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Copula-Based Modeling of TMI Brightness
Temperature With Rainfall Type

J. Indu and D. Nagesh Kumar

Abstract—Overland rain retrieval using spaceborne microwave
radiometer offers a myriad of complications as land presents
itself as a radiometrically warm and highly variable background.
Hence, land rainfall algorithms of the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI) have traditionally
incorporated empirical relations of microwave brightness temper-
ature (Tb) with rain rate, rather than relying on physically based
radiative transfer modeling of rainfall (as implemented in the TMI
ocean algorithm). In this paper, sensitivity analysis is conducted
using the Spearman rank correlation coefficient as benchmark,
to estimate the best combination of TMI low-frequency channels
that are highly sensitive to the near surface rainfall rate from
the TRMM Precipitation Radar (PR). Results indicate that the
TMI channel combinations not only contain information about
rainfall wherein liquid water drops are the dominant hydrome-
teors but also aid in surface noise reduction over a predominantly
vegetative land surface background. Furthermore, the variations
of rainfall signature in these channel combinations are not un-
derstood properly due to their inherent uncertainties and highly
nonlinear relationship with rainfall. Copula theory is a powerful
tool to characterize the dependence between complex hydrological
variables as well as aid in uncertainty modeling by ensemble
generation. Hence, this paper proposes a regional model using
Archimedean copulas, to study the dependence of TMI channel
combinations with respect to precipitation, over the land regions
of Mahanadi basin, India, using version 7 orbital data from the
passive and active sensors on board TRMM, namely, TMI and
PR. Studies conducted for different rainfall regimes over the study
area show the suitability of Clayton and Gumbel copulas for
modeling convective and stratiform rainfall types for the majority
of the intraseasonal months. Furthermore, large ensembles of
TMI Tb (from the most sensitive TMI channel combination) were
generated conditional on various quantiles (25th, 50th, 75th, and
95th) of the convective and the stratiform rainfall. Comparatively
greater ambiguity was observed to model extreme values of the
convective rain type. Finally, the efficiency of the proposed model
was tested by comparing the results with traditionally employed
linear and quadratic models. Results reveal the superior perfor-
mance of the proposed copula-based technique.

Index Terms—Copula, quantile regression, river basin, Tropical
Rainfall Measuring Mission (TRMM).
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I. INTRODUCTION

OVER the years, microwave radiometers have proven
to be valuable tools for the quantitative estimation of

precipitation from space with its cloud-penetrating capability.
The passive and active sensors on board the Tropical Rainfall
Measuring Mission (TRMM) [successful program by National
Aeronautics and Space Administration (NASA) and Japan’s
space agency Japan Aerospace Exploration Agency], namely,
the TRMM Microwave Imager (TMI) and Precipitation Radar
(PR), have taken unprecedented satellite images of the Earth’s
weather for the past 16 years. The combination of a spaceborne
radar (i.e., PR) and a radiometer (i.e., TMI) on the same space
platform has advanced microwave rainfall retrieval techniques
considerably due to the increased understanding in the trans-
fer of microwave radiation through clouds and hydrometeors
(precipitation-sized particles).

The brightness temperature (Tb) registered by a downward
viewing spaceborne radiometer has an indirect relationship with
the rainfall rate dependent on background emissivity. Hence,
the underlying physics for rainfall retrieval is different for land
(overland algorithms) and oceans (overocean algorithms). The
ocean surfaces offer a radiometrically cold background en-
abling the warm randomly polarized emission from rainfall to
be easily distinguished from ocean surface emission. Land, on
the contrary, exists as a radiometrically warm and highly unpo-
larized background. The highly nonhomogeneous land surface
background tends to have varying emissivity values which add
clutter to the emission from rainfall, thereby making it ex-
tremely difficult to detect rainfall signals. Hence, land rainfall
retrieval algorithms using passive microwaves (PMWs) have
been traditionally dependent on empirical relationships utiliz-
ing the ice scattering property at 85.5-GHz Tb [1]–[7]. The
quantitative assessment of PMW rainfall indicates that, al-
though retrieval over ocean surfaces is performed with ac-
ceptable accuracy, overland retrieval, based on ice scattering
at an 85-GHz microwave frequency channel, continues to re-
main ambiguous. Some of the well-documented algorithms for
PMW rainfall retrieval over land regions are summarized as
follows. Rainfall detection using polarization-corrected temper-
ature (PCT) was first introduced by Spencer et al. [2]. This
index relied on a linear combination of the vertically and the
horizontally polarized Tb at an 85.5-GHz channel to extract the
ice scattering signature and obtain a continuous precipitation
field [3]. Statistical regression-based algorithms were devel-
oped based on rain indices like the PCT and scattering index
(SI). The underlying concept of SI was first proposed by Grody
[4] to estimate the ice scattering signature of raining clouds by
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subtracting the nonscattering portion of Tb from the observed
85-GHz Tb. This approach was used to derive empirical rela-
tions with rainfall [5], [6] and has been used in the current
TRMM facility overland rain retrieval algorithm. Algorithms
were developed relating rainfall rates to the difference between
19- and 85-GHz Tb by Liu and Curry [10]. Prabhakara et al.
[11] developed a global model to estimate the overland rain
rate from TMI observations utilizing the index of optical depth,
the difference in Tb values of 19- and 37-GHz channels, and
the horizontal gradient of Tb values in the 85.5-GHz channel.
Studies using artificial neural networks were conducted to relate
TMI Tb from low-frequency microwave channels with respect
to the near surface rain rates of PR, over different oceanic and
land regions of India [12], [13]. Several regional models were
developed linking TMI Tb with PR rainfall rate. Dinku and
Anagnostou [14] performed an empirical modeling of TMI land
rain rates for the summer seasons of 2000 to 2002 for four
different convective tropical regions. Their algorithm consisted
of multichannel-based rain screening and convective/stratiform
rain classification followed by the fitting of a nonlinear (linear)
regression for the rain rate retrieval of stratiform (convective)
rain regimes. In their study, it was observed that, among the
four geographic regions considered, the Ganga Brahmaputra
Meghna river basin has a significant difference between global
and regional calibrations. Gopalan et al. [7], using the Univer-
sity of Utah level 1 precipitation feature database, developed
rain rate relationships with respect to the 85-GHz Tb. Their
study proposed a robust cubic polynomial model of TMI rain
rate with Tb at 85 GHz for convective storms while a linear
model was developed for stratiform storms. Aonashi et al.
[15] developed an overland empirical algorithm based on ice
scattering signals wherein Tb from a 37-GHz channel was uti-
lized as a scattering correction factor to the 85-GHz scattering
signatures. The factor was applied to overcome the saturation
of the 85-GHz scattering signature during heavy rainfall. These
observations lead to strive for a regional model over the Indian
landmass.

All the algorithms highlighted the fundamental dependence
of overland rainfall with ice scattering signatures at the 85-GHz
frequency channel. However, these retrieval techniques suffer
from a major disadvantage of being inherently empirical in
nature due to the unknown phase, density, size, distribution, ori-
entation, and shape of ice particles within the sampling volume
[16], [17]. Moreover, the increased wetness of the land surface
during rainfall tends to alter the emissivity of land which can be
misinterpreted as due to ice scattering and, thereby, as rainfall
signature. As the frozen hydrometeors have an indirect relation-
ship with surface rainfall that varies significantly from region
to region, the algorithms solely relying on ice scattering fail
to detect rainfall from clouds that lack ice particles [18], [19].
Due to these problems, the transfer function linking microwave
Tb with rainfall rates is not well understood in the scattering
regime for overland rainfall retrieval.

Keeping these in mind, the main objective of this paper is
to develop an integrated regional model to estimate the joint
variability of PR rainfall with respect to TMI Tb over the
midsize basin of Mahanadi, India. For modeling, this study
uses low-frequency channel combinations of TMI instead of

relying on the 85.5-GHz high-frequency channel. Channel com-
binations were selected based on their increased sensitivity to
overland rainfall for the study area. The relationship between
TMI channel Tb and rainfall is highly uncertain and nonlin-
ear in nature. Copula theory is well known to characterize
complex hydrological variables as well as aid in their uncer-
tainty modeling by ensemble generation [20]–[22]. Hence, for
this study, the Tb–rainfall rate relationship is modeled using
copula theory. Section II presents the description of TRMM
data products used in this study. The study region chosen is
explained in Section III. The proposed methodology is outlined
in Section IV. Section V summarizes the results of the proposed
method applied on Mahanadi basin, India. Finally, the key
conclusions are outlined in Section VI.

II. TRMM DATA PRODUCTS

TRMM is a joint mission between the National Aeronautics
and Space Administration and the Japan Aerospace Exploration
Agency to monitor and study the tropical rainfall. Launched in
1997 into a near circular orbit, it has two instruments operating
in the microwave spectrum, namely, TMI and PR. A detailed
description of the TRMM sensor package is available in [23].
To summarize, the passive instrument TMI measures Tb at five
different frequencies (10.65, 19.35, 21.3, 37.0, and 85.5 GHz)
using both horizontal (H) and vertical (V) polarizations except
for the 21.3-GHz channel which is measured in just the vertical
polarization. Hereinafter, these channels will be referred to as
10 V, 10 H, 19 V, 19 H, 21 V, 37 V, 37 H, 85 V, and 85 H,
respectively. The concept of effective field of view (EFOV) is
introduced wherein the EFOV in the cross-track (CT) direction
represents the results of one integration time period or “one
sample.” When compared with the instantaneous field of view
(IFOV), the EFOV-CT appears to be “artificially narrow” be-
cause the EFOV in the down track (DT) direction is taken to be
same as the IFOV-DT [23]. The major instrument characteris-
tics of TMI are tabulated in Table I [23]. The active instrument
PR, operating at a frequency of 13.8 GHz (Ku-band), is capable
of the following: 1) providing the 3-D structure of rainfall,
particularly of the vertical distribution; 2) obtaining quantitative
rainfall measurements over land as well as over ocean; and
3) improving the overall accuracy of TRMM precipitation
retrieval by the combined use of active (PR) and passive (TMI)
sensor data. In this paper, we use version 7 TMI 1B11 data for
Tb data, PR 2A21 for surface flag data, PR 2A25 for near sur-
face rainfall rate (NSR) data, and PR 2A23 for rain-type data.

A. Collocation Strategy

The 1B11 data product provides Tb measured at EFOV with
horizontal resolutions varying with frequency (5 km × 7 km
for 85 GHz to 10 km × 63 km for 10 GHz). Due to the varying
spatial resolutions along the DT and CT directions, for each
of the TMI channels among themselves and with that of PR
(4.3 km × 5 km) data, collocation was performed as the initial
step. Several studies have approached collocation by spatial
resolution enhancement [24], [25]. In this study, the resolution
of low-frequency channels (10 V, 10 H, 19 V, 19 H, 21 V,
37 V, and 37 H) is increased by linear interpolation technique
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TABLE I
TMI INSTRUMENT CHARACTERISTICS

Fig. 1. Land use/land cover map of Mahanadi basin (for year 2010).

to match it with the resolution of 85 V channels. Collocation
is performed by using the geolocation information from the
TRMM PR and TMI data set, to assign a TMI pixel at the 85 V
resolution as the “nearest neighbor” for every PR pixel in an
orbit, using (1), shown at the bottom of the page. Here, Di

refers to the distance between each of the ith TMI pixels from
a given PR pixel. This process makes available three to four
PR pixels as the nearest neighbors for every TMI pixel within a
PR swath [7]. As a result, for every high-resolution TMI 85 V
pixel, corresponding PR pixels, near surface rain rates, and rain
type were estimated. To extract all the pixels lying over the land
region, surface-type information from the PR data product was
used. The rainfall type (convective and stratiform) represented
by each of these collocated overland pixels was estimated
by utilizing the storm-type information present in the TRMM

2A23 data product. The NSR data archived within the PR 2A25
product refer to the rainfall rate at the lowest point in the clutter-
free region, estimated using radar reflectivity–rainfall (Z-R)
relationship. Understanding this relationship over the complex
Indian terrain is a big challenge. This study uses a four-year
data period from 2008 to 2012 to examine the variability of
collocated TMI channel combinations with rainfall types from
PR. The selection of the data period was based on previous
works in the literature which conducted TMI Tb–rainfall related
studies [26]–[29].

III. STUDY REGION

The study region chosen for this work is the basin of
Mahanadi river, India, situated between latitudes 19◦ N to

Di =
√

(LatitudePR − LatitudeTMI,i)2 + (LongitudePR − LongitudeTMI,i)
2 (1)
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Fig. 2. Flowchart summarizing the methodology.

24◦ N and longitudes 80◦ E to 87◦ E (see Fig. 1). The
physiographic classification of the basin comprises the hilly
regions of the northern plateau and Eastern Ghats, the delta
of coastal plains, and the central interior region traversed by
the river Mahanadi and its tributaries. The land use/land cover
of the basin consists of forest, cropland, grasslands, etc. (see
Fig. 1). The basin receives heavy to very heavy rainfall when
monsoon depressions from the Bay of Bengal move northwest-
ward slightly south of their normal track. Mahanadi basin is
notorious for being subjected to frequent flooding every year.
Nearly 91% of the annual precipitation (600 to over 1600 mm)
for the basin occurs from June to September (JJAS), also
known as the summer monsoon months, which is responsible
for influencing the agricultural output from the basin. Even a
small variation of this seasonal rainfall can have an adverse
impact on the economy. Analysis of PMW data to accurately
estimate rainfall over a hydrologically variant basin such as
Mahanadi stresses on the proper estimation of the dependence
between PMW frequency channels and rainfall intensities.
Within the microwave spectrum, a predominantly vegetative
land surface background, such as that observed in the basin,
will contribute volume scattering since the microwave radiation
can arise from below and within the canopy. It is thus a
very complex and challenging task to discern the atmospheric
contribution to the upwelling Tb. An analysis of the response
of TMI channel frequencies in the presence of rainfall types
over the complicated land background of the basin will greatly

aid in future studies pertaining to rainfall modeling, extremes
in precipitation, flood forecasts, weather forecasting, etc.

IV. PROPOSED METHODOLOGY

The purpose of this paper is to study the dependence of TMI
Tb (from TMI channel combinations) with PR NSR types. A
flowchart summarizing the methodology adopted in this paper
is shown in Fig. 2. The data products from 1B11, 2A21, 2A25,
and 2A23 are subjected to the initial data processing procedure
consisting of collocation, extraction of overland pixels, and
division into convective and stratiform pixels. This procedure
is applied for nearly 1397 orbits passing over the study region
between the monsoonal months of 2008 to 2012. For the
overland regions of the study area, a total of 9216 and 26 139
data points are extracted to represent convective and stratiform
rain types, respectively.

A. Sensitivity Analysis

Overland rainfall retrieval algorithms using PMW techniques
are based on the ice scattering phenomenon at the 85 V
channel. Recent studies by You et al. [28] using three years
(1998 to 2000) of TRMM orbital data examined the correlation
coefficients between PR NSR and TMI Tb using 81 channels
(9 TMI channels + 72 channel combinations from the 9 TMI
channels) for the overland regions of tropics. The study came
out with 20 channels that were highly sensitive to NSR. This
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study uses these 20 channel combinations (hereinafter referred
to also as TMI channels). The TMI channel sensitivities for
PR NSR over the study area are examined using the Spearman
rank correlation coefficient. The dependence between variables
is usually measured using Pearson’s coefficient of correlation
(CC). However, this parameter only models linear dependence,
which, in some cases, may not exist [29]. The relationship
of TMI Tb with NSR from PR is highly nonlinear in nature.
Hence, traditional means of correlating both variables using the
Pearson product moment correlation coefficient might not be
appropriate. Therefore, the following analysis makes use of the
more robust Spearman rank correlation coefficient. If x and y
denote the ranks of data pairs, n denotes the sample size, and
x and y denote the means of x and y, the Spearman’s rank
correlation coefficient is defined as

rxy =
1

n−1

∑i=n
i=1 (xi − x)(yi − y)[

1
n−1

i=n∑
i=1

(xi − x)2
] 1

2

∗
[

1
n−1

n∑
i=1

(yi − y)2
] 1

2

. (2)

Due to the inherent uncertainties of TMI channels with rainfall
rate, the transfer function/joint density of these sensitive chan-
nels for each of the JJAS months was modeled against rainfall
types (convective and stratiform) from PR using copula theory.

B. Copula Theory

Natural events like rainfall often result due to the joint behav-
ior of several mutually dependent random variables that require
a multivariate approach to analyze and study both the hydro-
logical and the meteorological phenomenon. Hence, for this
study, copula theory is proposed to model the joint variability
between TRMM Tb (from passive sensor TMI) and NSR (from
active sensor PR). In the field of water resources engineering,
although the theory of copulas has been successfully applied in
various applications involving flood frequency analysis and soil
moisture-related studies [30]–[33], its development is still in a
nascent stage.

The theory of copulas first introduced by Sklar [34] is used to
obtain the joint distribution of two continuous random variables
once their marginal distributions are known/estimated. For a
bivariate case, the Sklar theorem [34] is stated as follows:

Let HX,Y (x, y) be a 2-D joint distribution function with
marginal distributions as FX(x) and GY (y). Then, there
exists a copula C such that, for all x, y, FX(x), and
GY (y) ∈ R

HX,Y (x, y) = C [FX(x), GY (y)] . (3)

Pertaining to this study, the statement means that, if X and
Y are continuous random variables representing TMI Tb (K)
and PR rainfall rates (mm/h), FX(x) and GY (y) represent their
corresponding marginal distribution functions, and HX,Y (x, y)
denotes their joint distribution function, then there exists a
copula (C) that joins/couples the joint distribution function
(HX,Y (x, y)) to their corresponding 1-D marginal distribution
functions (FX(x) and GY (y)) [34]. (The usual convention
adopted in probability theory is being followed here wherein
an uppercase letter denotes a random variable and a lowercase

letter refers to the value taken by the corresponding random
variable.) This definition of copula theory can also be repre-
sented in another way. Let FX(x) and GY (y) represent the
cumulative distribution functions (cdfs) of the variables X and
Y with HX,Y (x, y) as their joint cdf. Since the three functions
FX(x), GY (y), and HX,Y (x, y) lie in the interval [0, 1], each
pair of variables (x, y) can be represented in terms of a point
(FX(x), GY (y)) within the unit square [0, 1] × [0, 1], and this
ordered pair, in turn, corresponds to a number HX,Y (x, y) in
[0, 1] [35]. As such, in copula theory, the calculation of
joint distribution is divided between calculating the individual
marginal cdf of both the variables and calculating the copula
function (C). The dependence relationship is entirely deter-
mined by the copula, while the scaling and shape are entirely
determined by the marginals.

1) Estimation of Nonparametric Marginal Distributions:
The flexibility of copula theory is that any type of marginal
distributions can be joined/coupled to obtain their joint distri-
bution. The marginal distributions can be estimated either by
fitting any of the parametric distributions (e.g., normal, expo-
nential, etc.) or by using the nonparametric approach of kernel
density. This study uses the nonparametric kernel density-based
technique [36] to estimate the marginal distributions of TMI
Tb and PR rainfall rate, owing to its flexibility in capturing the
scale-free dependence pattern between both the variables. The
kernel density technique involves a weighted moving average
of the empirical frequency distribution of the sample [37],
[38]. The kernel density-based estimation of probability density
function (pdf) pertaining to hydrologic variables can be found
in [39]–[41], etc. The kernel density-based technique computes
the statistical distribution using histograms that are estimated
using the relation [42]

f̂(x) =
1

nh

n∑
i=1

k

(
x− xi

h

)
(4)

where k denotes the kernel function, h is the bandwidth/
smoothing parameter used for smoothing the shape of the
estimated pdf, and xi is the ith observation. For this study,
out of the different types of kernel functions, the Epanechnikov
kernel function is used, which is given as

k(x) = 0.75(1− x2), |x| ≤ 1
k(x) = 0, otherwise. (5)

2) Estimation of Copula Parameters: A bivariate copula
captures the scale-free dependence structure between two vari-
ables X and Y which implies that the manner in which X and
Y “move together” is modeled regardless of the scale in which
each variable is measured. For a bivariate copula, the scale
of dependence is described by its copula parameters which
are then used to determine the joint distribution and simulate
the marginals [33]. Generally, correlation measures are used
to summarize the information in copula. As the usual Pearson
linear product moment correlation depends on the marginal dis-
tributions, it is not a desirable measure of association for non-
normal multivariate distributions. Two standard nonparametric
correlation measures, namely, Spearman’s correlation and
Kendall’s correlation, are widely used which can be expressed
solely in terms of the copula function [43].
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TABLE II
ARCHIMEDEAN COPULAS WITH THEIR GENERATOR

FUNCTIONS ALONG WITH KENDALL’S TAU

This study uses three types of Archimedean [44] copulas,
namely, Clayton, Gumbel, and Frank, for modeling. The gen-
eral structure of the Archimedean copula is given by

Cφ(u, v) = φ−1 (φ(u) + φ(v)) for u, v ∈ (0, 1] (6)

where φ denotes the copula generator which is a convex de-
creasing function with domain [0, 1] and range [0, ∞), φ−1

is the inverse copula generator, and u and v are the marginal
distributions of the variables X and Y (i.e., u = FX(x)
and v = FY (y)). The functional forms of the three common
Archimedean families of copulas are shown in Table II.

For the Archimedean family, this study estimates copula
parameters by calculating Kendall’s rank correlation for the
copula and for the data. All the three types of Archimedean
copula used in this study are one-parameter copula, wherein the
strength of the dependence between the two variables increases
with an increase in the copula parameter (θ). The relationship
between Kendall’s rank correlation coefficient τ and φ for an
Archimedean copula family is given by

τ = 1 + 4

1∫
0

φ(u)

φ′(u)
du (7)

where φ′(u) represents the derivative of φ(u) with respect to
u (marginal distribution). Kendall’s τ can also be mathemati-
cally expressed in terms of copula function (C) according to
(8) [35] as

τ = 4

∫
C(u, v)dC(u, v)− 1. (8)

Kendall’s rank correlation coefficient denotes a nonparametric
measure of association between two variables. If (x1, y1),
(x2, y2), . . . (xn, yn) denote the n pairs of both the random
variables (TMI Tb and PR NSR for our study), Kendall’s τ
estimates the difference between the probability of concordance
and the probability of discordance for the pairs of random
variables using the relationship

τ =
nC − nD

n(n+ 1)/2
(9)

where n denotes the sample size, and nC and nD are the
number of concordant and discordant pairs in the sample. Two
pairs (x1, y1) and (x2, y2) are known to be concordant if (xi −
x2)(y1 − y2) > 0 and discordant if (xi − x2)(y1 − y2) < 0.

All the n sample data are being compared pairwise, resulting
in n(n+ 1)/2 comparisons.

A crucial factor in dependence modeling is the tail de-
pendence which will be different for different families of
Archimedean copulas. The tail dependence determines the as-
sociation between the extreme values of two random variables
and depends only on their copula. The Gumbel copula [45] is
usually used for asymmetrical tail dependence structure [46],
i.e., it exhibits higher correlation in the right tail. If X and
Y are two variables, the upper tail dependence using the
Gumbel copula models the probability that Y exceeds a given
threshold given that X has already exceeded that threshold.
The Clayton copula has a lower tail dependence or tighter
concentration of mass in the left tail. The Clayton copula is
considered appropriate to model the probability that Y is below
a threshold, given that X is already below that threshold. The
Frank [47]–[49] copula is the only Archimedean copula family
which is radially symmetrical (i.e., symmetric about the main
diagonal and antidiagonal of its domain). A good overview of
tail dependence for various families of Archimedean copulas
can be found in [50] and [51].

3) Fitting Most Appropriate Copula: After calculating the
parameters of each copula, it is necessary to decide which
copula family best represents the dependence structure between
the variables of interest (TMI Tb and NSR in our case). For
our study, the choice of an appropriate copula for each of the
monsoonal months was based on the measures of the Akaike
information criterion (AIC) and Bayesian information crite-
rion (BIC). Both these measures are adopted because of their
capability to describe the tradeoff between bias (or accuracy)
and variance (complexity) in model construction. AIC conducts
model comparison based on the concept of information entropy
while BIC estimates the model fit from the perspective of
decision theory. In an absolute sense, the AIC/BIC values of
a single model are unable to convey information about how
well that particular model fits the data. The measures of AIC
and BIC find meaning only when compared with several model
fits. AIC measures the relative goodness of fit of a statistical
model. If k is the number of parameters in the copula and L
is the maximized value of the likelihood function (for a copula
family), then the expressions for AIC and BIC are given as

AIC =2k − 2 ln(L) (10)
BIC = − 2 ln(L) + k ln(N). (11)

The copula having the highest value for the log likelihood or the
lowest values for AIC and BIC measures is chosen to represent
the dependence structure in a better manner.

To summarize, the complete copula methodology can be
listed in the form of the following steps: 1) Fitting marginal
distributions (FX(x) and GY (y)) for each of the random vari-
ables X and Y , using techniques described well in the statistical
literature. This study used a kernel density-based nonparametric
approach to estimate marginals of both the variables. 2) Fitting
the copula after estimating the appropriate copula function
(C). For the Archimedean family of copulas, the relationship
between Kendall’s τ and copula generator φ reduces the copula
fitting step to estimating the Kendall’s τ from the data and
solving (7).
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The predictive potential of copula theory is explained below
using conditional density and quantile regression.

C. Copula-Based Conditional Distribution

Once the copula-based joint distribution is estimated, i.e.,
FX(x), GY (y), and C(u, v) are obtained, both unconditional
and conditional random samples can be generated from this
distribution using Monte Carlo simulations [33]. Ensemble
generation using conditional distribution is especially important
for our study because of the uncertainty in both the variables of
interest (i.e., TMI Tb and PR NSR) and because of the need to
estimate the conditional probability distribution of Tb values,
given the various quantiles of rainfall. The conditional distri-
bution of a random variable (X), conditioned on an observed
variable (Y ), can be estimated using (12) [32] as

CX/Y=y(x) =
∂

∂y
CX,Y (x, y)/Y = y. (12)

This means that, once the copula family that best describes the
dependence between X and Y is known, its partial derivative
with respect to one of the variables yields the conditional
distribution, given that variable.

D. Quantile Regression Based on Copula Theory

Regression functions are the most widely used tools for
describing multivariate relationship. For random variables X
(representing TMI Tb) and Y (representing NSR from PR),
the regression curve y = E(Y/x) specifies a “typical” (mean)
value of Y for each value of X and vice versa. However,
E(Y/x) and E(X/y) are parametric and thus do not have sim-
ple expressions in terms of distribution functions and copulas
[26]. Let X and Y be continuous random variables with joint
distribution function HX,Y and marginal distribution functions
FX and GY with copula C. Then, u = FX(x) and v = GY (y)
are uniform (0, 1) random variables with joint distribution
function C. If p denotes the pth quantile, then

p =P [Y ≤ y/X = x]

=P [v ≤ G(y)/u = F (x)] =
∂C(u, v)

∂u

∣∣∣∣
u=F (x)
v=G(y)

(13)

is used to find the pth quantile regression curve [52] yp =
yp(x) of Y on X . The above relations can be used to generate
observations on Y simply by evaluating this expression and
replacing p with different quantile values.

The steps to find the quantile regression curve using the
Clayton copula are given as follows:

1) Fixing the conditional probability of Y given X = x at
some p so that

∂C(u, v)

∂u
= p. =

(
1 + uθ(v−θ − 1)

) 1+θ
θ

(using the function for the Clayton copula from Table II).
2) Solving for v, we have v = ((p−θ/(1+θ) − 1)u−θ +

1)−1/θ, which will give different relationships between u
and v for different values of p. Using this expression, we

can obtain the conditional quantile function conditional
on X as

y = F−1
Y

([(
p

−θ
1+θ − 1

)
FX(x)−θ + 1

]−1
θ

)
. (14)

It is worth noting that the proposed approach can be applied
with any copula function with the expression for C varying with
each copula type as shown in Table II. This enables to easily
derive parametric families of conditional quantile functions
from parametric copula functions [12]. Further details regard-
ing copula theory and associated derivations can be obtained in
[53]–[55].

V. RESULTS

A. Sensitivity Analysis

For each of the JJAS months, the Spearman rank correlation
coefficients were calculated between the 20 TMI channels
and NSR of PR. Fisher’s test was carried out to estimate the
statistical significance between correlation differences. From
Table III, it can be seen that, for stratiform rainfall, the channels
of 21 V–37 V (for June and July) and 19 V–37 V (for August
and September) were found to represent the highest correlation
with NSR. On the other hand, the channels of 19 H–37 V (for
June) and 19 V–37 V (for July, August, and September) were
obtained as most sensitive to overland convective rainfall. It
can be seen from Table III that, in comparison with the 85 V
channel, these channels explain more variability in NSR. Sta-
tistical tests indicate that the difference between the correlation
coefficients of 85 V and 19 V–37 V (21 V–37 V) is significant
at 99% confidence level. The CC values of convective-type
rainfall are 0.22, 0.35, 0.33, and 0.26 for JJAS. As scattering is
primarily caused by frozen ice hydrometeors aloft, the emitted
signal by liquid rain drops gets substantially blocked due to
intense scattering. Hence, the measured Tb values are indirectly
related to rain mass instead of rainfall below the cloud base.
Therefore, any attempt to correlate Tb values with heavy rain-
fall below the cloud base results in low correlation values as
observed for the study region. In the case of stratiform rainfall,
the corresponding CC values are quite higher, i.e., 0.65, 0.53,
0.58, and 0.59, indicating good correlation. The high correla-
tions of 19 V–37 V (21 V–37 V) channels suggest that, over the
basin, the vertical distribution of hydrometeors is dominated by
the bottom heavy liquid water which is more directly related
to NSR. Another plausible reason for better correlation is the
benefit offered by the subtraction of Tb from two channels,
thereby reducing the uncertainty induced by surface emissivity
variation. Moreover, the change in land surface emissivity
(owing to surface wetness) has less impact on 19 V–37 V as
the emissivity for 19 V and 37 V channels varies in a similar
fashion. The channel combinations of 19 V, 37 V, and 22 V can
be related with the differential optical depth of the atmosphere
and have potential to represent the response of hydrometeors of
different kinds within a column of the atmosphere [11]. This
indicates that the channels of 19 V–37 V, 21 V–37 V, and
19 H–37 V not only contain information about rainfall wherein
liquid water drops are the dominant hydrometeors but also
aid in surface noise reduction over a predominantly vegetative
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TABLE III
RESULTS OF SENSITIVITY ANALYSIS OVER THE STUDY REGION

Fig. 3. Relationship of near surface rain rate for convective rain type with
respect to sensitive channel combinations for intraseasonal months. (a) June.
(b) July. (c) August. (d) September.

land surface such as that observed in the basin. Monsoon over
Mahanadi basin sets in around the first week of June. Compared
to the other monsoonal months, June receives comparatively
less amount of rainfall. Of the total representative data for the
month of June, nearly 25% constitute convective rainfall, and
the rest comprise stratiform rainfall. The effect of sample

Fig. 4. Relationship of near surface rain rate for stratiform rain type with
respect to sensitive channel combinations for intraseasonal months. (a) June.
(b) July. (c) August. (d) September.

size, along with the large number of outliers among the data
pairs analyzed, is reflected in the rank correlation values for the
rainfall types during June.

The variation of rainfall signature at the 19 V–37 V (or
21 V–37 V) channel has not been well assessed so far. From the
scatter diagrams of Figs. 3 and 4, it can be observed that the data



4840 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 8, AUGUST 2014

TABLE IV
RESULTS OF COPULA MODELING FOR RAIN TYPE WITH SENSITIVE CHANNEL COMBINATION

points tend to be highly populated at the lower end of rainfall
for the convective rain type, indicating that different values
of Tb can be associated with the same rain rates, depending
on rainfall inhomogeneity. Several factors contribute to this
uncertainty like the spatial resolutions of low-frequency TMI
channels and the difference in viewing angles (significant for
convective rainfall) between TMI and PR, to name a few.
Also, for both the rainfall types, Tb values less than zero can
be observed (from Figs. 3 and 4), indicative of a decrease
in emissivity over tropical land caused by wet ground. The
dependence structure of these channels with respect to rain-
fall intensities is potentially very useful in improving rainfall
retrieval over land regions. However, scatter diagrams suggest
that a simple relationship based on regression techniques may
not represent this dependence due to the inherent uncertainties.
Hence, in this study, we focus on explaining the variability of
19 V–37 V and 21 V–37 V channels with respect to NSR using
copula theory.

B. Copula-Based Simulation

The first step for copula-based dependence modeling consists
of fitting an appropriate marginal distribution to TMI Tb and
NSR. Several parametric distributions can be used for fitting
the marginals. For this study, to allow maximum flexibility in
choosing the appropriate distribution, marginals of TMI Tb
and NSR were modeled using a nonparametric kernel density
function. Among the different dependence structures, three
types of Archimedean copulas, namely, Clayton, Frank, and
Gumbel, were used for bivariate modeling. The parameters and
associated goodness of fit measures for different TMI Tb-NSR
combinations and copula types are tabulated in Table IV. For

the majority of JJAS months, the Gumbel copula is found to bet-
ter describe the joint density between TMI channels and NSR
when rainfall is stratiform in nature. The choice of the Gumbel
copula indicates that there is strong right tail dependence in
modeling Tb (of TMI channels) and stratiform rainfall (from
PR) for the months of July, August, and September. It can be
observed from the scatterplots [see Fig. 5(b)–(d)] that there is
large clustering of Tb values for stratiform rainfall < 1.5 mm/h,
indicative of uncertainty at low intensities of stratiform rainfall.
For the convective rain regime, the Clayton copula was found
suitable for the majority of JJAS months. This is indicative of
the fact that correlation between both the variables (TMI Tb
and PR rainfall) is strongest in the left tail of the joint distri-
bution. It can be inferred that comparatively greater ambiguity
exists in modeling convective rainfall. However, for the month
of June, the copula family selected is different from that of
the other monsoonal months for both the rainfall types. For
convective rainfall of high intensities, lesser data points with
comparatively low ambiguity are observed during June. Hence,
the Gumbel copula, which is sensitive to the right tail of the
joint distribution, was found to be suitable. For the stratiform
rainfall of June, this situation is reversed wherein data points of
lesser ambiguity are observed for rainfall intensities < 1 mm/h.
Hence, the Clayton copula was found to appropriately represent
the stratiform rainfall of June, owing to its sensitivity to the left
tail of the joint distribution. For clarity in understanding the
models, the pdf generated using Frank, Clayton, and Gumbel
copula families for the month of June during stratiform rainfall
is shown in Fig. 5.

A plausible way to account for uncertainties associated with
any hydrological variable is to generate an ensemble of real-
izations that represent possible variability in them [27], [28].
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Fig. 5. PDF for the month of June generated using copula theory showing (a) Frank copula (4.12), (b) Clayton copula (1.01), and (c) Gumbel copula (1.51).

Fig. 6. Box plots of simulated Tb of sensitive channels for different quantiles
of convective rainfall for (a) June, (b) July, (c) August, and (d) September.

In this study, the ensembles of TMI Tb were examined for dif-
ferent classes of rainfall (convective and stratiform) and plotted
using box plots. The five different rainfall classes used in this
study are based on five quantile classes of the convective and the
stratiform rainfall, namely: 1) < 25th; 2) 25th–50th; 3) 50th–
75th; 4) 75th–95th; and 5) > 95th. The data points (i.e., Tb)
lying in each of these classes were simulated in sufficiently
large numbers (> 10 000) using the best fitting copula for each
of the JJAS months. The results are shown in Figs. 6 and 7 from
which it can be observed that the TMI Tb values for various
channel combinations show a large number of outliers (i.e.,
values placed far away from the rest of the distribution) for
various classes of rainfall. Positive values indicate that quantita-
tively larger Tb values have been registered over the vegetative
background of Mahanadi basin for channels of 19 V, 19 H,
and 21 V values (during the convective and the stratiform
rainfall) when compared with 37 V Tb values. It can be inferred
that the presence of frozen and liquid hydrometeors in the
atmosphere over the study region causes scattering in the 37 V
channel, thereby depressing (reducing) the Tb value registered
by the TMI sensor for the 37-GHz channel. Over a vegetative
background, such as that observed for the study region con-
sidered, the channels of 19 V, 19 H, and 21 V are known to
be less affected by scattering and more representative of the

Fig. 7. Box plots of simulated Tb of sensitive channels for different quantiles
of stratiform rainfall for (a) June, (b) July, (c) August, and (d) September.

emissivity from vegetative land surface. Hence, the values of
19 V–37 V (19 H–37 V and 21 V–37 V) result in positive
values, with larger values indicating more scattering in the 37 V
channel.

For convective rainfall, a large amount of negative values was
observed. A possible explanation to this is the depression due
to ice scattering at the 37 V channel. This is highlighted in the
range of values for June (up to 40 K). For stratiform rainfall
during the months of August and September, the range of Tb
includes very few negative values, indicative of atmospheric
liquid hydrometeors over the basin. For both the rain types,
box plots show a significant overlap in the interquartile ranges
for each rainfall class. This indicates that the dependence of
TMI Tb with rainfall (NSR) is associated with uncertainty. The
quantification of this uncertainty will not only give information
about the microphysical characteristics of rainfall over the basin
but also assist in hydrological and meteorological applications.

To aid in uncertainty quantification, this study generates
ensembles of the convective and the stratiform rainfall for each
of the aforementioned classes (based on quantile levels) using
conditional distribution based on copula theory. In other words,
given the TMI Tb (K), the range of rainfall (mm/h) for different
quantile classes was simulated using the best fitting copula
family for each of JJAS months using a three-year (2009–2011)
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Fig. 8. Box plots of simulated values of convective rainfall for each of the
25th, 50th, 75th, and 95th quantiles for (a) June, (b) July, (c) August, and
(d) September. � indicates the observed quantile values of JJAS in 2012.

Fig. 9. Box plots of simulated values of stratiform rainfall for each of the
25th, 50th, 75th, and 95th quantiles for (a) June, (b) July, (c) August, and
(d) September. � indicates the observed quantile values of JJAS in 2012.

collocated database. In Figs. 8 and 9, the outliers in the form
of high (low) values of stratiform (convective) rainfall can
be attributed to the copula family selected which is Gumbel
(Clayton). From Figs. 8 and 9, it can be observed that, for the
month of June, the box plots depict outliers toward higher ex-
treme (lower extreme) for convective (stratiform) rainfall. This
is attributed to the selection of the Gumbel (for convective) and
the Clayton (for stratiform) copula, respectively. The rainfall
quantiles observed for year 2012 (shown as Δ in Figs. 8 and 9)
are plotted along with the simulated quantiles generated for
rainfall classes using the best fitting copula for each month.
It can be seen that the observed quantiles fall well within the
predicted range of their population for both convective and
stratiform rainfall regimes. It can be inferred that, in spite of
the large uncertainties observed in TMI Tb channels, the pro-
posed method can be efficiently used to generate precipitation
ensembles pertaining to different quantile levels for both the
convective and the stratiform rainfall.

C. Copula-Based Quantile Regression

Quantile regression technique based on copula theory pro-
vides the conditional expectation of rainfall values at different
quantiles, given the value of Tb. Hence, in this study, copula
theory was used to generate regression curves between TMI
Tb and NSR. Collocated data of three years (2009–2011)

Fig. 10. Copula-based quantile regression curves for various quantiles of
convective rain rate simulated and overlain on 2012 data of (a) June, (b) July,
(c) August, and (d) September.

Fig. 11. Copula-based quantile regression curves for various quantiles sim-
ulated and overlain on 2012 data of (a) June, (b) July, (c) August, and
(d) September.

were used to create the database of rainfall values. The curves
generated for different quantile levels using this database were
overlain on the JJAS data of 2012 for visual comparison (see
Figs. 10 and 11). For stratiform rainfall types, the regression
curves for each quantile show a steep increase with the increase
in the value of channel combination (19 V–37 V and 21 V–
37 V). The relation for convective rainfall increases steeply with
the initial increase in Tb values, and after reaching the peak
point, the curves fail to show any relation. There is relatively
lower degree of association between the channels and extremes
of convective precipitation. This stresses the need for modeling
the extremes of convective rainfall. A clear dependence struc-
ture is observed for the quantile curves of stratiform rainfall. A
steep increase in TMI Tb is observed for every unit increase in
the rain rate, indicating a very strong dependence structure.

D. Model Comparison With Linear and Quadratic

Traditional methods to generate Tb-NSR relations rely on
linear and quadratic models. Recently, Gopalan et al. [7] have
modeled the relationships between NSR from PR and 85 V
Tb globally and came out with the result that a linear model
best describes the 85 V Tb–NSR relationship for stratiform
rainfall whereas a cubic model best represents the relation
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TABLE V
ERROR METRICS OBTAINED USING DIFFERENT MODELS

during convective rainfall. Hence, regression-based relations
were generated between TMI 85 V Tb and NSR data from PR
for a period of three years (2009–2011). A quadratic model was
used for convective rainfall while a linear model was used for
stratiform rainfall as shown in the following:

NSRConvective = a+ b ∗ Tb85V + c ∗ Tb2
85V (15)

NSRStratiform = d+ e ∗ Tb85V. (16)

Here, NSRConvective and NSRStratiform represent the rainfall
rates for convective and stratiform data points, respectively, and
Tb85V denotes the brightness temperature of the 85-GHz verti-
cally polarized channel. It may be noted that the coefficients (a,
b, c, d, and e) have different values for each rainfall type and
during each of the JJAS monsoonal months. A quantitative as-
sessment of the proposed copula-based model is conducted by
comparing against the developed linear and quadratic models
for each of the JJAS months. Quantiles were generated for each
of the monsoonal months for both convective and stratiform
rain types. The quantiles predicted using the proposed approach
were compared with those generated from linear and quadratic
models. Performance evaluation was conducted on the key
quantile measures (25th, 50th, 75th, and 95th). Finally, perfor-
mance statistics were quantified using a set of error metrics.
The results are tabulated in Table V. It can be inferred from
Table V that, for convective rainfall, the copula-based approach
provides the least error when compared with linear/quadratic
models, indicating superior performance. Even though the least
number of data pairs was observed for the month of June for
both the rainfall types, for the convective rain type, the copula-

based approach shows superior performance, suggesting that
the proposed approach has successfully modeled using a good
representation of data pairs. However, for the months of June
and July having stratiform rainfall, conventional models (linear
and quadratic) seem to perform slightly better, even though a
quantitative evaluation of errors does not show much difference
in the values. This might be partly attributed to the fact that the
Clayton and Gumbel copulas (selected using a three-year data
period) for the June and July months have slightly fallen short
in capturing new data pairs (of TMI Tb and NSR) observed in
2012. This can be attributed to the property of copulas which
considers dependence structure to be constant with time [55].
Future works can be conducted allowing copulas to be time
varying in nature, even though such study is in its nascent
stage of development [56], [57]. However, for all the other
months, the proposed copula model shows better performance
when compared to the conventional models. Moreover, it can
be concluded that comparatively greater ambiguity in model-
ing convective rainfall can be tackled by using the proposed
approach.

VI. CONCLUSION

This paper has analyzed the relationship between various
PMW channel frequencies of TMI with NSR from active
radar (PR) using collocated version 7 orbital data products
from TRMM, namely, 1B11, 2A23, 2A25, and 2A21. A new
technique has been developed based on copula theory to study
the dependence of TMI frequency channels with respect to
rainfall types (convective and stratiform) for the land regions of
Mahanadi basin, India. The present scheme conducts sensitivity
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analysis to estimate the TMI channel combinations which are
most sensitive to PR NSR using the robust Spearman rank
correlation. Results reveal a greater sensitivity of 19 V–37 V
and 21 V–37 V channel combinations to model rainfall regimes
for the basin. It can be inferred that these channel combinations
are more directly related to liquid rain drops and can help
in characterizing the microphysical structure of hydrometeors
over the basin. Furthermore, we have modeled the highly
nonlinear transfer function relating sensitive TMI channel com-
binations with PR rainfall using copula theory. Archimedean
copula-based modeling suggests that the Clayton and Gumbel
copulas are well suited to represent the bivariate joint distribu-
tions of the convective and the stratiform rainfall with respect to
TMI Tb for the majority of the intraseasonal months. However,
for the months of June and July, conventional methods seem
to perform slightly better during stratiform rainfall. The most
suitable copula family for TMI channels and rainfall regimes
might change from one region to another due to differences
in geographical and geophysical conditions. This study is only
based on data for a single region. Our approach, however, can
be applied to studies in other parts of the world to select the
most appropriate copula model.

Once the best fitting copula has been arrived at, we used this
to simulate large realizations of channel combinations condi-
tional on different rainfall quantile ranges (< 25th, 25th–50th,
50th–75th, 75th–95th, and > 95th). The results, plotted as
box plots, show heavy overlap for the interquartile ranges,
indicating that several values of Tb correspond to the same
quantile range of rainfall. Comparatively greater ambiguity was
observed to model extreme values of the convective rain type.
This stresses the need for uncertainty modeling. Finally, the
efficiency of the model developed was tested by comparing the
results with traditionally employed linear and quadratic models.
Results based on the comparison of different error metrics
reveal the superior performance of the copula-based technique
for the majority of the JJAS months.

The TMI land rainfall algorithm fails to detect “warm rain-
fall” over land due to the lack of significant ice scattering in
such rainfall [7]. From this study, it can be inferred that a com-
bination of low-resolution TMI channels successfully detects
rainfall wherein liquid drops are the dominant hydrometeors.
It also aids in uncertainty quantification which is helpful in
hydrological and meteorological applications. Furthermore, the
database of rainfall quantiles generated using the copula-based
approach can be highly beneficial in rainfall modeling studies
and weather applications over the basin.
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