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Violation of Bell inequality is a prominent detection method for quantum correlations present in composite
quantum systems, both in finite and infinite dimensions. We investigate the consequence on the violation of
local realism based on pseduospin operators when photons are added or subtracted in a single mode or in both
the modes of the two-mode squeezed states of light in presence of noise. In the noiseless situation, we show that
for addition (subtraction) of photons in a single mode, there is an overall enhancement in the maximal violation,
although we observe an interplay between monotonicity and non-monotonicity in the violation of Bell inequality
depending on the squeezing strength. Moreover, we report that for low squeezing or low number of photons
added or subtracted, subtraction in both the modes can lead to higher violation of local realism than that in the
case of addition. For any choice of parameters, such ordering is not seen if one compares their entanglement
contents. In the event of a faulty twin-beam generator, we obtain a lower-than-expected squeezing in the state.
In such a case, or in imperfect photon addition (subtraction), or under local noise, we find that the violation
of local realism by the noise-affected two-mode squeezed states always decreases. Interestingly however, we
notice that photon addition (subtraction) can in general help to conquer the ill-effects of noise by enhancing
the violation of local realism or by transforming non-violating states to violating ones, thereby acting as an
activating agent.

I. INTRODUCTION

Entangled quantum states [1] shared between multiple and
distant partners have the potential of revolutionizing commu-
nication and computation schemes [2–9]. Historically, the ex-
istence of quantum entanglement was first pointed out in the
seminal paper of Einstein-Podolsky-Rosen (EPR) [10], which
questioned whether the theory of quantum mechanics to be
“incomplete”, based on the assumptions of “locality” and “re-
ality”. John S. Bell formulated a mathematical inequality to
be satisfied by any physical theory that is local and realis-
tic, and which can be violated by entangled quantum states
[11]. With the development of quantum information science,
violation of Bell inequality turned out to be an experimental-
friendly detection criterion for entangled states. Apart from
its fundamental importance, violation of Bell inequality has
been proven to be the crucial ingredient in certain proofs of
security of quantum cryptography [2, 3].

Quantum information protocols like entanglement-based
quantum key distribution [2], quantum dense coding [4], and
quantum teleportation [5] were originally proposed for dis-
crete variable systems, and have been implemented, e.g., by
using the polarization degree of freedom of photons [12].
However, the success probability of preparing entangled states
in this way is very low, and at the same time, Bell-basis mea-
surement, if required for certain processes is not possible by
linear optical elements [13], thereby making the overall suc-
cess probability of protocols by using photonic qubits even
lower. It turns out that continuous variable (CV) systems
[14, 15] can overcome certain difficulties, like Bell-basis de-
tection, and hence implementing quantum information pro-
cessing tasks by using CV states in infinite dimensional sys-
tems can be important. Specifically, they can be prepared
with almost unit probability by using nonlinear interaction of
a crystal with laser, and can have only imperfections due to

the varying intensity of laser light, resulting in a low squeez-
ing parameter [14]. Therefore, studying quantumness of such
CV systems plays a significant role in quantum information
science and is the main goal of this article.

Gaussian states, having positive Wigner functions [16], are
one of the most prominent examples of CV states, advanta-
geous for quantum communication and computation schemes
[17]. Although the performance of these states clearly show
their nonclassical nature, Bell argued [18, 19] that states with
positive Wigner functions are naturally endowed with a hid-
den variable theory, and hence would not violate a Bell in-
equality. Later, Banaszek and Wódkiewicz [20] pointed out
that the positivity or negativity of Wigner function has a weak
connection to violation of local realism, and managed to con-
struct a Bell expression out of parity-based operators to obtain
violations for two-mode squeezed vacuum (Gaussian) states
with positive Wigner functions. However, their technique had
intrinsic optimization problems [21], and so even the EPR
state, having maximal quantum correlation, do not violate the
inequality maximally. In Ref. [22], an alternate approach was
proposed using pseudospin operators (that are closely related
to the parity operators), which is free from such optimization
difficulties, and can give the maximal violation in the case of
EPR state (for a nice survey see Ref. [23]). The pseudospin
operators were later generalized [24, 25] to calibrate the vio-
lation of local realism for other types of quantum correlated
states of continuous variables. Moreover, the violation of Bell
inequality for squeezed vacuum states have been tested ex-
perimentally using parity-type operators [26], which further
motivates the study in this direction.

On the other hand, there exist several quantum informa-
tion protocols, like entanglement distillation and quantum er-
ror correction [27, 28], which cannot be performed by Gaus-
sian states with Gaussian operations [29, 30]. Therefore, over
the last few years, active research has been carried out to in-
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vestigate properties of non-Gaussian states. One of the sim-
ple methods to generate such states is to add or subtract pho-
tons [31, 32] to or from the Gaussian states. These processes
have also been demonstrated experimentally [33, 34]. More-
over, it was shown that entanglement content of the two-mode
photon-added (-subtracted) state is much higher than the cor-
responding two-mode squeezed vacuum states (TMSV) [31],
thereby showing enhancement of entanglement due to photon
addition or subtraction. Moreover, “degaussification” via pho-
ton addition and subtraction has also been proven to be useful
in a variety of situations, like engineering of quantum states to
attain hybrid entanglement [35] and for tackling boson sam-
pling problems [36].

In this article, we investigate the violations of Bell inequal-
ity for photon-added and -subtracted two-mode squeezed vac-
uum states, both in noiseless and noisy scenarios, where vio-
lations of local realism are tested using the pseudospin opera-
tors. Before considering the imperfection, we first present the
results in the case of single-mode operations without noise,
specifically photon addition (subtraction) from a single mode
of TMSV, and apart from some instances of diminution, we re-
port an overall enhancement in the maximal violation of Bell
inequality with added (subtracted) number of photons. How-
ever, we report some interesting nonmonotonic features, when
odd or even number of photons are added (subtracted) to a sin-
gle mode. The response of maximal violation of Bell inequal-
ity is also examined, when a given number of photons to be
added or subtracted is distributed between the two modes. In
particular, in a distributed scenario, we find that unlike entan-
glement, for a certain squeezing and a small number of added
or subtracted photons, subtraction is better than addition ac-
cording to their quantumness in terms of violation of local re-
alism with pseudospin operators. Moreover, we compare the
effect of distribution to single-mode operations, and observe
that for sufficiently high squeezing or number of added (sub-
tracted) photons, the maximal violation for distributed opera-
tions displays a monotonic enhancement compared to that in
case of single-mode operations.

An important aspect, which turns out to be crucial exper-
imentally, is the role of the inevitable noise that creeps in
the TMSV states [37] during preparation, transmission, and
protocol implementation. We investigate the effects of noise
on the violation of Bell inequality in two prototypical realis-
tic scenarios – the states are affected by noise, or when the
state generator is itself faulty, i.e., when instead of a TMSV
state with certain squeezing, it prepares a state with lower
squeezing. As expected, noise reduces the amount of quan-
tum correlations present in these states, and hence the amount
of violation of local realism. Interestingly, however, we show
that the process of photon addition (subtraction) can enhance,
and in some cases activate the violations. Specifically, we
find that photon addition can transform certain non-violating
states to be Bell inequality violating, which we call as the ac-
tivation of violation of Bell inequality, in a similar spirit that
the word “activation” was used in the literature for different
processes [38]. In realistic scenarios, even the addition (sub-
traction) schemes of photons can be faulty due to mechanisms
like dark counts [39, 40] of the photodetectors. We also study

the reaction of the pseudospin operator-based Bell inequality
in presence of both noisy and faulty scenarios, and show that
activation of violation due to the process of addition (subtrac-
tion) of photons is also possible even in presence of two types
of noise.

The paper is organized as follows. In Sec. II, we discuss
about the two-mode squeezed vacuum states, and the effect of
photon addition or subtraction on it. The use of pseudospin
operators for analyzing violations of Bell inequality is also
explored here. In Sec. III, the case of single-mode operations
is examined. Following it, in Sec. IV, we discuss how dis-
tributed operations effect the maximal violation. Furthermore,
in Sec. IV A, we show that in contrary to single-mode oper-
ations, in the realm of distributed operations, photon addition
is inequivalent to photon subtraction. In Sec. V, violations
of Bell inequality are examined in more realistic scenarios,
namely, in the presence of noise in Sec. V A and when the
squeezed state generator is faulty in Sec. V B. Finally, in Sec.
V C, we deal with the scenario of dark counts in the photon
addition and subtraction mechanism, making them erroneous.
In Sec. VI contains a conclusion. An appendix provides the
proof of the maximization of the Bell expression.

II. FORMALISM

Study of Gaussian states lies at the heart of investigations
with CV systems. In the state space of Gaussian states, the
most general pure states are the displaced squeezed states
[14, 15]. Since we are interested to study the quantum corre-
lations of quantum states in CV system, and we know that the
displacement operator does not alter the nonlocal properties of
a state, in this article without loss of generality, we consider
the (undisplaced) two-mode squeezed vacuum (TMSV) state
for our investigations. For squeezing strength r, the TMSV
state can be represented as

|ψr〉 =

∞∑
n=0

cn|n, n〉, (1)

where cn = (1 − x)
1
2x

n
2 with x = tanh2 r, and {|n〉} is the

Fock basis consisting of the photon number states. The TMSV
state, in the limit of infinite squeezing (r → ∞), reduces to
the well known EPR state.

We can degaussify the TMSV state by simply adding (sub-
tracting) photons locally in its two modes. It was shown that
this degaussification process (photon addition or subtraction)
leads to monotonic enhancement of entanglement [31]. In this
paper, we analyze the effects of photon addition or subtraction
on the violation of Bell inequality. The normalized state after
adding k photons to the first mode and l photons to the second
mode of the TMSV state reads as

|ψ(k,l)
r 〉 =

∞∑
n=0

c(k,l)n |n+ k, n+ l〉, (2)
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where

c(k,l)n =
x
n
2√

2F1(k + 1, l + 1, 1, x)

√(
n+ k

k

)(
n+ l

l

)
.

(3)

Here, 2F1 is the Gauss Hypergeometric function. Note that
c
(0,0)
n = cn in Eq. (1). On the other hand, the normalized

state after subtracting k and l photons from first and second
mode respectively is given by

|ψ(−k,−l)
r 〉 =

∞∑
n=k

c(−k,−l)n |n− k, n− l〉 (4)

where

c(−k,−l)n =
x
n−k

2√
2F1(k + 1, k + 1, 1 + k − l, x)

√(
n
k

)(
n
l

)(
k
l

) .

(5)

Without any loss of generality, in this paper, we assume that
k ≥ l. If we restrict operations to a single mode, say, the first
mode, the coefficients involved in |ψ(±k,0)

r 〉 simplifies as

c(k,0)n = x
n
2 (1− x)

1+k
2

√(
n+ k

k

)
, (6)

and

c(−k,0)n = x
n−k

2 (1− x)
1+k
2

√(
n

k

)
. (7)

We consider Bell inequalities by using the following pseu-
dospin operators [24], given by

Szq =

∞∑
n=0

2n+q≥0

|2n+ q + 1〉〈2n+ q + 1| − |2n+ q〉〈2n+ q|,

S−q =

∞∑
n=0

2n+q≥0

|2n+ q〉〈2n+ q + 1| = (S+
q )†, (8)

where q is an integer. The correlation functions for an arbi-
trary state ρ, in terms of the pseudospin operators are given
by

E(θa, θb) = Tr[ρSθaq1 ⊗ Sθbq2 ], (9)

where Sθjqi = cos θjS
z
qi + sin θj(S

−
qi +S+

qi), j = a, b, with θjs
being the settings of the measurements performed by both the
parties, viz. a and b. Like the Clauser-Horne-Shimony-Holt
(CHSH) version [41] of Bell inequality (Bell-CHSH inequal-
ity) in finite dimension, the Bell-CHSH expression in this case
based on the correlation functions, E(θa, θb), in Eq. (9), also
reads as

χq1,q2θa,θb,θ′a,θ
′
b

= E(θa, θb) + E(θa, θ
′
b) + E(θ′a, θb)− E(θ′a, θ

′
b).

(10)

Our task is to maximize χq1,q2θa,θb,θ′a,θ
′
b

(which we refer to as χ
without subscripts and superscripts) with respect to the set-
tings specified by θa, θb, θ

′
a, θ
′
b, and the pair (q1, q2). Note

that, in the correlation function, constructed out of the pseu-
dospin measurements (see Eq. (9)), we neglect any phase fac-
tors since they do not provide any additional information in
the maximization of the Bell expression for the states consid-
ered here. Therefore, we are finally interested to study the
properties of a physical quantity, given by

χmax = max
θa,θb,θ′a,θ

′
b,q1,q2

χq1,q2θa,θb,θ′a,θ
′
b
. (11)

It turns out that the optimisation over the q-values can be per-
formed easily by looking at the structure of the concerned
state. Settling with the values of (q1, q2), we are left with the
optimization over the measurement settings {θa, θb, θ′a, θ′b}.
The correlation function in Eq. (9), for the states considered
in this article, typically, is of the form

E(θa, θb) = ± cos θa cos θb +K sin θa sin θb, (12)

where 0 ≤ K ≤ 1. For a TMSV state with squeezing parame-
ter r, K = tanh 2r, and depending on the number of photons
added or subtracted to the TMSV state, the K(±k,±l) changes
accordingly. Here, the subscript of K denotes the number of
photons added or subtracted from each mode of the TMSV
state. The optimal measurement settings, which maximizes
the violation of pseudospin based Bell inequality considered
in Eq. (10), is given by

θa = 0, θa′ = π/2, θb = −θb′ = −θ, (13)

where

cos θ =
1√

1 +K2
and sin θ =

K√
1 +K2

, (14)

such that the maximal Bell-CHSH quantity, χmax, reduces to

χmax = 2
(

cos θ +K sin θ
)

= 2
√

1 +K2. (15)

The details of the optimization procedure is given in Appendix
A [42].

The amount of enhancement in maximal violation of Bell
inequality in the photon addition/subtraction process can be
quantified as

G =
χmax(|φ〉)− χmax(|η〉)

χmax(|η〉) . (16)

Here, we compute the enhancement in the maximal violation
of local realism for |φ〉 with respect to a given state |η〉. Typ-
ically, |η〉 is the TMSV state, while |φ〉 is the same TMSV
state after adding (subtracting) photons. Using the above tech-
niques, we first set out to investigate the effects of maximal
violation of Bell inequalities due to single mode operations.

III. SINGLE MODE OPERATIONS

Let us first concentrate on the response of maximal vi-
olation of Bell inequality of TMSV states subject to addi-
tion/subtraction of photons in a single mode. We first note
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that, for single mode operations, photon addition in one mode
is equivalent to the photon subtraction from the other mode, as
it can be easily shown that |ψ(k,0)

r 〉 = |ψ(0,−k)
r 〉 by using Eqs.

(2)-(5). Moreover, since χmax(|ψ(k,0)
r 〉) = χmax(|ψ(0,k)

r 〉),
we can easily see χmax(|ψ(k,0)

r 〉) = χmax(|ψ(−k,0)
r 〉). There-

fore, without any loss of generality, we only consider addi-
tion of photons in a single mode, say the first mode, of the
TMSV state in this section. However, from an experimen-
tal point of view, subtraction is easier to realize than addi-
tion [33], since the latter process essentially requires an ad-
ditional photon pumping apparatus. So, even if both the pro-
cesses are equivalent in terms of the maximal violation, exper-
imentally, subtraction is preferred. Furthermore, in situations
where addition and subtraction yields inequivalent maximal
violation of Bell inequality, it would be noteworthy to find out
regions in the relevant parameter space where photon subtrac-
tion gives a higher violation than photon addition. We will
address this point in the succeeding section.

A. Addition/subtraction of arbitrary number of photons

The maximal violation of Bell inequality for the photon-
added TMSV state, |ψ(k,0)

r 〉, in the first mode, has the form

χmax(|ψ(k,0)
r 〉)= 2

√
1 +K2

(k,0), (17)

where

K(k,0) = 2

∞∑
n=0

c
(k,0)
2n c

(k,0)
2n+1, (18)

by using Eqs. (2)-(3), and (15). The (q1, q2)-pair which yields
this maximal value is (k mod 2, 0).

Note that the structure ofK(k,0) remains same for both even
and odd number of photon-added TMSV states. For k ≥ 2,
we obtain the expression for K(k,0) as

K(k,0) =

2(1− x)1+kx
1
2

∞∑
n=0

x2n
k∏
i=2

(2n+ i)
√

(2n+ 1)(2n+ k + 1).

(19)

On the other hand, for k = 0 case, i.e., for the TMSV state,
K(0,0) = 2x1/2/(1 + x) = tanh 2r, while if a single photon
is added, it takes the form as

K(1,0) = 2(1− x)2x
1
2

∞∑
n=0

x2n
√

(2n+ 1)(2n+ 2). (20)

Apart from the TMSV case, K(k,0) and consequently χmax

cannot be computed analytically for any k ≥ 1, due to the
presence of a square root in the sum involved. Therefore, we
resort to approximate methods like series expansion and nu-
merical techniques to compute these summations. For numer-
ical calculations, we first evaluate the above summations upto
n = N terms. We then check whether the difference between
χmax with partial sums upto N and N + 1 terms falls below

10−10. If this is the case, we conclude that the summation
with N terms is sufficient.

Before presenting the results with series expansion, let us
discuss the findings with numerical method. Our analysis re-
veals an overall enhancement of the maximal violation of Bell
inequality in terms of pseudospin operators of the TMSV state
with moderate number of added photons (see Fig. 1). To put
the amount of enhancement in a quantitative perspective, we
calculate the gain, G, as in Eq. (16), for some typical values
of r and added number of photons, k, in the first mode, and is
summarized in Table. I. As clearly depicted in Fig. 1, there
exists a critical value of the squeezing parameter, r, beyond
which photon addition may lead to a decrement in the maxi-
mal violation of Bell inequality, when either a single photon
or more than that is added (comparing Figs. 1(a) and 1(b)).
Even when we are unable to compute χmax analytically, the
approximate method helps us to obtain the critical value of r,
rc, where the violation decreases with addition of photons. In
this respect, let us state the following theorem, which shows a
special status of a single-photon-addition.

HHH
HHr ↓

k → 2 5 10 15

0.2 9.5 18.4 25.7 29.6
0.5 10.0 10.9 10.7 11.4
0.8 3.2 3.1 3.4 3.7
1.2 0.4 0.6 0.73 0.76

TABLE I. Percentage of gain, G × 100, for some typical values of
the squeezing parameter, r, and added number of photons, k, with
respect to the TMSV state.

0 2 4 6 8 10 12 14 16 18 20

k

2.805

2.810

2.815

2.820

2.825

2.830

χmax

(a)

r = 1.2
r = 1.3
r = 1.5
Tsirelson’s bound

0 2 4 6 8 10 12 14 16 18 20

k

2.8235

2.8245

2.8255

2.8265

2.8275

2.8285

χmax

(b)

r = 1.6
r = 1.8
r = 2.0
Tsirelson’s bound

FIG. 1. Maximal violation of Bell inequality with respect to added
(subtracted) number of photons, k, in the first mode. In (a) and (b),
different values of the squeezing parameter, r, have been considered.
In (a), we choose those values of r where χmax decreases when two
or more than two photons are added, while in (b), whenever χmax

shows decreasing nature, it occurs after an addition of a single pho-
ton. Clearly, such values of r are above 1.66 as found in Theorem 1.
All quantities plotted are dimensionless.

Theorem 1. The maximal violation of Bell inequality based
on pseudospin operators shows diminution in comparison to
the TMSV state after the addition (subtraction) of a single
photon for any finite squeezing parameter, r, beyond a crit-
ical value, rc ≈ 1.66.
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Proof. We start by approximating the square root term√
(2n+ 1)(2n+ 2) in K(1,0), given in Eq. (20). Let X =

2n+ 1 and Y = 2n+ 2. Now, using the identity, (X +Y )2−
(X − Y )2 = 4XY , and putting (X − Y )2 = 1, we get

√
XY =

X + Y

2

√
1− 1

(X + Y )2

≈ X + Y

2

[
1− 1

2(X + Y )2
− 1

8(X + Y )4

]
. (21)

Substitution of the value of (X + Y ) in Eq. (21) gives√
(2n+ 1)(2n+ 2) ≈

(
2n+

3

2

)
− 1

4(4n+ 3)
− 1

16(4n+ 3)3
.

(22)

Under this approximation, K(1,0) possess a closed form in
terms of known standard functions, given by

Kapprox(1,0) = 2
x1/2

1 + x

[ 3 + x2

2(1 + x)
− (1− x)2(1 + x)×(

2F1(3/4, 1, 7/4, x2)

12
+

Φ(x2, 3, 3/4)

210

)]
, (23)

where 2F1 denotes the Gauss hypergeometric function [43],
and Φ denotes the Lerch transcendent [44]. Note that the
approximation used in Eq. (22) always leads to an overes-
timation of

√
(2n+ 1)(2n+ 2), and therefore Kapprox(1,0) >

K(1,0). Now the quantity Kapprox(1,0) −K(0,0), and consequently

K(1,0) − K(0,0) and χmax(|ψ(1,0)
r 〉) − χmax(|ψr〉) becomes

negative when x & 0.86, i.e., r & 1.66 (≈ rc), and asymp-
totically approaches to zero from below when x→∞. Since
the process of approximation gives an upper bound of K(1,0)(
or χmax(|ψ(1,0)

r 〉)
)
, the diminution of maximal violation on

adding a single photon persists even without the approxima-
tion. Furthermore, keeping upto second order terms is justi-
fied, since the next term in the sum near r = 1.66, only makes
a contributuion of O(10−6) to the sum. Such observation re-
mains true for all the propositions in this and succeeding sec-
tions. Hence the proof. �

Note that by numerical simulations, we find the above criti-
cal value rc to be ≈ 1.66. Although, in Theorem 1, we have
found the critical value of r, beyond which addition of a sin-
gle photon always leads to diminution of the maximal viola-
tion of Bell inequality, increasing the number of added pho-
tons results in an overall enhancement of the maximal vio-
lation, as mentioned previously. However, the enhancement
of the violation is accompanied by a seemingly generic non-
monotonic behavior with respect to the squeezing parameter,
r. We find that there exists a range of the squeezing param-
eter, 1.42 < r < 1.66, for which the maximal violation of
local realism demonstrates a monotonic enhancement with re-
spect to the added number of photons (see Fig. 1). Apart from
the above specified range of the squeezing parameter, χmax

displays a nonmonotonic behavior with the number of added
photons (Fig. 1). Note however that the nonmonotonicity ob-
tained for r < 1.42 with k is different than that of the photon-
added state with r > 1.66. It is important to stress here that

such a feature is absent in the case of entanglement [31]. We
now ask whether the critical value of the squeezing parame-
ter for which nonmonotonic to monotonic transition occurs in
the behavior of the maximal violation can be found using the
series expansion method.

We observe from our numerical results, that when the
squeezing parameter r is close to the critical value, 1.42, the
transition is dictated by both the values of χmax(|ψ(1,0)

r 〉) and
χmax(|ψ(2,0)

r 〉). The value of χmax(|ψ(1,0)
r 〉) has been calcu-

lated in Eq. (23) while the evaluation of χmax(|ψ(2,0)
r 〉) leads

to the following proposition:

Proposition 2. Maximal violation of local realism based on
pseudospin operators undergoes a transition from nonmono-
tonic to monotonic behavior with respect to added number of
photons in a single mode for r ≈ 1.42.

Proof. By substituting k = 2 in Eq. (19), we obtain

K(2,0) = 2(1− x)3x
1
2

∞∑
n=0

x2n(2n+ 2)
√

(2n+ 1)(2n+ 3).

(24)

We approximate
√

(2n+ 1)(2n+ 3) in the same lines as in
Eq. (21), and get√

(2n+ 1)(2n+ 3) ≈ 2(n+ 1)− 1

4(n+ 1)
− 1

8(n+ 1)3
.

(25)

Using the above expression, we get the approximate value of
K(2,0) as

Kapprox(2,0) =
(1− x)3x1/2

2

[ 8x4

(1− x2)3
− 12x2

(1− x2)2

− 7

2(1− x2)
− 1

32x2
Li2(x2)

]
, (26)

where Li2 is the polylogarithmic function of order 2. Now,
Kapprox(2,0) − Kapprox(1,0) , and consequently χmaxapprox(|ψ(2,0)

r 〉) −
χmaxapprox(|ψ(1,0)

r 〉) becomes positive for x & 0.79, i.e., r &
1.42. �

Remark 1. The nonmonotonic to monotonic transition and
vice-versa in maximal violation of local realism with the
added number of photons happens because χmax first de-
creases, and then starts increasing before saturating to a cer-
tain value with addition.
Remark 2. The criticalities in r are obtained by keeping upto
the second order terms in series (Eqs.(22) and (25)). We find
that such approximations nicely match with the values ob-
tained from the numerical simulations.
Remark 3. The critical squeezing parameters obtained in the
above cases can, in principle, be observed in laboratories, as
all the critical values of the squeezing parameter are below the
maximal amount of experimentally generated squeezing, i.e.,
r ≈ 1.73 [45].

Therefore, by combining the results from Theorem 1 and
Proposition 2, we zero in on the squeezing parameter window
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for which the maximal violation shows monotonic enhance-
ment on adding (subtracting) photons from a single mode us-
ing the series expansion method, which clearly agree with Fig.
1. To get more intuitive insights, we now look at the cases of
addition (subtraction) of even or odd number of photons sep-
arately in the next subsection.

B. Even-odd dichotomy

To find out the reason behind such dependence on squeez-
ing parameter of maximal violation, we now study separately
the TMSV states when even (odd) number of photons are
added. The intuition for such investigation comes from the
fact the χmax depends of (q1, q2)-pair which is different for
odd and even number of photons. Let us first restrict ourselves
to addition of even number of photons from the first mode, and
study violations of Bell inequality with respect to the number
of photons added for fixed values of the squeezing parameter.
From numerical simulations, we find when only even number
of photons are added from a particular mode (Figs. 2(a) and
(b)), the maximal violation shows monotonic enhancement for
r & 0.94. We now show the same by using the series expan-
sion method.

Proposition 3. The maximal violation of Bell inequality un-
dergoes a transition from nonmonotonic to monotonic behav-
ior with respect even number of photon addition in a single
mode when r & 0.92.

Proof. The insight, obtained from numerical simulation, as re-
flected in Fig. 2(a), tells us that when r is close to 0.92, the
nonmonotonicity can be observed in the diminution of χmax

after adding atleast 4 photons to the system. Hence unlike
Theorem 1 and Proposition 2, the quantity of interest now
becomes χmax(|ψ(4,0)

r 〉) − χmax(|ψ(2,0)
r 〉). The approxima-

tion of χmax(|ψ(2,0)
r 〉) has already been done in Eq. (26), and

hence we are left with the approximation of χmax(|ψ(4,0)
r 〉).

Expression of χmax(|ψ(4,0)
r 〉) is obtained by substituting k =

4 in Eq. (19), where the square root term
√

(2n+ 1)(2n+ 5)
can be approximated as√

(2n+ 1)(2n+ 5) ≈ (2n+ 3)− 2

(2n+ 3)
− 2

(2n+ 3)3
.

(27)

This approximation allows K(4,0) and thereby χmax(|ψ(4,0)
r 〉)

to be written in terms of known functions. Using Eqs. (26)
and (27), we find that Kapprox(4,0) − Kapprox(4,0) and consequently

χmaxapprox(|ψ(4,0)
r 〉)− χmaxapprox(|ψ(2,0)

r 〉) & 0, implies x & 0.51
or r & 0.92. �

We now move to the situation where odd number of pho-
tons are added. Interestingly, a qualitatively different picture
emerges in this case compared to the even-photon-addition
(Figs. 2(c) and (d)). In particular, there exists only a region in
the squeezing parameter, namely 1.23 < r < 1.66, where we
get monotonic behavior of χmax with odd number of added
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FIG. 2. Even vs. odd. (Upper panel) χmax against even number of
added photons in a single mode, while (lower panel) χmax with odd
k. All quantities plotted are dimensionless.

photons, k. Here, we should also comment that the nature of
nonmonotonicity for r < 1.23 and r > 1.66 are different, as
also seen in Fig. 1. When r > 1.66, the nonmonotonicity
is reflected by a decrement in the maximal violation of Bell
inequality after addition of a single photon, as already men-
tioned in Theorem 1, while for r < 1.23, the nonmonotonic-
ity is observed after addition higher number of photons (see
Fig. 2(c)). However, the feature of overall enhancement of
the violation for higher values of k compared to the TMSV
state persists both for even as well as odd k. We again employ
the series expansion method for obtaining the lower bound on
r.

Proposition 4. When only odd number of photons are added
(subtracted) to a single mode of the TMSV state, the maximal
violation undergoes a transition from nonmonotonic to mono-
tonic behavior at r ≈ 1.23.

Proof. Again our numerical results help us to identify k in
K(k,0) relevant to prove this proposition. In this case, we no-
tice that the quantity, χmax(|ψ(3,0)

r 〉)− χmax(|ψ(1,0)
r 〉) is ap-

propriate. The square root term
√

(2n+ 1)(2n+ 4) in K(3,0)

(see Eq. (19)) can be approximately written as√
(2n+ 1)(2n+ 4) ≈ (2n+ 5/2)− 9

8(2n+ 5/2)

− 81

27(2n+ 5/2)3
. (28)

This approximation allows K(3,0) to be written in terms of
known hypergeometric and transcendental functions. We find
r & 1.23, for which χmaxapprox(|ψ(3,0)

r 〉)− χmaxapprox(|ψ(1,0)
r 〉) &

0. �
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Remark. There exists a region, 1.23 < r < 1.42, where both
addition of even and odd number of photons lead to mono-
tonic enhancement of maximal Bell-violation, although the
combined curve shows nonmonotonicity. This can be under-
stood by noting the following fact. Even if both even and
odd operations give monotonic violation of Bell inequality, it
does not guarantee that their combined effect would be mono-
tonic. Hence, individual monotonicity is necessary but not
a sufficient condition for combined monotonicity. However,
nonmonotonic maximal Bell-violation in individual cases en-
sures the violation for the state with arbitrary number of added
photons to be nonmonotonic.

We know that the violation of Bell inequality by quantum
states quantifies the content of quantum correlations present in
these states. Another way to quantify quantum correlation is
the amount of entanglement possessed by these states. Com-
paring the results obtained here with the entanglement content
[31] of photon-added (-subtracted) TMSV states, we observe
that the monotonic relationship of these quantities for pure
two-qubit states in finite dimension is no longer true for pure
states in the continuous variable case provided the Bell test is
performed with pseudospin operators.

IV. DISTRIBUTED PHOTON ADDITION AND
SUBTRACTION

In this section, we go beyond the realm of single mode op-
erations, and analyze the effect of local operations on both
the modes. Specifically, for a given number of photons to be
added, instead of dumping them in a single mode, we dis-
tribute them in two modes, and examine the effects of distri-
bution on violations of Bell inequality based on pseudospin
operators. Similar operations are considered in case of photon
subtraction, which in this case, is different from photon addi-
tion. For addition, the correlation function of the state given
in Eq. (3), in terms of pseudospin operators, also takes the
form as in Eq. (12) with

K(k,l) = 2×max
[ ∞∑
n=0

c
(k,l)
2n c

(k,l)
2n+1,

∞∑
n=0

c
(k,l)
2n+1c

(k,l)
2n+2

]
,

(29)

where c(k,l)n s are given in Eq. (3). Note that the maximiza-
tion in the above equation arises due to the optimization in-
volved in (q1, q2)-duo. In the case of photon subtraction,
we can rewrite the state given in Eq. (5) as |ψ(−k,−l)

r 〉 =∑∞
n=0 c

(−k,−l)
n+k |n, n+ k − l〉. For this case,

K(−k,−l) = 2×

max
[ ∞∑
n=0

c
(−k,−l)
2n+k c

(−k,−l)
2n+1+k,

∞∑
n=0

c
(−k,−l)
2n+1+kc

(−k,−l)
2n+2+k

]
,

(30)

where c(−k,−l)n s are represented in Eq. (5). The correspond-
ing maximal violation of Bell inequality for both addition and

subtraction reads as

χmax(|ψ(±k,±l)
r 〉)= 2

√
1 +K2

(±k,±l). (31)

Note that in general, K(k,l) 6= K(−k,−l) and hence
χmax(|ψ(k,l)

r 〉) and χmax(|ψ(−k,−l)
r 〉) are typically different.

However, when k = l, we notice that |ψ(k,k)
r 〉 and |ψ(−k,−k)

r 〉
have the same Schmidt coefficients [31], and consequently,
χmax(|ψ(k,k)

r 〉) = χmax(|ψ(−k,−k)
r 〉). Therefore, when k 6= l

(k 6= 0), there exists a disparity in the maximal violation of
Bell inequality for distributed photon-added and -subtracted
states (see Figs. 3 and 4). We discuss this inequivalence in
this section.
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FIG. 3. Inequivalence of distributed addition and subtraction of pho-
tons. Here r = 0.5. The abcissa represents the number of photons
added or subtracted from the first mode for a given total number of
photons, k + l, where k and l represent the photons added (sub-
tracted) in the first and the second modes respectively. Furthermore,
it highlights a relationship between nonmonotonicity and the relative
performance of distributed addition (subtraction) in terms of their
maximal violation of Bell inequality. Both the axes are dimension-
less.

A. Inequivalence of addition and subtraction

In Sec. III, we argued that both addition and subtraction of
photons from a single mode yields the same maximal viola-
tion. As pointed out earlier, this equivalence breaks down in
case of distributed photon-addition and -subtraction (Figs. 3
and 4). This inequivalence prompts us a natural question.– In
terms of maximal violation under distribution, which one is
better– addition or subtraction?
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FIG. 4. Washing away of diminution and nonmonotonicity in the
maximal violation with increasing squeezing parameter. The total
number of photons added (subtracted) is always fixed to 10. Here,
the abcissa, k, is the added number of photons in the first mode.
Other details are same as in Fig. 3.

To answer the above question, for a fixed squeezing
pararmeter r, and for fixed total number of photons added
(subtracted) in both the modes, k + l, with k and l being the
added (subtracted) photons from the first and second modes
respectively, we investigate the behavior of χmax with respect
to k. Extensive numerical analysis reveals the following quali-
tative trends of χmax under distributed operations (certain ex-
emplary scenarios are depicted in Figs. 3 and 4).

1. In case of both addition and subtraction, for ‘low’ val-
ues of squeezing parameter r and the total number of
added (subtracted) photons, k + l, we observe that the
maximal violation usually decreases with the number
of photons added in the first mode, k, which sometimes
leads to the nonmonotonicity of χmax against k. More-
over, in the distributed case, the value of χmax occa-
sionally turns out to be smaller compared to that of the
single mode operations.

2. For ‘low’ to ‘intermediate’ values of r and k + l, inter-
estingly, we find that distributed subtraction gives more
violation compared to distributed addition for some spe-
cific values of r and k + l.

3. The traits of diminution and nonmonotonicity get com-
pletely washed away to monotonic enhancement of
maximal violation for ‘sufficiently high’ r or by ‘in-
creasing’ the total number of added or subtracted pho-
tons k+ l or both. In this parameter regime, distributed
addition typically yields a higher violation compared to
distributed subtraction.

4. For distributed addition, the transition from nonmono-
tonicity and diminution to monotonic enhancement of
maximal violation usually requires ‘higher’ values of
squeezing, r, or, total number of photons, k + l, com-
pared to the distributed subtraction case.

The observations are in sharp contrast to the results ob-
tained in the case of entanglement [31], where distribution
always leads to monotonic enhancement of entanglement for
both addition and subtraction. Furthermore, distributed addi-
tion is shown to ubiquitously outperform distributed subtrac-
tion in terms of the entanglement content (cf. [46]). As ar-
gued above, this is no more true in case of violation of Bell
inequality. Moreover careful survey in the space of squeezing
parameter and total number of photons added or subtracted in-
dicate that the outcome of this duel (addition vs. subtraction)
has a one to one correspondence with monotonicity of maxi-
mal violation upon distribution of the added or subtracted pho-
tons. The general trend being when maximal violation for dis-
tributed addition shows nonmonotonicity or diminution, sub-
traction prevails, which as pointed out earlier occurs for ‘low’
to ‘intermediate’ values of r and k + l.

V. VIOLATIONS OF BELL INEQUALITY IN REALISTIC
SITUATIONS

The cases considered so far are ideal, as the TMSV states
were not reckoned to be tampered by any noise due to environ-
mental interactions and the twin beam generator was assumed
to be without any imperfections. However, in laboratories,
presence of noise and faulty machines are generic [37]. In
this section, we address these issues, and focus on imperfect
(noisy and faulty) scenarios which reduce the maximal vio-
lation of Bell inequality, and in some cases, even makes the
system non-violating. We show how even single mode opera-
tions, namely addition or subtraction of photons can enhance
violation of Bell inequality in these scenarios, and sometimes
can even activate violation for states which ceased to violate
Bell inequalities in presence of noise or imperfections.

Here we consider two major sources of imperfections that
can have detrimental effect on the maximal violation of Bell
inequality. 1. We consider the case of a general local noise
model, and examine its effect on the violation of Bell inequal-
ity for TMSV states. We then analyze enhancement and/or
activation of the violation via photon addition or subtraction,
giving examples for specific cases of local thermal and Gaus-
sian noise. We also repeat the same analysis for a classi-
cally correlated noise model. 2. We assume that there is
a faulty faulty twin beam generator, resulting a TMSV state
with squeezing, different than the desired one and perform the
same investigations like effects on violation on local realism
due to states with defects as in the case of noisy states. 3. We
consider the situation where the photon addition and subtrac-
tion procedures are themselves faulty due to features like dark
counts [39, 40] etc. of the photodetectors employed during the
photon addition and subtraction procedures.
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A. Noise in states

We now look at the TMSV states, tampered by noise, and
study its robustness against such mixing in terms of its ability
to violate the Bell inequality based on the pseudospin opera-
tors. The violation is computed in two distinct scenarios: (i)
when the probability with which the noise gets mixed with the
TMSV state is known and, (ii) when the information about the
mixing probability is absent. In the first case, for a given p,
the maximal violation of Bell inequality is evaluated while in
the second one, the settings chosen for optimizing the viola-
tion of Bell inequality is same as the one with vanishing p. In
both the cases, we analyze the effects of photon addition and
subtraction on the violation of Bell inequality.

Local noise

We consider a general local noise model, where the noisy
state reads as

ρ = (1− p)|ψr〉〈ψr|+ p
( ∞∑
n=0

µn|n〉〈n| ⊗
∞∑
m=0

νm|m〉〈m|
)
,

(32)

where 0 ≤ p ≤ 1, |ψr〉 is the TMSV state with squeezing pa-
rameter r, and

∑∞
n=0 µn =

∑∞
m=0 νm = 1. The correlation

function for ρ, following Eq. (9), in terms of the pseudospin
operators is given by

E(θa, θb) = A
(

cos θa cos θb +
B

A
sin θa sin θb

)
, (33)

with

A = (1− p) + p
( ∞∑
n=0

(−1)nµn

)( ∞∑
m=0

(−1)mνm

)
,

B = (1− p) tanh 2r. (34)

In practical situations, the knowledge of p, i.e., whether any
error have acted or not, may be elusive. Therefore, two situ-
ations may arise: (i) when the value of p is known, and (ii)
when it is unknown. The maximum value of the Bell expres-
sion for the state ρ, when the mixing probability, p, is known,
is given by (see Eqs. (14) and (15))

χmaxp (ρ) = 2
√
A2 +B2. (35)

When the knowledge about p is absent, one might proceed
with the optimal measurement setup for the TMSV state, |ψr〉,
and calculate the violation. Bell expression for such a setting
of the state given in Eq. (32) reads as

χmax
Ap

(ρ) = 2
(A+K(0,0)B√

1 +K2
(0,0)

)
= 2
( A+B tanh 2r√

1 + tanh2 2r

)
.

(36)

When the value of p is known, we have χmaxp (ρ) > 2, when

p < 1− 1

a2 + b2

(
a(a− 1) +

√
a(a− ab2 + 2b2)

)
,(37)

where a = 1 −
(∑∞

n=0(−1)nµn

)(∑∞
m=0(−1)mνm

)
and

b = tanh 2r. When the knowledge about the value of p is
absent, then χmax

Ap
(ρ) > 2, if

p <

√
1 + b2(

√
1 + b2 − 1)

2 + b2 − a . (38)

We now explore the possibilities of enhancement and/or ac-
tivation of the violation via addition (subtraction) of photons
to one of the modes of such noisy states. We assume, with-
out any loss of generality, that the single mode operations are
performed in the first mode. The normalized state when k
photons are added in the first mode of ρ, given in Eq. (32),
can be represented as

ρ̃k = (1− p)|ψ(k,0)
r 〉〈ψ(k,0)

r |

+ p
( ∞∑
n=0

µ̃kn|n+ k〉〈n+ k| ⊗
∞∑
m=0

νm|m〉〈m|
)
. (39)

where

µ̃kn =
µn
(
n+k
k

)∑∞
t=0 µt

(
t+k
k

) . (40)

When k photons are subtracted from ρ, we have

ρ̃−k = (1− p)|ψ(−k,0)
r 〉〈ψ(−k,0)

r |

+ p
( ∞∑
n=0

µ̃−kn |n〉〈n| ⊗
∞∑
m=0

νm|m〉〈m|
)
,

= (1− p)|ψ(0,k)
r 〉〈ψ(0,k)

r |

+ p
( ∞∑
n=0

µ̃−kn |n〉〈n| ⊗
∞∑
m=0

νm|m〉〈m|
)
. (41)

with

µ̃−kn =
µn+k

(
n+k
k

)∑∞
t=0 µt+k

(
t+k
k

) . (42)

Here, the forms of |ψ±k,±l〉 are given in Eqs. (2) and (4). The
correlation functions corresponding to states in Eqs. (39) and
(41) have the same structure as Eq. (34), and the correspond-
ing maximal Bell inequality violation, when p is known, is
given by

χmaxp (ρ̃±k) = 2
√
A2
±k +B2

±k. (43)

For addition of photons in the first mode, with the optimal
(q1, q2)-pair, A+k and B+k takes the following form

A+k = (1− p) + p
( ∞∑
n=0

(−1)nµ̃kn

)( ∞∑
m=0

(−1)mνm

)
,

B+k = (1− p)K(k,0), (44)

and in case of photon subtraction,

A−k = (1− p) + (−1)kp

[( ∞∑
n=0

(−1)nµ̃−kn

)
( ∞∑
m=k mod 2

(−1)mνm

)]
,

B−k = (1− p)K(−k,0). (45)
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When the knowledge about p is absent, the measurement set-
tings which are optimal for the k photon-added TMSV state
are employed. The maximal Bell expression for such a setting
for the photon-added and -subtracted noisy state, ρ̃±k, is as
follows:

χmax
Ap

(ρ̃±k) = 2
(A±k +K(±k,0)B±k√

1 +K2
(±k,0)

)

= 2
(A±k +K(k,0)B±k√

1 +K2
(k,0)

)
. (46)

Note that unlike in the noiseless scenario, in the presence
of local noise, the maximal violation for single mode addi-
tion and subtraction are structurally different (see Eqs. (44)
and (45)). We now consider two special cases where the lo-
cal noises considered in Eq. (32) are thermal and Gaussian.
In both these cases, the system ceases to violate the Bell in-
equality after a critical value of p, even when the value of p is
known.

1. Local thermal noise

Let us first consider the scenario of local thermal noise.
In this situation, the resulting state, ρβ1β2 , is the admixture
of TMSV state with the thermal noise having inverse tem-
peratures, β1 = 1

kBT1
and β2 = 1

kBT2
, for first and second

modes respectively with kB being the Boltzman constant and
ti, i = 1, 2 being the temperature of the ith mode. The local
thermal noise parameters are given by

µn = (1− e−β1)e−β1n,

νm = (1− e−β2)e−β2m. (47)

For these choices of noise parameters, we obtain

A = (1− p) + p tanh
β1
2

tanh
β2
2
, (48)

while B remains the same as in Eq. (34). The maximal viola-
tion, when the value of p is known, reduces to (see Eq. (35))

χmaxp (ρβ1β2) = 2×√
(1− p)2 tanh2 2r +

{
(1− p) + p tanh

β1
2

tanh
β2
2

}2

.

(49)

The range of mixing probability, p, for which ρβ1β2 violates
Bell inequality, is given in Eq. (37), with a and b are now as
follows:

a = 1− tanh
β1
2

tanh
β2
2
,

b = tanh 2r. (50)

When the value of p is unknown, following Eq. (36), the vio-
lation is given by

χmax
Ap

(ρβ1β2) =
2√

1 + tanh2 2r

[
(1− p)(1 + tanh2 2r)

+ p tanh
β1
2

tanh
β2
2

]
. (51)

Using Eqs. (38) and (50), we have χmax
Ap

(ρβ1β2) > 2 when

p <

√
1 + tanh2 2r(

√
1 + tanh2 2r − 1)

1 + tanh2 2r − tanh β1

2 tanh β2

2

. (52)

Clearly, the parameter space, in which violation of Bell in-
equality occurs in the p-unknown scenario, is smaller com-
pared to the case when p is known. For example, if β1, β2,
and r are taken to be 3, 5 and 1.25 respectively, we obtain vi-
olation for p < 0.633 when p is known, and for p < 0.526
with p being unknown. The distinction becomes more pro-
nounced in the low temperature limit of the noise. When
β1, β2 → ∞, knowledge of p guarantees that the state keeps
violating Bell inequality for all values of p < 1. On the con-
trary, when the knowledge of the value of p is absent, the
state in the above limit violates Bell inequality only when

p <

√
1+tanh2 2r(

√
1+tanh2 2r−1)

tanh2 r
. For the EPR state, this

bound reduces to p < 2−
√

2. On the other hand, in the high
temperature limit (β1, β2 → 0), the violation becomes insen-
sitive to the knowledge of p, and in both the cases, the state
violates Bell inequality for p < 1− 1/

√
1 + tanh2 2r, which

reduces to p < 1 − 1/
√

2 for the EPR state. This is reminis-
cent of the result involving continuous variable Werner state
in [47]. Note here that although the properties of states with
known p have been studied before, the situation when p is un-
known, although very relevant has hardly been investigated
before.
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FIG. 5. Variation of the maximal violation of Bell inequality
for photon-added TMSV states mixed with local thermal noise
against number of added photons k. We choose different values of
(r, p, β1, β2) to make the observation more prominent. Both axes are
dimensionless.

Let us first analyze how the photon addition and subtrac-
tion process effect the violation of Bell inequality when p is
known. When k photons are added to these states, A+k in Eq.
(44) becomes

(1− p) + p tanhk+1 β1
2

tanh
β2
2
, (53)

while B+k is same as given in Eq. (44). When an even
number of photons are subtracted, k, we have A−k = A+k
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and B−k = B+k, leading to the same χmax for photon-
added and -subtracted states. However, for the case of sub-
tracting an odd number of photons, B−k remains same but
A−k = (1− p)− p tanhk+1 β1

2 {tanh β2

2 − (1− e−β2)}. The
above expressions clearly indicate that in the presence of local
thermal noise, addition and subtraction of photons are equiv-
alent. However, when odd number of photons are involved,
addition performs better than subtraction in terms of the max-
imal violation. Therefore, we restrict ourselves to single mode
operations only involving photon addition. Nevertheless, sim-
ilar analysis can also be caried out for photon subtraction.

Note that when photons are added to ρβ1β2 ,Bk
(
∼ K(k,0)

)
shows overall enhancement, while Ak monotonically de-
creases following the decrement of the term tanhk+1 β1

2 with
k in its expression. Therefore, the maximal value of Bell ex-
pression, χmaxp = 2

√
A2
k +B2

k, is not guaranteed to increase
after adding photons, and is determined by the competing en-
hancement and decrement of Bk and AK respectively. In Fig.
5, we plot χmaxp for various values of system parameters for
known p, which encapsulates the following patterns:

1. For low values of p, the noisy state is essentially close
to the TMSV state, and therefore, we get enhancement
in the Bell expression on addition of photons (see the
curve with (r, p, β1, β2) = (0.2, 0.15, 3, 5) in Fig. 5).

2. For low values of the squeezing parameter, r, the over-
all gain G(|ψ(k,0)

r 〉) on addition of photons to the TMSV
state is large (see Table. I). Now, in the low to interme-
diate temperature regime, when p is small, the increase
of K(k,0) (due to the high gain) dominates, and there-
fore the overall violation ‘increases’, and ultimately sat-
urates for high values of k.

3. There exists regions in the parameter space, where we
can have ‘activation’ of violation of Bell inequality, i.e.,

the state which is originally non-Bell violating, violates
local realism after adding k photons. See the plot with
(r, p, β1, β2) = (0.3, 0.5, 5, 3) in Fig. 5. Also note that,
in this situation, the value of the Bell expression initially
increases with the number of added photons, but it starts
decreasing after sometime, as the decrement of the term
tanhk+1 β1

2 in Ak becomes dominating.

4. For high values of the squeezing parameter, r, the value
of K(k,0) does not change substantially. It is reflected
in the low gain percentages for highly squeezed TMSV
states in Table. I. Therefore, the Bell expression de-
creases monotonically with k. Similarly, for high values
of p, the Bell expression can decrease, as tanhk+1 β1

2 in
Ak dominates.

For the case of unknown p, we observe qualitatively the
same features as in the scenario for which p is known but with
reduced values of the maximal violation.

2. Local Gaussian noise

We now admix the TMSV state with local Gaussian noise,
denoted by ρσ1σ2 having coefficients

µn =
2

1 + ϑ3(0, e−σ
−2
1 )

e−n
2/σ2

1 ,

νn =
2

1 + ϑ3(0, e−σ
−2
2 )

e−n
2/σ2

2 (54)

where σ1 and σ2 are the relevant noise parameters, and ϑn
denotes the Jacobi theta function of order n [48]. In this case,

A = (1− p) + p
1 + ϑ4(0, e−σ

−2
1 )

1 + ϑ3(0, e−σ
−2
1 )
× 1 + ϑ4(0, e−σ

−2
2 )

1 + ϑ3(0, e−σ
−2
2 )

, (55)

and B remains the same as in Eq. (34).
Like in the case of thermal noise, for a given p, the maximal

violation of Bell inequality using Eq. (35), takes the form as

χmaxp (ρσ1σ2) = 2

√
(1− p)2 tanh2 2r +

{
(1− p) + p× 1 + ϑ4(0, e−σ

−2
1 )

1 + ϑ3(0, e−σ
−2
1 )
× 1 + ϑ4(0, e−σ

−2
2 )

1 + ϑ3(0, e−σ
−2
2 )

}2

. (56)

In case of local Gaussian noise, when p is unknown, the vio-
lation, following Eq. (36) reads as

χmax
Ap

(ρσ1σ2) = 2√
1+tanh2 2r

[
(1− p)(1 + tanh2 2r)

+ p 1+ϑ4(0,e
−σ−2

1 )

1+ϑ3(0,e
−σ−2

1 )
× 1+ϑ4(0,e

−σ−2
2 )

1+ϑ3(0,e
−σ−2

2 )

]
. (57)

In such a situation, χmax
Ap

(ρσ1σ2) > 2 holds for

p <

√
1 + tanh2 2r(

√
1 + tanh2 2r − 1)

1 + tanh2 2r − 1+ϑ4(0,e
−σ−2

1 )

1+ϑ3(0,e
−σ−2

1 )

1+ϑ4(0,e
−σ−2

2 )

1+ϑ3(0,e
−σ−2

2 )

. (58)

Classically correlated noise

Instead of uncorrelated noise considered in Eq. (32), we
now move to classically correlated local noise model, and ex-
amine Bell inequality violations for these states. Such a state
can be represented as

ρ̃ = (1− p)|ψr〉〈ψr|+ p

∞∑
n=0

Cn|n, n〉〈n, n|. (59)

The correlation functions for ρ̃, from Eq. (9), in terms of the
pseudospin operators are given by

E(θa, θb) = cos θa cos θb + K̃(0,0) sin θa sin θb, (60)
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with K̃ = (1 − p)K(0,0) = (1 − p) tanh 2r. For known p,

χmaxp (ρ̃) = 2
√

1 + K̃2. In this situation, it is easy to see that
χmaxp > 2 for any values of p < 1, and for any finite values
of the squeezing parameter, r.

On the other hand, the maximal Bell expression takes the
form

χmax

Cp
(ρ̃) = 2

(1 +K(0,0)K̃(0,0)√
1 +K2

(0,0)

)
= 2
(1 + (1− p) tanh2 2r√

1 + tanh2 2r

)
.

(61)

with unknown p. Under this assumption about the uncertainty
in the error estimation/detection, we observe criticalities in the
values of r and p, beyond which the system ceases to violate
the Bell inequality based on pseudospin operators. For r → 0,
we find that χmax

Ap
(ρ̃) ≤ 2 for p ≥ 1/2. Therefore, for p <

1/2, the noisy state violates the Bell inequality for any finite
squeezing, even when the value of p is not known. However,
if p > 1/2, the state given in Eq. (59) starts violating the Bell
inequality only when

2r ≥ tanh−1
√

1− 2(1− p)
1− p . (62)

Note that if p ≥ 2 −
√

2, even the EPR state, i.e., the TMSV
state with r → ∞, does not violate a Bell inequality in this
setting. So we get a criticality in the squeezing parameter, r,
given by the above equation, when 1/2 ≤ p ≤ 2−

√
2.

When we add or subtract photons to a single mode of the
state given in Eq. (59), we have K̃(±k,0) = (1 − p)K(k,0) =

(1 − p)K(−k,0) = K̃(k,0). Now, if p is known, the maximal
violation of Bell inequality simply reads

χmaxp (ρ̃±k) = 2
√

1 + K̃2
(k,0). (63)

From the above expression, it is clear that photon addition
(subtraction) always leads to an overall enhancement in the vi-
olation of Bell inequality, which will be dictated by the change
in K(k,0) with respect to k. In the absence of any knowledge
about p, the violation is given by

χmax
Ap

(ρ̃±k) = 2
(1 +K(k,0)K̃(k,0)√

1 +K2
(k,0)

)
. (64)

Again, upon addition (subtraction) of photons in one mode,
the above expression can be increased. Specifically, for 1/2 ≤
p ≤ 2−

√
2 and r < tanh−1

(√
1− 2(1− p)/(1− p)

)
, the

violation can be activated via photon addition or subtraction
in a single mode.

Interestingly, note that, for any noise with the same struc-
ture (

∑
Cn|n, n〉〈n, n|) as given in Eq. (59), the Bell expres-

sions for known or unknown values of p do not depend of the
values of Cn.

B. Faulty Twin Beam Generator

Upto now, we consider the scenario where the state is af-
fected by noise. There can be a situation where the twin beam

generator is typically imperfect, and due to internal imper-
fection and losses, it may end up in generating TMSV states
with less squeezing than it is ought to. To put things in a
quantitative perspective, we assume that a twin beam genera-
tor which is labeled to produce states with squeezing r, does
so with an unknown r′. Off course, r′ < r. The correlators
are calculated via measurements performed with pseudospin
operators oriented in the optimal direction for the TMSV state
with squeezing parameter r. The maximal violation obtained
in such a situation, following Eqs. (14) and (15), is given by

χmaxr (|ψr′〉) = 2× (cos θ + tanh 2r′ sin θ),

= 2× 1 + tanh 2r′ tanh 2r√
1 + tanh2 2r

(65)

We have χmaxr (|ψr′〉) ≤ 2 when

tanh 2r′ ≤ 1

tanh 2r
×
(√

1 + tanh2 2r − 1
)
. (66)

The equality holds when r′ = rc, where rc is the critical value
of r′ for a given r, below which the state fails to show any vi-
olation. For the EPR state, the critical value of r′ saturates
to a finite value r∞c = 1

2 × arctanh(
√

2 − 1) ≈ 0.22. Al-
though rc might seem to be a small value even for the EPR
state, for experimentally relevant squeezing parameters, rc is
comparable to r. For example, rc for r = 0.75 approximately
reads 0.203172. We want to analyze the effects of adding or
subtracting photons from a single mode when r′ falls below
rc, i.e., when the state does not violate Bell inequality based
on pseudospin operators.

Let us check whether the range of squeezing parameter
which shows non violation can be changed if one adds (sub-
tracts) photons even in a single mode. In this case, for sin-
gle mode operations, photon addition remains equivalent to
subtraction, since the fault in the generator just reduces the
squeezing parameter of the TMSV state, and thus equivalence
argument goes through. So we add k photons to the first mode
of the obtained squeezed state with squeezing r′. As before,
we use the optimal measurement settings for k photon-added
TMSV state with squeezing parameter r. Note that r is the
labeled value of squeezing that the twin beam generator is in-
tended to produce. The maximal violation, so obtained in this
scenario, is given by

χmaxr (|ψ(±k,0)
r′ 〉) = 2×

1 +Kr′(k,0)K(k,0)√
1 +K2

(k,0)

, (67)

where K(k,0) is in Eq. (17), and is calculated for the TMSV
state with squeezing parameter r, while Kr′(k,0) represents the

same thing for the state |ψ(k,0)
r′ 〉. We consider some represen-

tative states for which r′ falls below the critical value as given
in Eq. (66). We show that it is possible to activate the viola-
tion for these states by using single mode operations. See Fig.
6 (a).

In the entire analysis, we have assumed that the addition
or subtraction process is error free. In the next subsection, the
same situations will be re-examined, when the photon addition
or subtraction process is itself imperfect.
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FIG. 6. Activation of the violation of pseudospin operator-based Bell
inequality. We choose r = 0.75, such that the corresponding criti-
cal value of r′ is rc = 0.203172. (a) Activation via deterministic
addition (subtraction) of photons in single mode for three values of
r′ < rc. (b) The dual effects of imperfect addition (subtraction) of
photons in single mode and faulty TMSV state for r′ = 0.13, and
for different values of λ and σ (see discussions in Sec. V C). Both
the axes are dimensionless.

C. Imperfections in photon addition and subtraction
mechanism

The indeterminacy in addition (subtraction) of photons
can be attributed due to variety of reasons, like dark counts
[39, 40] of the detector etc., and hence can lead to decre-
ment in violation of local realism. In this subsection, we
consider two distinct models of imperfections in the added
or subtracted number of photons. Firstly, for a given k num-
ber of added (subtracted) photons, we assume that the state
is to be mixed with k − 1, k − 2, ...k −m (m ≤ k) number
of photon-added (-subtracted) states with probabilities which
follows the exponential suppression (ES). Hence such that the
effective state becomes

ρ̄±k =

m∑
i=0

piρ±|k−i|. (68)

Here, m is the cutoff on the maximal discrepancy in the pho-
ton number during the addition (subtraction) procedure, ρ±l
represents a state with l number of added (subtracted) pho-
tons, and pis are the mixing probabilities, which decrease ac-
cording to exponential law. Second scenario considered in this
paper where the probabilities are Gaussian. Specifically, the
exponential probabilities, for a given m, are given by

pi =
e−i/λ∑m
i=0 e

−i/λ , (69)

whereas for Gaussian suppression (GS), the probabilities
takes the form as

pi =
e−i

2/σ2∑m
i=0 e

−i2/σ2 . (70)

Here, λ and σ give the measures of dispersion for these im-
perfect additions (subtractions).

1. Noisy states

In Sec. V A, we have discussed the effects of noise on the
violation of Bell inequality for the TMSV states, and the role
of photon addition and subtraction to improve the situation.
Specifically, we have discussed the cases of local noises (ther-
mal and Gaussian), and a classically correlated noise. In this
subsection, we study the effects of faulty addition (subtrac-
tion) of photons on the Bell expression, when the noise prob-
ability, p, is known.

When the photon addition scheme on TMSV states with lo-
cal noise suffers exponential suppression, and when we know
the value of p, the violation of Bell inequality is given by

χmaxES =
2(
∑m
n=0 e

−n/λ)−1√
A2
k +B2

k

[ ∑
i=0,2,4,...≤m

e−i/λ
(
AkAk−i

+ BkBk−i
)
−

∑
j=1,3,5,...≤m

e−j/λAkAk−j

]
. (71)

The corresponding violation for GS reads as

χmaxGS =
2(
∑m
n=0 e

−n2/σ2

)−1√
A2
k +B2

k

[ ∑
i=0,2,4,...≤m

e−i
2/σ2(

AkAk−i

+ BkBk−i
)
−

∑
j=1,3,5,...≤m

e−j
2/σ2

AkAk−j

]
. (72)

Here, Ak and Bk are given in Eqs. (44). In this imperfect
addition scenario, for low values of noise parameters, the en-
hancement in the maximal violation persists, with lower val-
ues compared to the perfect addition scenario (see Fig. 5).
The domain of activation also naturally shrinks in this imper-
fect case.
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FIG. 7. Effects of imperfect photon addition process on TMSV states
with local thermal noise, (a) with (r, p, β1, β2) = (0.2, 0.15, 3, 5),
and (b) with (r, p, β1, β2) = (0.3, 0.5, 5, 3). See Fig. 5 for the
perfect photon addition case for these choices of system-noise pa-
rameters. We chose these two values to highlight the consequences
of imperfect photon addition on situations of enhancement (a) and
activation (b) of χmax. Both the axes are dimensionless.

2. Faulty twin beam generator

We now study the response on violation of Bell inequality
under coupled imperfect scenario. In particular, along with
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imperfect photon addition, the twin beam generator produce
the TMSV state with r′, instead of r. In case of ES,

χmaxES =
2(
∑m
n=0 e

−n/λ)−1√
1 +K2

(k,0)

[ ∑
i=0,2,4,...≤m

e−i/λ
(
1

+ Kr′(k−i,0)K(k,0)

)
−

∑
j=1,3,5,...≤m

e−j/λ
]
, (73)

while for GS, we get

χmaxGS =
2(
∑m
n=0 e

−n2/σ2

)−1√
1 +K2

(k,0)

[ ∑
i=0,2,4,...≤m

e−i
2/σ2(

1

+ Kr′(k−i,0)K(k,0)

)
−

∑
j=1,3,5,...≤m

e−j
2/σ2

]
. (74)

To take one concrete example, we restrict m to be equal to
k, and choose different values of λ and σ, and examine the
consequence of faulty photon addition procedure on the Bell
expression (see Fig. 6 (b)). We observe that for low values of
dispersions (λ and σ), the Bell expression, which initially does
not violate, always increase with varying number of added
photons, k, leading to activation of the violation. However,
if the dispersions are large, in both exponential and Gaussian
cases, the Bell expression initially shows a decrement in its
value, and can finally be enhanced or activated after adding
sufficiently high number of photons. There can also exist sce-
narios, where this activation is not possible at all, even after
adding a large number of photons (see Fig. 6 (b)).

VI. CONCLUSION

Violation of Bell inequalities by quantum systems estab-
lishes the existence of correlations beyond the classical ones.
For finite-dimensional quantum systems, violation of Bell in-
equalities have been studied more thoroughly in comparison
to the same for continuous-variable (infinite dimensional) sys-
tems. In the field of continuous-variable systems, there was a
long outstanding debate, started by John Bell, as to whether
states with positive Wigner functions would violate a Bell in-
equality. It was resolved conclusively by constructing Bell ex-
pressions using parity operators, later using pseudospin oper-
ators, and demonstrating violation for certain entangled states
with positive Wigner function. In this paper, we used pseu-
dospin operators to examine the violation of Bell inequality
for photon-added and -subtracted two-mode squeezed vacuum
(TMSV) states, where addition as well as subtraction is per-
formed either in a single mode or in both the modes. We found
that unlike entanglement, the amount of violation of pseu-
dospin operator-based Bell inequality by photon-subtracted
state can be higher than that of the photon-added ones.

We have further studied the effects of local noise (specif-
ically, local thermal and local Gaussian noise) on the max-
imal violation of Bell inequality for the TMSV states, and
computed the parameter ranges for which the noisy TMSV
state abstains from violating the considered Bell inequality.
We demonstrated that under such circumstances, single-mode
operations like photon addition, can activate violation. We
repeated the same drill of investigations with the goal of ac-
tivation in the case of a faulty twin-beam generator for gen-
erating TMSV states, and imperfections in photon addition or
subtraction process. We reported here that in both the scenar-
ios, the answer is affirmative, i.e., the activation is possible,
thereby transforming non-violating states to violating ones.

Appendix A: Maximization of Bell expression

Let us now discuss the method for obtaining χmax, by
performing maximization over the settings, i.e., θa, θb, θ

′

a, θ
′

b.
The correlation matrix, Tij = 〈Siq1⊗Sjq2〉, where i, j = x, y, z
and q1 and q2 are chosen appropriately depending on the struc-
ture of the state. Sxq and Syq are simply given by S+

q +S−q and
−i(S+

q −S−q ) respectively, where S+
q and S−q are given in Eq.

(8). The T (correlation) matrix for photon-added (subtracted)
TMSV states can be expressed as, T = diag(K,−K, 1).
The two highest eigenvalues of the matrix T †T are 1 and
K2 respectively. Now, following the argument as given in
[42], the maximal violation of Bell inequality is given by
2 ×

√
M(T †T ), where M(T †T ) represents the sum of the

two largest eigenvalues of T †T . The same in this case reads
2
√

1 +K2. This completes the proof of the expressions in
Eqs. (15) and (35).

For the two-qubit system, the conditions derived in [42]
provides a necessary and sufficient condition for violations of
Bell inequality. However, the conditions of violation of Bell
inequality obtained in this manuscript using pseudospin oper-
ators are only sufficient but not necessary. This is so because
for the two-qubit states, the Pauli spin operators form a basis
for all operators in that space. Thus, the optimization involves
the maximization of the entire spectrum of dichotomic oper-
ators in the two-qubit space. However, the pseudospin oper-
ators do not form a basis for all dichotomic operators in the
space of two mode continuous variable states. Therefore, the
maximization involved here, only gives the maximal violation
of Bell inequality in the restricted subspace of pseudospin op-
erators making the conditions of violation sufficient but not
necessary.
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