
nadi River basin; and GFDL2.0, CGCM2, GISS and
HADCM3 for the Cauvery River basin.
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