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Abstract: General circulation models (GCMs) use transient climate simulations to predict climate conditions in the future. Coarse-grid
resolutions and process uncertainties necessitate the use of downscaling models to simulate precipitation. However, in the downscaling
models, with multiple GCMs now available, selecting an atmospheric variable from a particular model which is representative of the
ensemble mean becomes an important consideration. The variable convergence score (VCS) provides a simple yet meaningful approach
to address this issue, providing a mechanism to evaluate variables against each other with respect to the stability they exhibit in future
climate simulations. In this study, VCS methodology is applied to 10 atmospheric variables of particular interest in downscaling precipitation
over India and also on a regional basis. The nested bias-correction methodology is used to remove the systematic biases in the GCMs
simulations, and a single VCS curve is developed for the entire country. The generated VCS curve is expected to assist in quantifying
the variable performance across different GCMs, thus reducing the uncertainty in climate impact–assessment studies. The results indicate
higher consistency across GCMs for pressure and temperature, and lower consistency for precipitation and related variables. Regional assess-
ments, while broadly consistent with the overall results, indicate low convergence in atmospheric attributes for the Northeastern parts of India.
DOI: 10.1061/(ASCE)HE.1943-5584.0000888. © 2014 American Society of Civil Engineers.
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Introduction

General circulation models (GCMs) constitute an important tool for
assessing the plausible impact of climate change on a range of hu-
man and natural systems. The GCMs perform well at continental
and large regional scales, but their ability to simulate climate at
finer spatial scales is still limited (Xu 1999). Simulations at these
finer scales are of considerable interest to hydrologists for assessing
the possible impact of climate change on water supply and related
attributes. This has led to the development of a range of downscal-
ing methods, which use the coarse-scale GCM atmospheric simu-
lations as the basis to produce finer scale variables of interest
(Fowler et al. 2007).

The Intergovernmental Panel on Climate Change (IPCC)
4th assessment report identified 23 GCMs for assessment of
plausible climate-change impact on a range of human and natural
systems. Different climate models have been used worldwide for
climate impact–assessment studies. However, the simulations from
different climate models vary at a local or regional scale and are

highly uncertain (Molteni et al. 1996; Xu 1999; Kleeman 2002;
Gleckler et al. 2008). These uncertainties arise due to a number
of factors discussed in depth by Murphy et al. (2004), and lead
to significant variability across model simulations of future cli-
mates. Model performance and model convergence have been used
to evaluate GCM simulations at the regional scale. Model perfor-
mance regards how well a model simulates the observed climatic
record and model convergence addresses the issue as to how con-
sistent the predictions are from a range of models in time and space
(Dessai et al. 2005).

Studies related to model performance and model conver-
gence have been performed by many researchers. Murphy et al.
(2004) introduced the Climate Prediction Index (CPI)–weighted
probability-distribution function (PDF), in which the CPI uses
32 model parameters that represent surface and atmospheric vari-
ables to determine the skill of the models in representing the current
climate. It used each model’s performance to determine an overall
model weighting. Perkins et al. (2007) made a comparison between
PDFs of observed data with those of model simulated by daily pre-
cipitation and maximum and minimum temperatures to evaluate the
performance of 14 models across 12 regions in Australia. Tang et al.
(2008) assessed model convergence by exploring several measures
for quantifying potential predictability of the climate models. They
concluded that if the spread of predictions from different GCMs
around the ensemble mean is small, then the model convergence
is good and predictions are insensitive to the choice of model. How-
ever, if the model convergence is poor, the predictions will vary
markedly across GCMs. In this case, if the GCM variables are used
for hydrologic impact–assessment studies, the final result is sensi-
tive to the choice of model and is highly uncertain (Wilby and
Harris 2006).

Dessai et al. (2005) suggested a skill score, which combined
measures of both model performance and convergence for air
temperature and precipitations in 22 regions around the world.
Reliability ensemble averaging (REA), which took into account
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the criteria of model convergence and performance, was intro-
duced by Giorgi and Mearns (2002) for calculating the average
uncertainty range, and a measure of reliability of simulated climate
changes at the subcontinental scale from ensembles of different
atmosphere–ocean GCM simulations. Tebaldi et al. (2005) ex-
tended the REA approach further in a Bayesian framework. In
their study, PDFs for temperature changes in future were based
on a weighted average of nine GCMs. The weights assigned to the
nine GCMs were based on a bias criterion for modeling of ob-
served climate and a convergence criterion for good agreement in
future with the weighted ensemble mean. Furrer et al. (2007) an-
alyzed uncertainty in spatial patterns of probabilistic temperature-
change projections using a multivariate Bayesian analysis. The
spatial patterns of projected temperature were based on 21 differ-
ent GCM outputs, in which each GCM output was given equal
weightage. Johnson et al. (2011) also compared a range of GCMs
with respect to their ability to simulate low-frequency variability in
precipitation simulations. A set of wavelet-based skill measures
was developed to compare GCM performance. They suggested
that judicious selection of best performing GCMs is required for
climate-impact studies.

A majority of the aforementioned studies focused on model
performance with a few studies considering model convergence.
However, it is very difficult to assess climate models as a whole
based on an accepted metric that includes model performance as
well as model convergence (Raisanen 2007; Gleckler et al. 2008;
Knutti et al. 2008). Few studies (e.g., Lambert and Boer 2001;
Gleckler et al. 2008; Johnson and Sharma 2009; Knutti et al.
2010; Weigel et al. 2010) have used the model outputs to compare
the reliability of variables or variable performance across different
GCMs rather than focusing on individual model performance.
Understanding variable performance over different GCMs be-
comes really important, as the reliability in outputs of climate im-
pact–assessment studies depends heavily on the GCM-simulated
outputs. Lambert and Boer (2001) performed an intercomparison
study for the climate simulated by 15 coupled atmospheric/
oceanic models and concluded that different variables were simu-
lated with varied success by the various models evaluated, and that
no particular model was best for all variables and/or for all re-
gions. It was also concluded that the ensemble mean of model
results will have a smaller error than any of the individual models.
Gleckler et al. (2008) analyzed the performance of GCMs in pre-
dicting important surface variables and observed that models vary
in prediction of variables. Knutti et al. (2010) studied the reduc-
tion in bias for ensemble mean of absolute value of temperature
and concluded that reduction in bias by averaging was dependent
on geographical location and the initial bias present in the model
outputs. Weigel et al. (2010) discussed the effect of model weigh-
ing and observed that ensemble mean for any variable on an
average improved the reliability of climate projections for weather
and seasonal forecasting. Johnson and Sharma (2009) extended
variable assessment and developed variable convergence score
(VCS), a metric that quantifies the ability with which individual
variables are simulated more consistently in future settings across
a range of GCMs. The metric highlights how well the models
converge in projection of certain climatic variables.

Large climatic variations were observed across different
regions of India due to geographical location and dominant
hydroclimatic teleconnections (Kumar and Parikh 2001; Whitaker
et al. 2001). Reliable prediction of hydrologic variables such as
rainfall is significantly challenging and of prime importance to the
socioeconomic status of India, with the country being a largely
agriculture-dominated country (Maity et al. 2007). To study
the hydrological consequences of climate change at basin scale

in India, downscaling of climate-model outputs is required
(Anandhi et al. 2008). For statistical downscaling, choice of pre-
dictors is one of the most important steps. However, the selection
of predictor variables is based on the fact that they are reliably
simulated by GCMs and strongly correlated with the predictand.
Further, statistical downscaling methods are used to obtain the
predictand (Fowler et al. 2007). Any uncertainty in the predictor
variables is translated in the outputs of the hydrological response
studies. Therefore, it becomes essential to quantify the variable
performance across different GCMs. Unfortunately, for India
where climate impact–assessment studies are extremely necessary,
no records of studies related to variable performance are available,
even despite the fact that in the downscaling studies performed
for certain regions of India, strong evidence of uncertainty in re-
sults was found (Ghosh and Mujumdar 2006; Mujumdar and
Ghosh 2008). The results of these studies were largely limited
to the subset of models used and were supposed to be sensitive
to any change in the predictor variables or models selected
(Mujumdar and Ghosh 2008). The aforementioned VCS method-
ology provides a simple yet meaningful approach to examine the
consistency in simulation of variables across different GCMs.
Downscaling approaches relying on the predictor variables, exhib-
iting high consistency across GCMs, are likely to be less sensitive
to the choice of GCMs used in the analysis. The VCS had been
successfully applied over Australia to compare the relative perfor-
mance of GCM outputs with the ensemble mean (Johnson and
Sharma 2009), and is therefore adopted in this study.

Statistical correction of GCM output is often necessary when
significant systematic biases exist in the observations. A common
procedure is to standardize the GCM output by removing the sys-
tematic biases in the mean and variances relative to observations or
reanalysis data at timescales of interest (e.g., daily; Mehrotra and
Sharma 2010). This, however, often ignores the biases at other
timescales, and leads to possible inaccuracies in water-resources
simulations in which long-term persistence (at annual and multi-
annual timescales) is important. Nested bias correction (NBC;
Johnson and Sharma 2011, 2012; Mehrotra and Sharma 2012)
is a recently proposed method that corrects for the biases in the
statistics of GCM outputs (e.g., mean, standard deviation, lag-
one correlation) across a range of timescales, thus making them
suitable for water-resources applications.

The aim of this study is to apply VCS in assessment of the
selected atmospheric variables of relevance in downscaling of pre-
cipitation, after they have been preprocessed using the NBC. The
spatial domain of interest for the study is India, with the assess-
ment covering the entire country as well as five subregions of
interest. The results from this study are expected to provide im-
portant information about the consistency of downscaling predic-
tor variables across GCMs and reduce uncertainty in the results of
the downscaling studies. This, in turn, will lead to increased reli-
ability in climate simulations, leading to better defined plans and
policies that assist in the management of water resources in the
warmer climates ahead.

The remainder of this paper is organized as follows: In the
“Study Area and Data Used” section, details of the study area
and data used for this study are given. The “Methodology” sec-
tion presents the application of the methodology followed by
the “Results and Discussion” section. The conclusions drawn
from the study are presented in the “Summary and Conclusions”
section.
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Study Area and Data Used

Study Area

The proposed methodology has been applied across India (latitude
from 5° N to 45° N and longitude from 65° E to 95° E) covering 221
grid points using the outputs of 17 GCMs at a resolution of
2.5° × 2.5°. Fig. 1 shows the study region. The shape, size, location,
latitudinal extent, and sharp contrasting relief features of India
bring great climatic diversity across different regions of India.
The Tropic of Cancer, at a latitude of 23.5° North of the equator,
passes through the middle of India. The southern part of the coun-
try, being closer to the equator, experiences high temperatures
throughout the year. By contrast, the northern part lies in the warm
temperate zone. Distance from the sea, the northern mountain
ranges, western disturbances and tropical cyclones, monsoon
winds, and physical features mainly influence the air temperature,
atmospheric pressure, direction of winds, and the amount of rainfall
in different parts of the country (Chang 1967; O’Hare 1997)

Data Used

Atmospheric Data
The atmospheric data used as a proxy for the observed record were
the National Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis data (Kalnay
et al. 1996). The NCEP/NCAR monthly data at a grid resolution of
2.5° × 2.5° for a period of 1950–1999 were used for the analysis.
Although there are known uncertainties in this data set due to
change in observing systems, modeling deficiencies, and hu-
man-induced errors in assimilation, the uncertainty in NCEP/
NCAR data sets varies across variables (Kistler et al. 2001).

Upper-level temperatures, rotational wind, and geopotential
height are strongly influenced by observation and are very reliable.
Moisture variables and divergent winds are influenced by both ob-
servations, and the model is comparatively less reliable. Precipita-
tion rate is completely determined by the model. However, despite
the known uncertainties in this data set, these data provide a con-
sistent basis for assessing the multitude of atmospheric variables
that are considered in this study (Kistler et al. 2001).

GCM and Variable Selection

This study considered a total of 17 GCMs for assessment of the
VCS which is a subset of the 23 available GCMs, used as part
of the IPCC assessment report (Meehl et al. 2007). The selection
of this subset was based on the availability of the simulations for
the atmospheric variables for which the VCS will be assessed.
Details of the models used are provided in Table 1.

Variables of importance for hydrologic impact studies are those
that are commonly used to predict rainfall and runoff in downscal-
ing studies such as geopotential height, mean sea-level pressure,
relative humidity, precipitation rate, and precipitable water, and
those required for evaporation estimation, namely, temperature,
wind speed, pressure, and specific humidity (Mehrotra et al.
2004). Dibike and Coulibaly (2005) performed downscaling of pre-
cipitation and temperature in Saguenay watershed, Canada, and
further predicted streamflow. They identified geopotential height,
mean sea-level pressure, relative humidity, specific humidity,
and wind as predictors. Tripathi et al. (2006) used a similar set
of predictor variables to downscale precipitation in various
meteorological subdivisions of India. Benestad et al. (2007) used
precipitation rate and mean sea-level pressure as predictors to
downscale monthly rainfall at a site in Norway. Based on the

Fig. 1. Location map of the study area (based on data from the Indian Institute of Tropical Meteorology)
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downscaling studies, to this end, 10 variables were obtained from
each model and were used for the analysis and are listed in Table 2.

In this study, atmospheric variables at three pressure levels (500,
700, and 850 hPa) were considered. These pressure levels were
considered to be of importance for downscaling of rainfall to river
basin scale in India (Anandhi et al. 2008). The 850-hPa pressure
height is considered to influence the regional precipitation at the
basin scale. Further, temperature at 700 and 500 hPa represents
the heating process of the atmosphere due to monsoonal precipi-
tation that is maximum at mid-Troposphere at a constant pressure
height (Satyanarayana and Srinivas 2008).

In a previous study performed by Johnson and Sharma (2009),
it was observed that the relative difference in magnitude of VCS
values across various future climate scenarios is much less. There-
fore, to avoid extensive computation, only one emission scenario
(for future climate), that is, Special Report on Emissions Scenarios
(SRES) A2, was considered. The SRES A2 is one of the four emis-
sion scenarios developed considering possible futures of world
development in the 21st century. It projects that the atmospheric
CO2 concentrations will reach 850 ppm in the year 2100 in a world
characterized by high population growth, medium gross domestic
product growth, high energy use, and various other factors. This
scenario is the one described in Nakicenvoic et al. (2000). The ap-
proach presented for SRES A2 analysis can be used for different
scenarios as well as to provide a basic understanding about how far
the variables are consistent across different GCMs. The variables
for coupled model intercomparison projects (CMIPs) for climate
of the twentieth-century experiment 20C3M (representing past
climate) for the period between 1950 and 1999, and SRES A2
(representing future climate) for the period between 2000 and

2099 were obtained from the World Climate Research Pro-
gramme’s CMIP Phase 3 (CMIP3) multimodel data set.

Methodology

The methodology adopted in this study involved standardization of
GCM simulations and assessing the convergence of variables
across GCMs for future climate. The detailed methodology is given
in the following subsections (Johnson and Sharma 2009).

Data Processing

The reanalysis data sets are available at a grid resolution of
2.5° × 2.5°. However, outputs from different GCMs are available
at varied grid points. Therefore, the data sets from different
GCM grid points were interpolated to conform to the reanalysis
data grid points using a weighted mean of the four nearest values,
with the weights being assigned based on an inverse square
distance relationship (Johnson and Sharma 2009). The interpolated
GCM simulations were further transformed as the average of
the nearest nine grid cells to reduce the spatial variability often
observed.

NBC

Bias correction of GCM simulations is a much needed step that
attempts to force the simulations to broadly conform to observa-
tions, thereby enabling an alteration of future simulations under
the assumption that the bias in the past climate will remain the same
in future. There are a range of innovative bias-correction alterna-
tives, from simple correction of moments, to matching of quantiles,
to the more advanced NBC rationale that attempts to address bias
across multiple timescales. The performances of NBC methodol-
ogy over two scaling approaches (i.e., constant scaling/delta change
approach and quantile scaling) and two other bias-correction
methods (i.e., monthly bias correction, quantile mapping) were
studied in detail by Johnson and Sharma (2011). One of the major
disadvantages in case of scaling approaches observed was the
assumption inherited within it that the variability remains constant.
This unchanged variability is supposed to be a problem for model-
ing at multiple timescales in a hydrological setting. Scaling ap-
proaches at daily scale lead to rainfall occurrence being the
same for the current and future climate (Fowler et al. 2007),

Table 1. Details of GCMs Used

Serial number Model used Organization

1 BCCR_BCM2_0 Bjerknes Centre for Climate Research, Bergen, Norway
2 CSIRO 3.5 Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
3 GFDL 2.0 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
4 GFDL 2.1 Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
5 GISS Goddard Institute for Space Studies, New York, New York, USA
6 INGV-ECHAM 4 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
7 INMCM 3 Institute of Numerical Mathematics, Moscow, Russia
8 IPSL_CM4 Institut Pierre Simon Laplace, Paris, France
9 MIROC3 Centre for Climate System Research, Tokyo, Japan
10 MPI-ECHAM5 Max Planck Institute for Meteorology, Hamburg, Germany
11 MRI-CGCM2 Meteorological Research Institute, Tsukuba, Japan
12 NCAR_CCSM3 Community Earth System Models, NCAR, Boulder, Colorado, USA
13 NCAR-PCMI Parallel Climate Models, NCAR, Boulder, Colorado, USA
14 UKMO-hadcm3 U.K. Met Office, Exeter, U.K.
15 UKMO-hadgem1 U.K. Met Office, Exeter, U.K.
16 CSIRO 3.0 Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
17 CNRM_CM3 Canadian Climate Centre, Gatineau, Canada

Table 2. List of Variables Considered

Serial number Variable CMIP3 code

1 Mean sea-level pressure ps
2 Precipitable water prw
3 Precipitation rate pr
4 Air temperature tas
5 Geopotential height zg
6 Relative humidity hur
7 Vertical wind velocity was
8 Horizontal U wind uas
9 Horizontal V wind vas
10 Surface-specific humidity Huss
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whereas in the future, this is expected to change in different parts
of the world (Mehrotra and Sharma 2010; Trenberth et al. 2003).
Of greater importance for large water-resources systems are
changes in variability at low frequencies, particularly at interannual
timescales. Although traditional bias-correction methods correct
for daily or monthly distributions (Ines and Hansen 2006; Mehrotra
and Sharma 2010), it is also possible to address biases at other time-
scales (Johnson 2010; Johnson and Sharma 2009). This allows the
interannual variability of the future projections to evolve according
to the GCM, allowing that there may be some biases in the model-
ing of interannual variability compared with the observations. The
NBC methodology was developed by Johnson and Sharma (2009)
and is aimed at representing both high-frequency variability and
low-frequency variability and persistence in the GCM outputs,
thereby making them useful for water-resources applications.
Readers are further referred to Johnson and Sharma (2011) and
Hashino et al. (2007) for reviews and comparison of the various
approaches available.

The NBC approach represents a nested procedure, which ad-
dresses bias across prespecified multiple timescales. The pro-
cedure consists of the following key steps. Denoting a variable
for month i in year k as yi;k, the first step involves standardization
to create y 0

i;k by subtracting the model monthly mean (μmod;i) and
dividing by the standard deviation (σmod;i) for that month as
shown in Eq. (1)

y 0
i;k ¼

yi;k − μmod;i

σmod;i
ð1Þ

The second step is to interpose the mean (μobs;i) and standard
deviation (σobs;i) of reanalysis data to create a transformed time
series y 00

i;k at the monthly level

y 00
i;k ¼ y 0

i;kσobs;i þ μobs;i ð2Þ

In the third step, the transformed monthly series (y 00
i;k) are then

aggregated to the annual scale and denoted as zk. The standardiza-
tion and transformation steps are repeated at the annual time step.
Following the notation adopted for the monthly case, the annual
time series is similarly transformed to z 00k , which exhibits the mean
and standard deviation in the recorded annual data.

Subsequent to the aforementioned steps, the raw GCM simula-
tion at the monthly time step is transformed by the NBC to

Yi;k ¼ yi;k

�
y 00
i;k

yi;k

��
z 00k
zk

�
ð3Þ

where Yi;k represents NBC-transformed variable and the others
are as described earlier. Using the transformation of Eq. (3),
the corrections at monthly and annual scales can be applied to
the monthly time series at the same time to create a one-step cor-
rection (Srikanthan 2009). In Eq. (3), [ðy 0

i;k=yi;kÞðz 0k=zkÞ] is a
weighing factor, that is, the ratio of the monthly corrected value
to the raw GCM value for month i and year k, multiplied by the
ratio of the yearly corrected value to the aggregated GCM rainfall
for year k.

While the aforementioned equations were used to transform the
GCM simulations for the current climate, their application for sim-
ulations for the future would be the same. All that is needed is to
replace the monthly and annual values with future climate simula-
tions, ensuring that the transformations adopted to ascertain y 00

i;k or
zk are based on the statistics corresponding to the current period.
The end result is the series Yi;k, which for the current period will
exhibit first-order and second-order moments attributes that are
similar to observed values at all the timescales considered.

It should be noted that the NBC procedure presented here is a
simplified version of that presented in Johnson and Sharma (2011,
2012), with the difference being the neglect of bias in the lag-one
autocorrelation statistic at the various timescales considered. This
simplification has been adopted, as the NBC procedure is based on
the assumption that only lag-one autocorrelation is significant.
However, in this study, a wide range of variables having different
distributional attributes (other correlations may become significant)
are used, and incorporation of bias correction for lag-one correla-
tion was found to create instability in the estimated moments. It
should also be noted that the NBC procedure can be used across
more than two timescales (as used here), the number and choice of
timescales depending on the type of application the transformed
variables are used for. As the purpose of this study was to assess
the convergence of selected variables, the use of only monthly and
annual timescales was considered adequate.

Estimation of the VCS

The VCS compares variables in time and space based on coefficient
of variation (CV). The CV provides an advantage over other
statistics as it is insensitive to the absolute values of the variable.
Because a wide range of values are expected from different
variables, a skill score based on CV is appropriate as it is the ratio
of the standard deviation to the mean of the values. The CV value
calculated at each grid cell for the three pressure levels from the
collection of mean annual results from 17 GCMs forms the basis
for VCS. The VCS is a simple comparison between CV value of
one variable or one region with that of another.

The VCS is determined by calculating the cumulative distribu-
tion of the CV values for all locations, variables, pressure levels,
and time. The relative position of a particular CV value compared
with all other CV values can be measured in this way. Instead
of fitting a theoretical distribution to the CV values, the skill
score is based on an empirical cumulative distribution function
(CDF) to maintain simplicity and effectiveness.

The estimation of the VCS after performing NBC transforma-
tion on GCM outputs follows the logic outlined below:
• Combine the results from all models for one ensemble for a par-

ticular variable for each grid for each 10-year window as shown
in Eq. (4)

Xj;t ¼ ½xj;t;z;1;l; xj;t;z;2;l; xj;t;z;3;l; : : : ; xj;t;z;n;l� ð4Þ

where xj;t;z;n;l = variable x at grid point j at time t, level z from
model n and emission scenario l.

• Calculate CV for each cell, CVj;t;x, which is the ratio of the stan-
dard deviation to mean for the vector Xj;t.

• Pool the CV values for all grids, variables, levels, emission sce-
narios, and 10-year windows. In this study, 221 grid points,
10 variables (3 variables are surface variables), 3 pressure levels,
1 emission scenario, and 3 10-year windows were consid-
ered, yielding a pool of 15,912 CV values as explained below

221 ðgrid pointsÞ × 7 ðvariablesÞ × 3 ðpressure levelsÞ
× 1 ðemission scenarioÞ × 3 ð10-year windowsÞ
þ 221 ðgrid pointsÞ × 3 ðsurface variablesÞ
× 1 ðpressure levelsÞ × 1 ðemission scenarioÞ
× 3 ð10-year windowsÞ ¼ 15,912 values

• Calculate the empirical CDF of CV values, assuming that the
pooled CV values come from a common distribution that
characterizes the variability of the climatic variables.
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FðCVÞ ¼ r
n

ð5Þ

where r = rank of the individual CV value; and n = total number
of CV values.

• Calculate the VCS for a particular variable x for a particular grid
cell j according to Eq. (6)

VCSx;j ¼ 100½1 − FðCVÞ� ð6Þ

As can be seen from the aforementioned algorithm, the rationale
behind the VCS is to calculate convergence based on estimates
of the CV of the variable across all GCMs. It is expected that
the variables that exhibit consistent values across GCMs will have
a low CVand hence a high VCS, whereas the variables that exhibit
significant deviation across GCMs will exhibit low VCS.

Assessments Performed

India-Wide Assessment
As mentioned in the “Introduction” section, the data from 17 GCM
outputs of 10 different atmospheric variables at three different pres-
sure levels and one emission scenario were interpolated, grid cell
averaged, and bias corrected using NBC. After such a preprocess-
ing of the data, the mean annual values for 10-year midwindows of
2030, 2050, and 2070 were calculated for each variable from each
model at each level, for all grid cells. The results across 17 GCMs
were combined to get values at each grid cell for each 10-year win-
dow. The 10-year time frame allowed a large enough sample size to
develop reliable interperiod estimates of the mean and variance
(although a longer period window would be more suitable for re-
liably estimating higher order moments such as skewness). It also
created enough moving-window periods to observe any decadal
variability or trends. Because the main interest here was estimation
of mean and variance of Xj;t, a 10-year window was considered
adequate for the study. Using this approach, for each grid point
for one particular level and one variable, 17 values are obtained.
The mean and standard deviation of the 17 values are calculated
for each grid cell, followed by the estimation of the CV. Further,
the CV values for 221 grid points for 10 variables, 3 pressure levels,
1 emission scenario, and 3 midwindows are pooled together, giving
a set of 15,912 values. The empirical CDF was then ascertained for
all the CV values. The VCS was then determined for each grid cell
for each variable in the study area.

Regional Assessment
The VCS can be used to screen variables for convergence before
being used as inputs in the climate-impact studies (Johnson and
Sharma 2009; Mehrotra et al. 2013). The changes in local regions
can be far more dramatic due to climate change compared with
countrywide change. In the most recent synthesis report by IPCC
it is claimed that the Indian subcontinent will adversely be affected
by increased variability of climate because of rising temperature
and water stress due to substantial reduction in summer rainfall
in some parts (Cruz et al. 2007). Therefore, a regionwise assess-
ment was also performed for VCS to provide insight about the vari-
ability across model simulations on a regional basis. The regional
assessment was undertaken considering the broad classification of
homogenous regions as adopted by the Indian Institute of Tropical
Meteorology available in Parthasarathy et al. (1995) based on mon-
soon rainfall. These homogeneous regions are spatially coherent
and have similar meteorological characteristics (Pal and Al-Tabbaa
2010). From Fig. 1, the five homogeneous regions of India can be
identified. The VCS metric was developed and analyzed for the five

homogeneous regions of India, namely, Northwest, Central
Northeast, Northeast, West Central, and peninsular India.

Results and Discussion

VCS Assessment

Across India, the CV values varied from a minimum of 7.31 × 10–4

to a maximum of 3.64. The empirical cumulative distribution of all
15,912 CV values is shown in Fig. 2. The larger values of CVs
mainly correspond to grid points over Northern India where a large
part is covered by the Himalayan Range. However, GCM outputs
are not considered to be reliable for the Himalayan range because of
their inability to represent the complex surface and governing
phenomena (Christensen et al. 2007; Solomon et al. 2009; Tabor
and Williams 2010).

Table 3 provides the VCSs based on the spatially averaged
values for India. The models showed best convergence for mean
sea-level pressure, geopotential height, and air temperature, and
the scores were lower for wind velocity, precipitable water, and pre-
cipitation rate. It may be noticed that the VCS value for specific
humdity decreases at higher pressure level (500 hPa). This is in
agreement with the work carried out by Paltridge et al. (2007),
who stated that the specific humidity values should be considered
with great caution from climate models as for heights mainly above
600 hPa, the upper-level negative trends in specific humidity are
inconsistent. The meridional wind velocity at 850 hPa, which is
mainly responsible for extreme weather conditions and flow of
monsoon winds (Wang and Fan 1999), has low convergence
compared with scores at other pressure levels. The vertical wind
velocity at 500 hPa that is mainly high because of eastererly jet
flows across India (Pattanaik and Satyan 2000), also has a low
score. The VCS usually remained consistent for most of the
variables at different pressure levels across the three time windows,
except for horizontal and vertical wind velocities at 850 hPa, which
are not consistent.

Ranks are also assigned to the variables based on the median
scores for midyear windows of 2030, 2050, and 2070 across India.
Results for 850-hPa pressure level only are shown in Table 4. For
any particular variable, at 850 hPa and one midyear window
(e.g., 2030), the CV values are generated at all grid points across
India. Further, for the median CV value, the VCS was computed.
The same step is repeated for the other variables. Based on
the VCS, ranks were assigned across one midyear window. If a
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Fig. 2. Empirical cumulative distribution for all CV values
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variable, for example, temperature, has the highest VCS, Rank 1 is
assigned. The ranking of variables across different time slices re-
mains consistent in Table 4. However, the ranking of variables
across different pressure levels and time windows depends on
the values of VCS (as observed in Table 3) and is supposed to vary.
As can be seen from Table 3, while for geopotential height VCS
remains fairly constant across different pressure levels, it is not the
case with specific humidity. At 500 hPa, VCS for specific humidity
is low in comparison with the VCS at 850 hPa. Therefore, the rank-
ing for specific humidity will change at 500 hPa. Overall, at 850
hPa and across the three-time windows, geopotential height and
temperature have the lowest rankings followed by relative and
specific humidity, as models show similar level of performance
in simulating variables with low ranks. The relative rankings for
wind velocities are considerably high.

The VCS value for a variable suggests how consistent the var-
iable simulation is across different GCMs. If a particular variable
has a less VCS value, it can be interpreted that the prediction from
different GCMs for that variable is highly inconsistent and the us-
age of one particular GCM is not suitable. For example, for any
study that involves preciptation rate as input (low VCS), a separate
analysis is initially required to identify which particular GCM pro-
vides the best simulations of the variable. By contrast, for a variable
with a high VCS, it can be ascertained that the simulation for that
variable is consistent among different GCMs and use of any GCM
in the downscaling study will provide similar results.

The VCS values for all the 10 variables across five different
climatologically homogeneous regions, namely, (1) Central
Northeast, (2) Northeast, (3) Northwest, (4) peninsular, and (5)West
Central India were also calculated. Results for only one pressure
level and single future time window (850 hPa and midyear window
of 2030) are shown in Fig. 3. When developing the VCS for a
particular region, the VCS value for the variable is calculated based
on the FðCVÞ value for the median CV value of that variable for

that particular region. No separate empirical CDFs of CV values for
different regions are constructed. The VCS for the median CV
value for any particular region is determined based on the VCS
curve generated for India. Overall, similar trend is observed from
the regional analysis and the models show best convergence for
mean sea-level pressure, geopotential height, and air temperature.

The convergence for moisture-related variables, especially pre-
cipitable water and specific humidity, is comparatively higher for
peninsular, Central Northeast, and West Central regions of India,
compared with VCS estimates for the other two regions. Peninsular
and eastern part of the West Central region receive good amount of
rainfall due to southwest monsoon. The high temperature during
summer across the Northwest part of India causes low-pressure
conditions across the Northwest part and the water bodies sur-
rounding the peninsular region (Nagar and Singh 1991). The
low-pressure zone attracts moisture-laden southwest monsoon
winds from the Indian Ocean, which cause widespread rain over
peninsular and West Central part of India (Wang 2006). The
Bay of Bengal branch of southwest monsoon causes heavy and
widespread rain in Central Northeast and Northeast regions of India
(Wang 2006). The amount of rainfall reduces from east to west ow-
ing to the progressive decrease in humidity of these winds so that
the Northwest region receives very small amount of rain. Hence,
the Northwest region that mainly includes the desert zone shows
very little convergence for specific humidity and precipitable water.
Low convergence is observed for variables related to moisture for
Northeast region, which is mostly surrounded by the Himalayan
range. The GCMs have difficulty hindcasting the complex

Table 3. VCS Values across India

Level Midyear window zg hur huss uas vas was tas ps prw pr

Surface 2030 — — — — — — — 95.60 45.00 7.74
Surface 2050 — — — — — — — 95.32 45.00 7.56
Surface 2070 — — — — — — — 95.48 45.00 8.22
850 hPa 2030 87.12 61.19 47.10 35.00 15.51 40.18 79.86 — — —
850 hPa 2050 87.96 68.72 46.07 35.00 16.54 38.77 79.53 — — —
850 hPa 2070 85.13 68.72 48.10 36.83 25.67 41.35 78.97 — — —
700 hPa 2030 89.28 65.13 46.49 30.02 45.49 25.18 76.65 — — —
700 hPa 2050 89.40 64.62 37.56 31.28 45.81 24.85 76.65 — — —
700 hPa 2070 88.25 64.91 38.88 33.18 46.12 25.53 76.46 — — —
500 hPa 2030 86.66 57.93 5.62 29.42 45.81 13.65 82.58 — — —
500 hPa 2050 86.66 58.21 5.88 32.47 44.56 14.06 82.58 — — —
500 hPa 2070 86.10 58.56 5.23 32.64 46.12 14.74 82.58 — — —

Table 4. Variable Ranking across India for 850 hPa

Variable

2030 2050 2070

Overall rankingRank Rank Rank

zg 1 1 1 1
hur 3 3 3 3
huss 4 4 4 4
uas 6 6 6 6
vas 7 7 7 7
was 5 5 5 5
tas 2 2 2 2
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Fig. 3. VCS values for 10 variables and 5 homogeneous regions of
India at 850 hPa for midyear window 2030
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Himalayan surface, and the large-scale atmospheric circulation
patterns associated with southwest and Asian winter monsoon.
The VCS methodology can help in prescreening variables with
high convergence across the different GCMs for the Northeast
region. Further, statistical and dynamical downscaling methods
can be used to predict reliable climate-model outputs at a regional
scale. For, Northeast region, the major limitation in using statis-
tical downscaling methods is in terms of availability of observatio-
nal records. The observational records are very sparse for the
Himalayan range (Fowler and Archer 2006). Therefore, use of
remote-sensing information and dynamical downscaling have been
very popular to overcome the limitations of GCMs for this region.
Lamadrid and MacClune (2010) stated that in the Himalayan range
the high resolution of RCMs can more accurately capture the topo-
graphic influences, convective processes, and temperature differen-
tials. However, the output of these regional climate models (RCMs)
is very much dependent on the reliability of input-data information.
To reduce the uncertainty, multiple RCM ensemble runs can be

made using information from a suite of best performing GCMs
and variables that are consistent across GCMs, to obtain reliable
estimates.

A comparison of the VCS values of three major moisture-
related variables, namely, specific humidity, precipitable water,
and precipitation rate, across different pressure levels and the three
midyear windows for all five regions is shown in Fig. 4.

Models show best convergence for specific humidity for penin-
sular and West Central regions at 850 and 700 hPa. The VCS value
at 500 hPa is higher for the Northwest region. The convergence for
precipitable water for peninsular and West Central regions is high-
est, compared with other regions for all the three midyear windows.
Central Northeast region shows the maximum convergence for pre-
cipitation rate. Northeast region shows the least model convergence
for all the three variables.

Impact of NBC in the Estimation of VCS

As mentioned in the “Introduction” section, this study used the
NBC rationale for addressing both high- and low-frequency vari-
ability bias for assessing the VCS metric. A question not addressed
yet is whether the use of NBC resulted in an improvement in the
accuracy of the VCS.

This question is not easy to answer without knowledge of the
true VCS for the variables being assessed. However, one can make
judgments on the impact of NBC by studying the improvements
noted in the key statistic that the VCS is based on. As an example,
Table 5 presents a comparison of the CV for the two bias-correction
approaches, one after monthly standardization and another after
NBC for the current climate and for one model. As can be seen
from the table, use of the NBC over standard bias-correction
approach resulted in a significant reduction in bias for all three
variables used. It should be noted that both bias-correction alterna-
tives were applied to the data at a monthly timescale, whereas the
results here represent an aggregate timescale and point to a better
representation of variability after NBC is applied. It should also be
noted that even though the VCS is subsequently estimated using
monthly simulations (after postprocessing using the NBC), the as-
sessment is for the future where no observations exist, pointing to
the need for an approach that can be expected to alter raw simu-
lations in a way that makes them closest to what they are likely to
be. Use of the VCS and its ability to represent higher timescale
variability is a step in that direction.

Summary and Conclusions

The VCS methodology was applied to compare the performance of
outputs of 17 GCMs in simulating 10 atmospheric variables for
three atmospheric levels and 3 time slices for SRES A2 scenario
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Fig. 4. VCS values for moisture-related variables across different
regions of India: (a) specific humidity; (b) precipitable water;
(c) precipitation rate

Table 5. Comparison of Annual CV for Current Climate after Monthly
Standardization and Monthly NBC for BCCR_BCM2_0 Model at
Latitude of 45° N and Longitude of 65° E for the Period between 1950
and 2000

Variable

Annual CV values

Observed
NCEP

Poststandardization
GCM simulations

Post-NBC
GCM

simulations

Precipitation rate 0.400 0.239 0.400
Precipitable water 0.050 0.038 0.050
Specific humidity
(850 hPa)

0.052 0.043 0.052
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over India. The GCM outputs were first interpolated on NCEP grid
points and further corrected for bias for mean, variance, and miss-
ing interannual variability using a NBC methodology. For each
location, period, GCM, and each variable, the CV was calculated
using the bias-corrected values. The CV values for all the locations
were pooled across the study region for each variable and VCS was
calculated.

It is found that GCMs show the best agreement for geopotential
height, mean sea-level pressure, and temperature while the least
convergence was obtained in case of precipitation rate. These
results were in agreement with the earlier studies. It was noticed
that grid cells falling under the Himalayan topography had a high
CV value because of the inability of GCMs to represent the
complex nature of the Himalayan range. Regionally across India,
moisture-related variables showed the maximum convergence
for peninsular region and the convergence was least for Northwest
region, which is mostly a desert.

The VCS methodology applied was found to be successful
in assessing the consistency among different GCMs for India.
The methodology allowed easy comparison among the variables
in a quantitative sense. The overall results indicate that GCMs vary
in their performance for simulation of different variables, and the
consistency across different GCMs in simulating different variables
gets modified with change in location, pressure levels, and time
windows for India. This specifies the need for similar analysis,
to get reliable estimates from climate-impact studies across differ-
ent regions of India.

The general results and conclusions over India and the five
homogeneous regions give a broad idea about consistency of var-
iables across different GCMs. For any new climate-impact study
over any specific region (small or large watershed) the VCS curve
generated for entire India can serve as a useful first step. It can be
used to get region-specific simulation details. The VCS analysis
will help to reduce uncertainty in the results from climate-impact
studies. Overall, it can be concluded that the VCS methodology is a
simple method that can be easily applied to assess the reliability of
a subset of model results for different variables and different
regions.
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