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Evaluation of TRMM PR Sampling Error Over a
Subtropical Basin Using Bootstrap Technique

J. Indu and D. Nagesh Kumar

Abstract—Quantitative use of satellite-derived rainfall prod-
ucts for various scientific applications often requires them to
be accompanied with an error estimate. Rainfall estimates in-
ferred from low earth orbiting satellites like the Tropical Rainfall
Measuring Mission (TRMM) will be subjected to sampling er-
rors of nonnegligible proportions owing to the narrow swath of
satellite sensors coupled with a lack of continuous coverage due
to infrequent satellite visits. The authors investigate sampling
uncertainty of seasonal rainfall estimates from the active sensor
of TRMM, namely, Precipitation Radar (PR), based on 11 years
of PR 2A25 data product over the Indian subcontinent. In this
paper, a statistical bootstrap technique is investigated to estimate
the relative sampling errors using the PR data themselves. Results
verify power law scaling characteristics of relative sampling errors
with respect to space–time scale of measurement. Sampling uncer-
tainty estimates for mean seasonal rainfall were found to exhibit
seasonal variations. To give a practical example of the implications
of the bootstrap technique, PR relative sampling errors over a
subtropical river basin of Mahanadi, India, are examined. Results
reveal that the bootstrap technique incurs relative sampling errors
< 33% (for the 2◦ grid), < 36% (for the 1◦ grid), < 45% (for
the 0.5◦ grid), and < 57% (for the 0.25◦ grid). With respect
to rainfall type, overall sampling uncertainty was found to be
dominated by sampling uncertainty due to stratiform rainfall over
the basin. The study compares resulting error estimates to those
obtained from latin hypercube sampling. Based on this study, the
authors conclude that the bootstrap approach can be successfully
used for ascertaining relative sampling errors offered by TRMM-
like satellites over gauged or ungauged basins lacking in situ
validation data. This technique has wider implications for decision
making before incorporating microwave orbital data products in
basin-scale hydrologic modeling.

Index Terms—Basin, bootstrap, sampling error, Tropical
Rainfall Measuring Mission (TRMM).

I. INTRODUCTION

SATELLITES offer gridded rainfall products at an exten-
sive range of spatial (from a few kilometers to global)

and temporal (from a few minutes to months) scales. These
products, obtained in visible/infrared/microwave regions of the
electromagnetic spectrum, can, in principle, be combined with
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one another or with the output of climate models to generate
a realistic distribution of rainfall with better accuracy [1], [2].
Despite the advantages, these data products suffer from various
sources of uncertainties, a major source of which is contributed
by sampling errors resulting from infrequent satellite visits that
offer difficulty in measuring the spatiotemporal variability of
rainfall. Estimates of sampling errors are crucial to provide
quantitative confidence on the satellite products before these
can be applied for any scientific investigations or climate
modeling studies. Valid error estimates depend on a number
of factors like type of satellite, geographical location, season,
precipitation type, etc. Depending on the satellite analyzed,
sampling uncertainty studies can be broadly classified into two
categories [3]. These are either using geostationary satellites
which typically have a 1/2-h temporal resolution and a spatial
resolution of a few kilometers or using low earth orbiting
satellites with high spatial resolution and having a temporal
resolution of a few passes per day [3].

For more than a decade, the low earth orbiting satellite of
the Tropical Rainfall Measuring Mission (TRMM) has revo-
lutionized the global view of precipitation by providing near-
real-time data products. To improve the overall accuracy of
global rainfall maps, TRMM carries several instruments on-
board, including the passive sensor TRMM Microwave im-
ager (TMI) and an active sensor Precipitation Radar (PR).
The PR has a potential of providing 3-D vertical structure
of precipitation with a very high spatial resolution. It pro-
vides the well-developed 2A25 rainfall retrieval algorithm [4]
which is arguably one of the most reliable algorithms for
overland precipitation determination at a spatial resolution of
∼5 km. TRMM, being in a low earth orbit at an inclination
of 35◦, measures precipitation infrequently at any single lo-
cation, contributing to sampling errors of nonnegligible pro-
portions [5]. Some of the prominent sampling-error-related
studies relevant to TRMM rainfall products are discussed in the
following.

During the prelaunch period of TRMM, studies related to
temporal sampling errors using satellite-based rainfall estimates
were undertaken by many researchers. Empirical studies eval-
uated sampling errors using ground data at periodic intervals,
followed by a comparison with theoretical methods [6]–[8].
Laughlin [9] conducted studies using rainfall data over oceans
(near the intertropical convergence zone) and showed that
monthly averages of satellite-observed rainfall in the Global
Atmospheric Research Program Atlantic Tropical Experiment
(GATE) area will have sampling errors of the order of 10%
of the mean. Several studies followed, which made a similar
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conclusion but with a more realistic representation of rainfall
and satellite sampling [5], [6], [10]. Statistically based para-
metric studies by Laughlin [9], Shin and North [11], North and
Nakamoto [12], and Bell et al. [13], predicted sampling errors
of 8%–12% per month relative to the mean rainfall. Using data
from Patrick Air Force Base in Florida, Seed and Austin [14] es-
timated the sampling error with radar-derived rainfall estimates.
They were the first to extend sampling error studies to data sets
different from GATE. Soman et al. [15], [16] further enlarged
the sites for sampling error studies by analyzing radar echoes
collected in the vicinity of Darwin, Australia. Steiner [17]
conducted related studies using an extensive network of tip-
ping bucket rain gauges at Darwin, Australia, and Melbourne,
Florida. Chang et al. [18] estimated the errors associated with
monthly averages of rainfall obtained from the Special Sensor
Microwave/Imager (SSM/I) on the Defence Meteorological
Satellite Program satellites. Berg and Avery [19] analyzed the
sampling errors in SSM/I rainfall averages using data from two
SSM/I sensors. Their study resulted in an error budget summa-
rizing errors from various sources including the effect of diurnal
cycle of rainfall over oceans. Oki and Sumi [7] developed
sampling errors of TRMM monthly rainfall over Japan using
radar-AMeDAS (Automatic Meteorological Data Acquisition
System) data. Their study, conducted at 5◦ × 5◦ and 2.5◦ × 2.5◦

areas, inferred that sampling errors were approximately 16%
(with TRMM TMI) and 20% (with TRMM PR).

Sampling errors are complicated functions of the orbital
geometry and statistical properties of measured fields [13],
[20]. Lin et al. [21] showed that it is possible to combine
the Colorado State University (CSU) Global Climate Models
(GCM) with the TRMM orbital data to evaluate the sampling
statistics of TRMM sensors. Their study concluded that, for a
grid size of 2.25◦ × 2.25◦, TRMM orbital geometry resulted
in large systematic diurnal undersampling, especially for grid
boxes located away from the equator which caused errors as
large as 20% in tropics and 40% in subtropics for zonally aver-
aged monthly mean rainfall products. Iida et al. [22] evaluated
sampling errors due to five low earth orbiting satellites (Aqua,
DMSP-F13, F14, F15, and TRMM) using radar-AMeDAS data
of three years around Japan. Fisher [23] conducted error anal-
ysis using TRMM TMI and PR data products for a 2◦ × 2◦

grid size over the TRMM ground validation site at Melbourne,
Florida.

The TRMM Multisatellite Precipitation Analysis (TMPA)
third level data product 3B42 is considered to be a more realistic
representation of rainfall when compared with GCMs. TMPA
is a merged microwave–infrared data product that provides
fine-scale precipitation estimates at 3 hourly resolutions for
0.25◦ × 0.25◦ grids over the tropical regions [24]. Nesbitt and
Anders [25] estimated the relative sampling errors using the
3B42 data product of TMPA. Fisher et al. [26] estimated the
sampling and retrieval errors for five different spaceborne sen-
sors onboard nine orbiting satellites using an error decomposi-
tion methodology for 0.25◦ resolution grids over ground-based
weather radars of Kwajalein, Marshall Islands, and Melbourne,
Florida.

To date, studies related to TRMM sampling errors compare
the rainfall rates from a surface-based dense network of rain

gauges with that from TRMM. Availability of high-resolution
surface-based rainfall data of high accuracy is limited to
regions possessing surface-based equipment [6], [9]–[11],
[13]–[15], [22], [27]–[31]. To circumvent this problem, at-
tempts have been made to estimate sampling errors on a global
scale using globally available satellite rainfall data products
themselves [21], [25]. Recently, Iida et al. [32] have developed
a method to evaluate relative sampling errors of PR-observed
trimonthly rainfall, by employing a statistical bootstrap tech-
nique. Their study concluded that the bootstrap technique can
successfully estimate relative sampling errors in TRMM PR
rainfall products using PR orbital data products themselves,
for 5◦ grid sizes globally over the tropical region. The tech-
nique by Iida et al. [32] located relative sampling error mag-
nitudes of 15%–50% for the Indian subcontinent. Although
this technique has successfully evaluated relative sampling
errors globally for 5◦ grid sizes without relying on rainfall
from a dense network of ground instruments, its potential
in estimating sampling uncertainty for hydrologically relevant
watersheds of small areal extent has not been examined so
far. Sampling errors in remotely sensed rainfall products are
known to potentially cause high uncertainties during simulation
of runoff at the watershed scale [33]–[36]. Hossain et al.
[37] have shown that the error components of satellite-based
rainfall products interact nonlinearly with hydrologic modeling
uncertainty, thereby hindering the accurate estimation of the
resulting flood forecasts. The error characteristics derived using
the bootstrap technique have tremendous potential to ascertain
the applicability of TRMM PR orbital rainfall products for
hydrological modeling over small catchments or ungauged
basins.

For the present study, sampling uncertainty of TRMM PR
2A25 orbital data product is evaluated over the Indian subcon-
tinent using the bootstrap technique. The sparse observations
from the narrow swath of TRMM PR are subjected to large
sampling errors which include the effects of diurnal cycle for
monthly rainfall averages. Hence, the present study analyzes
seasonal rainfall to minimize the bias offered by diurnal cycle.
Furthermore, the applicability of the bootstrap technique to
estimate relative sampling errors for a hydrologically relevant
watershed of Mahanadi, India, is examined using different grid
sizes of 2◦, 1◦, 0.5◦, and 0.25◦. The present study analyzes an
11-year data period of TRMM seasonal rainfall from June 2002
to September 2012. Post 2001 data products are considered
for analysis owing to the TRMM orbital boost from 350 to
402.5 km in August 2001 which altered the data quality signif-
icantly. Section II provides an overview of evaluating relative
sampling errors from PR-observed seasonal rainfall using the
bootstrap approach. Section III provides scale dependence of
the calculated relative sampling errors over India and over the
Mahanadi basin. In addition to grid sizes, the relative sampling
errors are also known to vary with respect to rainfall type
(convective or stratiform). Hence, discussion regarding rainfall-
type dependence on relative sampling errors over the study
region is incorporated in Section III. Comparative analysis
of relative sampling errors estimated using latin hypercube
sampling (LHS) approach is also discussed here. Section IV
gives the summary and conclusion.
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Fig. 1. Schematic showing collection of N and R over a 2◦ × 2◦ grid box
[in the aforementioned figure, N(1) > N(2) > N(3)].

II. RELATIVE SAMPLING ERROR EVALUATION

USING THE BOOTSTRAP APPROACH

The sources of errors in TRMM rainfall estimates over any
area can be examined by analyzing the individual overlapping
coincident snapshots of rain events in the orbital passes. For
an area, simple assumptions regarding the statistical behavior
of rainfall can aid in deriving equations relating sampling error
with rainfall statistics. Let us assume that, over a sufficiently
large area A and over a long enough time period T , rainfall
occurs as separate uncorrelated events having certain properties
like intensity, duration, area covered, etc. Then, the rainfall
amount falling within A during T can be determined from the
observed rain events, provided that their number is sufficiently
large. Each event may result in different intensities of rainfall
(differing from the mean rainfall) which eventually tends to
average out when considered over a long time period. The
rainfall climatology for A represents a statistical characteriza-
tion of what might happen in A during time period T when
all of the environmental factors that affect rainfall statistics in
A are specified (e.g., season, large-scale wind patterns, etc.).
According to Bell and Kundu [29], “A picture such as this
underlies the area time integral (ATI) methods of estimating
rainfall from the fraction of the area covered by rain” [27],
[38]–[40]. If R(x, y, t) represents the true rainfall rate at a
point in space during a time period, then, according to the
ATI concept, the true area-time averaged rainfall amount (RT )
within a space–time domain can be expressed as

RT =

T∫

0

dt

∫

A

dx ∗ dy ∗R(x, y, t). (1)

Here,
∫
A denotes integration over a grid box area, A.

A schematic for the core idea of the bootstrap technique is
given in Fig. 1. Pertaining to the Indian subcontinent, we con-
sider that the true instantaneous area averaged (mean) rainfall
rate in millimeters per hour falling over a 2◦ × 2◦ grid box
during a particular time period (season) cannot be observed
with fine accuracy. Whenever the TRMM satellite visits a
region/grid box of size A, the field of view (FOV) of TRMM
sensors will not always cover the entire area of A; instead, it
will sample a part/subregion of A. If the time during which any

part of a satellite swath passing over a region (A) be termed
as a visit, general practice to calculate satellite estimates of
rainfall involves collecting all of the instrument footprints or
FOVs that fall within A during T , converting the observations
to rain-rate estimates and averaging them (by summing up and
dividing by the total number of observations). From Fig. 1, let
i = 1, 2, 3, . . . , n denote the number of times the satellite visits
an area (grid size in our study), R(1), R(2), R(3), . . . , R(n) be
the corresponding area averaged rain rates from all footprints
that are in the box, and N(1), N(2), N(3), . . . , N(n) be the
number of PR footprints associated with each visit. Then,
the average seasonal rainfall (in millimeters) observed by PR
within each grid (of area A) can be expressed as

RS =

n∑
i=1

N(i) ∗R(i)

n∑
i=1

N(i)
∗ 24 ∗ 122. (2)

As the Indian summer monsoon spans over the months of June,
July, August, and September (JJAS), in (2), 122 denotes the
number of days in JJAS. RS serves both as a measurement
within the area of the box and as an unbiased estimate of the true
rainfall amount RT . Our interest lies in estimating the closeness
of RS with RT

σ2
E = E

[
(RS −RT )

2
]
. (3)

In (3), the expectation (E) denotes the average of an ensemble
of rain scenarios representing the seasonal rain climatology
within an area A. When σ2

E is obtained for every grid box
(of area A), the result is a global “error climatology” for the
satellite rain estimates. Many studies have attempted to estimate
the variance σ2

E . In the present study using the bootstrap
technique, the PR data themselves are used to calculate PR
relative sampling errors.

A schematic explaining the bootstrap approach [41] by
Iida et al. [32] is summarized using Fig. 2. The present study
collects the samples of N and R accumulated within each
grid box over a time period T and estimates the empirical
distribution of N and R, provided that the sample sizes are
large enough. Using random sampling based on the bootstrap
technique, two bootstrap samples (of N and R) can be drawn
from the empirical distributions. This procedure can be repeated
n number of times with replacement. The calculation of relative
sampling error using the bootstrap approach assumes that the
probability distribution functions of seasonally averaged and
simulated rainfall (RS) within each grid box are independent
of each other in the individual simulations. The value of rela-
tive sampling error σ can be calculated using 1000 bootstrap
samples of RS . In the bootstrap technique by Iida et al. [32],
standard deviation is regarded as a measure of sampling error,
and the value of the relative standard deviation is considered as
a measure of relative sampling error.

The bootstrap technique assumes that each element of the
random sample, i.e., N and R, is independent. Theoretically,
PR data are spatially and temporally correlated with each other.
In the present work, the temporal correlation between the
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Fig. 2. Conceptual diagram of sampling error estimation using the bootstrap technique over a grid box.

successive visits of PR is ignored because the time interval
between the PR successive visits is much longer than the
temporal rainfall correlation time at almost all latitudes, except
for the midlatitudes around 34◦ N and S. Also, as the PR
footprint size is ∼5 km, estimation of spatial correlation among
rainfall rates at individual footprints of a single visit becomes
difficult. Therefore, rainfall averages from the individual PR
visits taken over a grid size are used such that these can be
considered independent in the bootstrap samples. Furthermore,
spatial averaging also considers the spatial rainfall correlation
in the PR fractional coverage on the space domain. Hence,
this study averages rainfall (from PR data) over each grid
box, thereby considering them independent in the bootstrap
samples [41]–[43].

III. RESULTS

A. Relative Sampling Errors Over India in the 2◦ × 2◦ Boxes

The motivation for this study comes from the need to fully
characterize the relative sampling error of TRMM PR at high
resolutions so that it can be linked to a hydrological model
for future studies. Using the bootstrap technique, we estimated
seasonal relative sampling errors for 2◦ × 2◦ boxes over the
Indian subcontinent during the JJAS months of 2002. For each
of the 2◦ grid boxes, the total counts of PR footprints (N)
and the PR near surface rainfall rate (R) falling within each
box were estimated. For each of the 418 orbits passing over
the Indian subcontinent, a total of 306 samples of N and
R were considered over India. The overall range of values
considered for JJAS seasonal months of 2002 was from 0
to 2280 for N and 0 to 22 mm/h for R. A total of 1000
seasonal rainfall amounts were then simulated for each grid
box using (2). The mean and standard deviation pertaining to
the value of RS were calculated according to the schematic
shown in Fig. 2. The spatial distribution of relative sampling
errors obtained for 2◦ grid boxes over the Indian subcontinent
for the 2002 monsoon season (JJAS) is shown in Fig. 3(a). The
mean accumulated rainfall RT in millimeter for JJAS of 2002
is also shown in Fig. 3(b). Theoretically, the relative sampling

error depends upon the rainfall variability and the space–time
correlation length of rainfall, in addition to the mean rainfall
amounts and the sampling frequency [13], [30]. Fig. 3(a) shows
that the relative sampling errors are relatively larger over the
western regions of India over states of Gujarat, Haryana, and
Rajasthan. A comparison of accumulated rainfall shows that
these regions receive the least amount of rainfall during JJAS
months. This spread of relative sampling error is consistent with
the theoretical prediction by Bell and Kundu [29] that regions
of high (low) rainfall will possess relative sampling errors to
be generally small (high). Studies by Steiner et al. [31] had
found relatively lower sampling uncertainty over oceans when
compared to land owing to larger variability and shorter correla-
tion time of rainfall over land than over oceans. However, some
regions over Sikkim and Calcutta were observed with larger
relative sampling errors in spite of the large seasonal rainfall
amounts over these regions. Similarly, some regions over Bay
of Bengal depicted low value of relative sampling error even
though these regions received small seasonal rainfall amounts.
From the studies of Bell and Kundu [29], these discrepancies
can be attributed to the difference in the rainfall variability and
space–time correlation length of point rainfall in these regions.
However, this issue needs a deeper investigation before any
conclusion can be drawn. From Fig. 3(a), it can be observed
that a large number of boxes over oceans possess low relative
sampling error between the range of 16%–27%. With the
exception of the eastern coastline of the Indian subcontinent,
all of the other land regions seemed to depict a higher range of
relative sampling errors (> 35%).

To study the dependence of sampling uncertainty on rain
rates, the present study computed the mean intensity of rainfall
(in millimeters per hour) for all of the 2◦ × 2◦ grid boxes over
the Indian subcontinent during the monsoonal months of 2002.
These were then sorted into bins of size 0.05 mm/h in the
order of increasing values of rain rates. It should be noted
that the process of binning destroys information regarding the
geographical location of a particular box and the observation
month because samples containing similar monthly averaged
rain rates are lumped together regardless of their location or
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Fig. 3. (a) Spatial distribution of sampling error using the bootstrap technique
over the 2◦ × 2◦ box during monsoon season of 2002. (b) Spatial distribution
of accumulated rainfall (in millimeters) over the 2◦ × 2◦ grid box for 2002
seasonal rainfall.

time of observation [29]. Results are plotted for each bin as
shown in Fig. 4. The figure brings out two striking characteris-
tics of PR relative sampling error estimates: 1) The estimated

Fig. 4. Power law fit of mean rainfall rate with respect to relative sampling
errors during JJAS 2002 for the 2◦ × 2◦ grid box over the Indian subcontinent
(the relationship of relative sampling error and mean rainfall rate is given by
the expression σ/R = 15.16 ∗R−0.37).

Fig. 5. Location of Mahanadi basin, India.

relative sampling errors in PR averages are 17%–42% for
various seasonal mean rainfall rates (> 0.05 mm/h) and 2) The
relationship of relative sampling errors with mean rainfall rates
can be expressed using a power law relationship of σ/R =
15.16 ∗R−0.37. This result is in agreement with earlier studies
on sampling uncertainty which have reported the existence of
compact expressions relating sampling error with large-scale
observables like mean rain rate.

The current method enables a near global evaluation of
relative sampling errors using TRMM PR. To give one practical
example of the implications of the bootstrap technique, we ex-
amine the TRMM relative sampling errors for a hydrologically
relevant basin of Mahanadi (Fig. 5). The basin, situated toward
the eastern coast of India, was subjected to the lowest range
of relative sampling errors in 16%–27%, when calculated for
2◦ grid boxes. Hence, PR relative sampling error studies over
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Fig. 6. Sampling by TRMM PR over the Mahanadi basin during June 2002.
Each day’s orbits are clipped within the boundary of the Mahanadi basin, with
the x- and y-axes representing longitude and latitudes, respectively.

the basin can be further extended to higher resolution grid
sizes and used as a deciding factor before incorporating PR
data products for basin-scale hydrological modeling studies.
The hydrological importance of the basin lies in the fact that
it receives heavy to very heavy rainfall when monsoon depres-
sions from the Bay of Bengal move north-westward slightly
south of their normal track. The Mahanadi basin is notorious
for being subjected to frequent flooding every year. Nearly 91%
of annual precipitation (600 to over 1600 mm) for the basin
occurs from June to September (JJAS), known as the summer
monsoon months which are responsible for influencing the
agricultural output from the basin. Even a small variation of this
seasonal rainfall can have an adverse impact on the economy.
The reliability of PR data for hydrological modeling over the
basin commands a proper understanding of the associated errors
offered by the infrequent PR sampling.

The apparent inhomogeneity owing to the narrow swath
width of PR is highlighted by Fig. 6, which shows the daily
sampling pattern of the PR orbital data product of 2A25 over
the Mahanadi basin for the month of June 2002. This includes
periods of low coverage as well as periods of higher coverage. It
can be seen that several regions of the basin receive very little to
no coverage during certain days. TRMM takes around 46 days
to revisit an area at approximately the same local time, which
implies a requirement of 46 days to cover the diurnal cycle.
Hence, if a monthly time period be considered to estimate the
true averaged rainfall, the varying sample sizes (of N and R)
observed during different times of the day will contribute to
a bias in the calculated average rainfall rate. To minimize the
resulting bias, this study considers seasonal averages. Earlier
studies on sampling uncertainty have indicated that, for a

Fig. 7. Scale dependence of relative sampling errors estimated using the boot-
strap approach over the Mahanadi basin for (a) 2002, (b) 2003, (c) 2004, and
(d) 2005 (In these plots, the values of the 25th and 75th quartiles form the
ends of the box, the line inside the box represents the median value, and the
whiskers end at the 5th and 95th quartiles. The data points which exist far away
from the 95th quartiles indicate outliers, i.e., points which lie far removed from
the majority of data points).

given increase in sampling size, greater reduction in sampling
uncertainty can be achieved if the extra samples were spread
over time [44]. Thus, examining seasonal averages are con-
sidered more effective in reducing sampling uncertainty than
monthly averages. Hence, the present study examines sampling
uncertainty for seasonal rainfall observations over the basin. To
date, studies related to sampling uncertainty of global rainfall
products using the bootstrap approach have been conducted
solely for a grid size of 5◦ × 5◦ [32]. Adequate information is
not available to test the suitability of this technique for higher
resolution grid sizes. The ensuing results of scale dependence
with respect to relative sampling error estimates are discussed
in the next section.

B. Effect of Grid Size on Relative Sampling Error

The relative sampling error values depend on the grid size
as well as their integration time. For the present study, the
integration time was fixed as 122 days (spanning over the JJAS
monsoonal months). The relative sampling errors estimated us-
ing the bootstrap approach over the Mahanadi basin for various
grid sizes of 0.25◦, 0.5◦, 1◦, and 2◦ are plotted in Fig. 7 for 2002,
2003, 2004, and 2005. In these plots, the values of the 25th and
75th quartiles form the ends of the box, the line inside the box
represents the median value, and the whiskers end at the 5th
and 95th quartiles. The data points which exist far away from
the 95th quartiles indicate outliers, i.e., points which lie far re-
moved from the majority of data points. From Fig. 7 and Table I,
the median of sampling uncertainty at seasonal scale for various
grid sizes was observed to be < 33% (for the 2◦ grid), < 36%
(for the 1◦ grid), < 45% (for the 0.5◦ grid) and < 57% (for the
0.25◦ grid). Theoretically, the total sampling errors are known
to be inversely proportional to space scales [9], [11], [13], [17],
[29]. This tendency can be observed from Fig. 7 that, as the
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TABLE I
RELATIVE SAMPLING ERROR (IN PERCENT) FOR VARIOUS QUARTILES OBTAINED DURING 2002, 2003, 2004, AND 2005

Fig. 8. Scatter plot of N versus R for ten grid boxes using JJAS 2002 rainfall
over the Mahanadi basin.

space scale becomes smaller than the 2◦ × 2◦ grid size, the
dependence of total relative sampling error on space scale
becomes larger. This dependence results as a manifestation of
the central limit theorem, wherein the average of n identically
distributed random variables with finite mean and difference is
known to differ from the true mean with a root-mean-square
difference proportional to n−1/2.

Selection of an appropriate grid size for our study area
warrants a compromise between two major competing factors.
First, the grid box is required to be large enough so that the
assumption of statistically uncorrelated rain rates in neigh-
boring boxes remains valid. This assumption treats rainfall
averages over each grid box to be statistically independent
samples enabling the use of statistical measures to estimate
confidence intervals for these averages. Second, the grid sizes
should be as small as possible to give a realistic representation
of local rain rate with as little error as possible. This allows the
rain rates within each grid box to be treated as approximately
homogeneous. With these factors in mind, we have chosen a
grid box of 1◦ × 1◦ for further analysis of seasonal rainfall
over the Mahanadi basin. A prime condition which must be
satisfied for bootstrap technique is the independence between
N and R. Theoretically, N is not a random number as its value
can be easily predicted using orbital calculations pertaining
to the TRMM satellite. Hence, a scatter plot relating the two
variables N and R for 2002 is shown in Fig. 8. It can be
observed that the actual PR data do not show any structure
between N and R. Hence, for a 1◦ grid size over the basin, we

Fig. 9. Time series over the Mahanadi basin for the 1◦ × 1◦ grid size for
the 11-year data period showing (a) relative sampling errors (in percent) and
(b) accumulated seasonal rainfall (in millimeters).

conclude that N and R can be assumed as independent random
variables.

To check consistency of performance of the bootstrap tech-
nique, we present in Fig. 9 the relative sampling errors (in
percent) and accumulated seasonal rainfall (in millimeters)
calculated for 1◦ grid boxes over the basin based on the boot-
strap technique for seasonal rainfall during the data period of
11 years (2002–2012). It can be concluded that the year-to-
year differences in relative sampling errors over the Mahanadi
basin [from Fig. 9(a)] result mainly due to the year-to-year
difference in rainfall amounts during the JJAS season [from
Fig. 9(b)]. This is in accordance with the studies by Bell and
Kundu [29]. Apart from accumulated seasonal rainfall, relative
sampling error values might also be affected by other factors
like precipitation type, inherent retrieval errors of the PR 2A25
rainfall algorithm, type of resampling used, etc. These are
investigated in the next sections.



INDU AND NAGESH KUMAR: EVALUATION OF TRMM PR SAMPLING ERROR OVER A SUBTROPICAL BASIN 6877

Fig. 10. Spatial distribution of overall relative sampling error and accumu-
lated rainfall over the Mahanadi basin during the monsoonal season of (a) 2006
and (b) 2007.

C. Effect of Rainfall Type on Relative Sampling Error

In general, tropical precipitation can be classified into two
major classes, namely, convective and stratiform precipitations
[45]. Convective precipitation regions are generally identified
with intermittently strong vertical velocities (> | ±1 m/s|),
high rain rates (> 5 mm/h), and small (∼1–10-km horizon-
tal dimension) but intense horizontally inhomogeneous radar
echo. Stratiform precipitation areas are characterized by sta-
tistically small vertical velocities (< | ±1 m/s|), low rain rates
(< 5 mm/h), and widespread (∼100-km horizontal dimension)
horizontally homogeneous radar echo [46].

This study demarcates PR data points into convective and
stratiform categories using the rain classifications embedded
within version 7 of TRMM 2A23 data product [47]. This algo-
rithm classifies PR data into two categories using both vertical
profiles of radar reflectivity (from which the brightband, echo
top height, and maximum reflectivity in the vertical profile are
identified) and the horizontal variability of echo. The algorithm
also assigns certain radar echoes into “other” category which
represents either noise or zero precipitation near the surface.
For analysis, the present study examines only those data points
which were flagged as “convective certain” and “stratiform cer-
tain.” The data samples belonging to convective and stratiform
classes were individually subjected to the bootstrap technique
to retrieve the associated sampling uncertainty. The results are
discussed for two chosen years (2006 and 2007), which showed
typically higher and lower distributions of relative sampling
errors [from Fig. 9(a)].

Fig. 10 shows the spatial distribution of accumulated rainfall
and overall relative sampling errors obtained for 2006 and
2007. Fig. 11 shows the distribution of sampling uncertainty
calculated for convective and stratiform rain types for each
of these two years. For 2006, even though the median for

Fig. 11. Box plots showing the relative sampling errors estimated over the 1◦

grid size of the Mahanadi basin for convective and stratiform rain types during
the monsoonal season of (a) 2006 and (b) 2007.

both rainfall types was the same, significant differences were
observed between their distributions. The prominent character-
istics observed from the box plots in Fig. 11 are summarized in
the following.

1) For 2006, the central 50% of relative sampling errors
(region between the 25th and 75th quartiles) are located
between 25% and 28% for convective rainfall and 20%
and 30% for stratiform rainfall. However, for 2007, the
central 50% of sampling uncertainty was observed to be
nearly the same for both rainfall types (within 23%–27%
for convective and 22%–28% for stratiform rainfall).

2) For 2006, from the location of the median (50th quartile),
a greater number of convective data points are observed
near to 25% (25th quartile). Whereas for the stratiform
rain type, the median is slightly toward the 75th quartile,
indicating that majority of the relative sampling errors
will be found near to 30% (75th quartile). This tendency
can also be observed for 2007, wherein the median is
biased toward the 25th quartile for convective and 75th
quartile for the stratiform rainfall type.

3) The range of sampling uncertainty (i.e., minimum and
maximum values indicated by the whiskers of the box
plot) was found to be greater for the stratiform rainfall
type during 2006. However, for 2007, the ranges of errors
were observed to be nearly the same for both rainfall
types.

Based on the aforementioned observations, it can be con-
cluded that the relative sampling error of stratiform rainfall has
a wider distribution, with a higher value for the 95th percentile
when compared with the relative sampling error of convective
rainfall. Overall, a compact (tight) distribution of relative sam-
pling errors toward a lower range [for example years 2007,
2008, 2010, and 2011 from Fig. 9(a)] suggests that there is
no significant difference in relative sampling errors offered by
both rainfall types. Whereas a larger range of overall relative
sampling error (as observed in Fig. 9(a) for 2006) indicates that
overall sampling uncertainty will be dominated by the sampling
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uncertainty resulting due to stratiform rainfall. Among the total
number of data points chosen for analysis, approximately 65%
belonged to stratiform rainfall type, and the rest represented
convective type. Even though stratiform rainfall is known to
have low intensity and low variability in space, for the study
region of the Mahanadi basin, the relative sampling errors of
stratiform rainfall show a wider distribution in comparison
with convective rainfall. This behavior is in agreement with
the power law relationship which quantitatively explains the
dependence of relative sampling error with respect to mean
rainfall rate [18]. The power law relationship indicates that
an increase in relative sampling error with decreasing average
rainfall rate is plausible. This relationship has interesting impli-
cations, which suggests that some geographical locations have
more rainfall than others mainly because rain events occur more
frequently in those areas and not necessarily because the inten-
sity or coverage of individual events are greater [29]. However,
further conclusions based on this behavior can only be provided
after thorough examination which will be undertaken as part of
future studies. The averages of satellite-retrieved rainfall rates
are known to be subjected to bias dependent on the type of
rain or some characteristic that changes slowly in space/time
(e.g., the relative amount of area covered by convective and
stratiform rainfall). Based on the aforementioned discussions,
it can be concluded that the intensity of rainfall is not the sole
factor controlling relative sampling error estimates. Rainfall
type, sample number corresponding to each rainfall type, area
covered by each rainfall type, etc., all play crucial roles in
estimating sampling uncertainty.

D. Effect of LHS on Relative Sampling Error

A broader assessment of PR sampling uncertainty warrants
the investigation of computationally more efficient sampling
schemes having potentially greater flexibility in simulating
satellite relative sampling errors. LHS, also known as strati-
fied Monte Carlo sampling method, is a technique that offers
promise in reducing the computational burden using fewer runs
[48], [49]. LHS has found application in a wide variety of
uncertainty assessment problems pertaining to hydrological and
environmental modeling. For further details about the LHS
technique, the reader is referred to McKay et al. [48], Iman and
Shortencarier [50], Stein [51], and Isukapalli and Georgoopulos
[52]. The specific question that the present study seeks to
answer is the following: Is it possible to infer similar sampling
uncertainty in PR rainfall using LHS scheme as those derived
with bootstrap sampling but with fewer simulations? Using
LHS, we try to explore the parameter space completely by
stratification and with as few samples as possible. Let N and R
be two variables representing PR counts and mean rainfall rate
falling within each grid box over the study region. Then, LHS
involves dividing the cumulative distribution of each variable
into a number of equally probable nonoverlapping intervals
(bins), as shown in Fig. 12. A value is selected at random from
each interval. In LHS, the values obtained for each variable are
paired randomly with the other variable.

From Fig. 13, it can be seen that relative sampling errors es-
timated using the LHS sampling technique are similar to those

Fig. 12. Intervals used for LHS sampling showing division of a hypothetical
cumulative distribution function for a nonuniform random variable (N or R)
into 10 intervals [the value of the parameter within each interval changes
according to the variable considered (N or R)].

from bootstrap sampling. The correlation between bootstrap
and LHS results are high, indicating that a linear relationship
between both methods explains more than 65% of the variance
of the uncertainty estimates. Also, results from LHS were
obtained in comparatively lower number of simulation runs (20
simulation runs) as compared with the bootstrap resampling
technique which used 1000 simulations. Further examination
reveals that the LHS sampling technique tends to slightly over-
estimate the relative sampling error values. This tendency might
be owing to the difficulty in correctly estimating the optimum
number of samples required for convergence of distribution on
the mean of the cumulative density function generated. How-
ever, the slight overestimation in relative sampling errors by
LHS needs to be assessed pertaining to PR orbital data products
before any clear conclusion can be drawn of its significance. At
this stage, it is appropriate to highlight that, even though LHS is
more efficient computationally, there exist circumstances when
a good performance may not be obtained, which may result in
overestimation of errors. Whether this tendency arises due to
the limitation of the LHS technique or type of PR data samples
encountered or due to the low number of simulations or a com-
bination of any/all of them remains an open-ended question. An
answer to this question in future research endeavors will have
a wider implication to the usefulness of the LHS technique for
studies pertaining to sampling uncertainty.

IV. SUMMARY AND CONCLUSION

Issues related to sampling uncertainty are of major im-
portance for establishing error characterization and for the
improvement of satellite rainfall retrieval algorithms. In this
paper, the authors have implemented a statistical bootstrap
technique [32] to estimate relative sampling errors of TRMM
PR over the Indian subcontinent. This approach calculates
relative sampling errors using the PR data themselves instead
of relying on in situ validation data. Results were shown for
the seasonal rainfall over an 11-year (2002–2012) data pe-
riod. Characteristics of relative sampling errors within 2◦ grid
boxes over the Indian subcontinent reveal comparatively greater
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Fig. 13. Scatter plots showing the sampling errors estimated using the bootstrap approach versus that estimated using the LHS technique for (a) 2002, (b) 2003,
(c) 2004, (d) 2005, (e) 2006, (f) 2007, (g) 2008, (h) 2009, and (i) 2010 [in the aforementioned figure, CC denotes correlation coefficient, and the continuous line
(—–) denotes one-to-one line].

relative sampling errors for land regions than for the adjoining
oceanic regions. In addition, the value of sampling uncertainty
was found to be smaller for areas with larger seasonal rain-
fall amounts and vice versa. This tendency was in agreement
with the predictions by Bell and Kundu [29]. However, some
regions showed discrepancies between the estimated relative
sampling errors and the predictions by Bell and Kundu [29].
This discrepancy might be attributed to the difference in rainfall
variability and space–time correlation length of point rainfall
over these regions [29]. Furthermore, results obtained for the
Indian subcontinent verified the power law scaling characteris-
tics of sampling uncertainty with respect to seasonal rainfall
averages within 2◦ grid boxes. The approach also revealed
comparatively lower relative sampling errors over the eastern
coast of India. This suggests that the bootstrap technique can be
extended for higher resolution grid sizes over the eastern parts
of India.

The present study examined the applicability of the bootstrap
technique over a hydrological catchment of the Mahanadi basin
situated along the eastern coast of India. Scale dependence
studies for 4 grid sizes using a seasonal time scale yielded
1◦ grid size to be suitable for further studies over the basin,
as it resulted in comparatively lower relative sampling errors.
Authors conducted comparative evaluation of sampling uncer-

tainty owing to difference in rainfall types. Results indicate that
an increase in overall relative sampling error can be attributed
to the increased occurrence of stratiform rainfall type over
the study region. Retrieval of sampling uncertainty using LHS
was shown to have implications for wide-scale assessment of
satellite rainfall retrievals for hydrological model applications.
It can be concluded that the bootstrap technique can be suc-
cessfully implemented to map PR sampling uncertainty for
1◦ grid sizes over the study region. The bootstrap technique
has great potential in decision making before incorporating PR
orbital data products for hydrologic modeling over regions. The
present work can also be adopted for studies employing similar
microwave sensors like GPM, Megha Tropiques, etc.
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