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Abstract

Based on the statistical concept of the median, we propose a quantum uncertainty relation between semi-interquartile

ranges of the position and momentum distributions of arbitrary quantum states. The relation is universal, unlike that

based on the mean and standard deviation, as the latter may become non-existent or ineffective in certain cases. We

show that the median-based one is not saturated for Gaussian distributions in position. Instead, the Cauchy-Lorentz

distributions in position turn out to be the one with the minimal uncertainty, among the states inspected, implying

that the minimum-uncertainty state is not unique but depends on the measure of spread used. Even the ordering of

the states with respect to the distance from the minimum uncertainty state is altered by a change in the measure. We

invoke the completeness of Hermite polynomials in the space of all quantum states to probe the median-based relation.

The results have potential applications in a variety of studies including those on the quantum-to-classical boundary and

on quantum cryptography.
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1. Introduction

The uncertainty relation is one of the most famous re-

lations in quantum mechanics. In its earliest and probably

most well-known form, due to W. K. Heisenberg and oth-

ers [1, 2, 3], it constrains the product of the spreads of

position and momentum of an arbitrary quantum state to

a certain lower limit. This lower limit is proportional to

the Plank’s constant, h. This is certainly not true in the

classical mechanical description of the world, and it is pos-

sible to know both the position and momentum of a single

classical particle with arbitrary precision. The uncertainty

relation is a crucial element in multifarious branches of

research, and while it is important for interpretations of

quantum mechanics including those related to the classical

limit of quantum mechanics, it also has far-reaching prac-

tical implications, for example in quantum cryptography

[4], and in gravitational wave detection [5].

It is natural to ask which quantum state provides the

lowest product of the spreads of position and momentum.

It is well-known that Gaussian position distributions are

minimum-uncertainty states when considering the usual

“mean-based” quantum uncertainty relation. The ground

state of a quantum harmonic oscillator and squeezed coher-

ent states are examples of such minimal uncertainty states

in physical systems. Distributions that do not possess the

mean and standard deviation, such as that of the Cauchy-

Lorentz, are not considered in such searches for the min-

imal state. It may be noted that the notion of the onset

of classicality or closeness to the classical situation can be

conceptualized in several ways, one of which is the un-

certainty relation, although there is at present no general
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consensus about which is the best [6, 7, 8, 9, 10]. Surpris-

ingly, we find that the title of the minimum-uncertainty

states, as obtained via the uncertainty relation, is taken

by a non-Gaussian state, when we use the “median-based”

uncertainty relation, and the latter is a universal one, valid

– existing and efficient – for all quantum states.

The quantification of the spread of a probability dis-

tribution corresponding to a random variable typically be-

gins with identifying a figure of merit for the middle of the

distribution – a measure of “central tendency” – and then

the spread or measure of “dispersion” is defined via that of

central tendency. A popular measure of central tendency

of a distribution is the average of the values of the random

variable weighted by the corresponding probabilities. This

is known as the mean of the probability distribution. A

measure of dispersion, called standard deviation, is then

obtained by considering the square root of the mean of

the squares of the deviations around the mean. It can for

example be used to estimate the spread in the values ob-

tained in a measurement. As the epithet implies, standard

deviation happens to be a very useful, and consequently

widely-used, quantifier of the amount of variation of distri-

butions ranging from climate science and financial services

to medical science and sports [11, 12].

In quantum mechanics, it is therefore natural to ex-

press the Heisenberg uncertainty relation in terms of stan-

dard deviations of the position and momentum distribu-

tions of a quantum system, as was done in its original

formulation [1, 2] and further extensions (see [13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and

references therein). Enunciated in terms of standard de-

viations, this “mean-based” uncertainty relation is satu-

rated by Gaussian position distributions. In other words,

the product of the standard deviations of position and mo-

mentum for all quantum states, whose standard deviations

do exist, is at least a “distance” h (rather, proportional to

h) away from what is optimally possible in the classical

world [30, 31, 32]. In particular, Kramers [33] refers to

Gaussian states as the “most favourable wave packets”.

And Baym [34] refers to them as the “most certain wave

packets”.

While mean is a pretty standard measure of central

tendency, there are other quantifications of the same that

have their own merits. Some well-known instances when

the mean is not a measure of choice are (a) when there

are large outliers in a distribution, and (b) when the dis-

tribution is skewed [11, 12]. Furthermore, (c) the mean of

a distribution may not exist, and this is of course another

case where the mean cannot be a choice. Quantum states

can give rise to position and momentum distributions that

have some or all such features, and in such circumstances,

the mean-based uncertainty relations are either ineffective

or non-existent.

The median of a probability distribution is the middle-

most value of the random variable when its values are ar-

ranged in a certain order, say increasing. The median

is unaffected by large outlier values of the random vari-

able, and provides a good estimate of central tendency

even for skewed distributions. Importantly, the median of

a distribution always exists. As a measure of dispersion,

one can then use the median of the moduli of the devi-

ations around the median, a measure referred to as the

semi-interquartile range. Just like the median, the semi-

interquartile range exists for position and momentum dis-

tributions of all quantum states.

The question that we address in this paper is whether

quantummechanics places a median-based uncertainty con-

straint on our knowledge of position and momentum for

arbitrary quantum states, that is independent of the mean-

based one, and of wider applicability. We show by con-

sidering paradigmatic classes of position probability dis-

tributions corresponding to quantum states that such a

constraint does exist, and has a rather different nature

than the usual mean-based one. In particular, the mini-

mum median-based uncertainty states are no more Gaus-

sian distributions in position. The Cauchy-Lorentz distri-
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bution, due to M. G. Agnesi, S. D. Poisson, A.-L. Cauchy,

H. Lorentz, and others, provides the best choice among the

distributions that we investigated, with the Gaussian being

quite far off in the race. Therefore, while the Gaussian dis-

tribution in position saturates the mean-based uncertainty

relation, the Cauchy-Lorentz distribution in position – the

square-root of the Cauchy-Lorentz distribution, up to a

phase, being the corresponding quantum wave function in

coordinate representation – provides a lower uncertainty

product from the perspective of the median-based uncer-

tainty relation. The Cauchy-Lorentz distribution, being

without a mean, was not even considered in the search for

a saturating function of the mean-based uncertainty re-

lation. Even the ordering of states with respect to their

distance to the minimum uncertainty state is altered by

the choice of measure of the spread of probability distri-

butions. We call upon the completeness of Hermite poly-

nomials in L2(−∞,+∞), the space of all possible states

for a quantum system moving in one dimension, to inves-

tigate the median-based relation.

2. Setting the stage

Quantum mechanics asserts that there is a lower limit

to the product of the standard deviations of physical quan-

tities corresponding to “incompatible” observables in any

quantum state. We can consider incompatible observables

to be those that do not share a common eigenstate. Sup-

pose that A and B represent an arbitrary pair of incom-

patible observables. For any quantum state ρ, the Cauchy-

Schwartz inequality can be utilized to prove the mean-

based uncertainty relation given by [35, 36]

∆A∆B ≥ 1

2
|〈[A,B]〉| , (1)

where ∆A and ∆B are the uncertainties in the measure-

ments of the observablesA and B, respectively, in the state

ρ, as quantified by the corresponding standard deviations.

The uncertainty ∆A, in the state ρ, is defined as

∆A =
√
〈(A− 〈A〉)2〉, (2)

and similarly for ∆B. Equation (2) defines the uncertainty

in terms of the mean of the squares of deviations around

the mean. For an arbitrary operator, A, the mean, 〈A〉,
in the state ρ, is defined by using the Born rule as

〈A〉 = Tr (Aρ) . (3)

While dealing with position (x) and momentum (p)

measurements for an arbitrary quantum state, we note

that

[x, p] = i~, (4)

where ~ = h/(2π). Thus the mean-based uncertainty re-

lation for position and momentum reduces to

∆x∆p ≥ ~

r
, (5)

where r = 2.

As already mentioned, in spite of the fact that the mean

of a probability distribution is used in an overwhelmingly

large number of applications, there are definite cases in

which the mean is not the most useful measure of central

tendency. It is therefore useful to conceptualize measures

of central tendency that are defined independent of the

mean. One such is the median, which is the middle-most

value of the random variable when the values of the ran-

dom variable are arranged in a certain order, say increas-

ing. More precisely, and focussing attention on continuous

probability distributions, the median, 〈̃A〉, of a probability

distribution P (A = a), corresponding to a random vari-

able A, is obtained by solving the equation

∫ 〈̃A〉

−∞
P (A = a)da =

1

2
. (6)

In case the probability distribution is partly or fully dis-

crete, the definition needs to be suitably changed.

The concept of the median can however be used to ar-

rive at definitions of dispersion that are independent of

the standard deviation. An immediate set of measures of

dispersion that depend on the median, can be obtained

by considering the mean of the moduli of the deviations

around the median, or the square root of the mean of the
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squares of the deviations around the median, etc. (cf.

[28]). These however, in general, carry with them the trou-

bles associated with the mean, as can e.g. be seen from

the fact that the Cauchy-Lorentz distribution does possess

these quantities as well. To see this, consider the Cauchy

distribution, given by

fC(a : x0, γ) =
γ

π

1

(a− x0)2 + γ2
, (7)

where a, belonging to the range (−∞,∞), represents the

values of the corresponding random variable, and γ > 0

as well as x0 are the distribution parameters. For the

Cauchy distribution, the mean does not exist1. But, as

for all probability distributions, the Cauchy distribution

does have a median. However, the mean of the moduli

of the deviations around the median again does not exist.

It is, therefore, worthwhile to set up a stage where the

concept of the median can be utilized to provide a suitable

measure of dispersion, that does not take recourse to the

mean. One of the ways in which this can be attained is

as follows. Just like the median that signals the point

where the probability distribution is exactly half-way, we

can define “quartiles” that signal when the distribution is

quarter-way and three-quarters-way. More precisely, the

first and third quartiles, QA
1 and QA

3 , of the probability

distribution P (A = a) are given by

∫ QA

2m+1

−∞
P (A = a)da =

2m+ 1

4
, (8)

for m = 0, 1. The second quartile is of course the median

itself. The “semi-interquartile range”,

∆̃A =
1

2

(
QA

3 −QA
1

)
, (9)

is a suitable quantifier of dispersion based on the median,

and we have manifestly steered clear of the concept of the

mean.

There exists an interesting “width”-based single pa-

rameter family of measures of dispersion depending on a

1The Cauchy principle value of the mean, however, does exist.

parameter ε > 0 [37, 38, 39], that may be expected to have

properties similar to the interquartile range, for the case

when ε = 1
2 . However the quantities are different, as can

be seen, e.g., by considering the second excited state of

the one-dimensional quantum simple harmonic oscillator.

Moreover, the uncertainty relations derived for the width-

based quantities have no (non-zero) positive lower bound

for ε = 1
2 [37, 38, 39].

For the time-independent pure quantum state, ψ(x),

in coordinate representation, of a system moving on a

straight line, the quartiles, Qx
1 and Qx

3 , of the position

probability distribution for that system can be obtained

from ∫ Qx
2m+1

−∞
|ψ(x)|2dx =

2m+ 1

4
, (10)

for m = 0, 1. For obtaining the quartiles, Qp
1 and Qp

3,

corresponding to the momentum probability distribution

of the same system, we may go over to the momentum

representation of ψ(x), given by the Fourier transform,

φ(p) =
1√
2π~

∫ ∞

−∞
e−ixp/~ψ(x)dx. (11)

The quantities, Qp
1 and Qp

3, are then given by

∫ Qp
2m+1

−∞
|φ(p)|2dp =

2m+ 1

4
, (12)

for m = 0, 1.

3. Median-based quantum uncertainty relation

The quantity that we wish to analyze is the product of

the semi-interquartile ranges of position and momentum

for arbitrary quantum states. Precisely, we consider

∆̃x∆̃p, (13)

where

∆̃x =
1

2
(Qx

3 −Qx
1), ∆̃p =

1

2
(Qp

3 −Qp
1). (14)

Like in relation (5), our aim here is to find a lower bound of

∆̃x∆̃p, but for arbitrary quantum states. We will now per-

form several case studies, in each of which we begin with

a paradigmatic probability distribution for the position of

a quantum system moving in one dimension.
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3.1. Cauchy-Lorentz distribution

The Cauchy-Lorentz probability distribution is given

in equation (7). Let us consider a quantum system in

one dimension whose wave function, ψC(x), in coordinate

representation, is given by

ψC(x) = (fC(x : x0, γ))
1
2 , x ∈ R. (15)

This function is square-integrable and continuous, and hence

is a valid quantum mechanical wave function. The wave

function of course depends on the parameters x0 and γ,

which we have not included in the notation for the same.

Since the mean of the Cauchy-Lorentz distribution is non-

existent, the standard deviation necessarily does not exist.

Therefore, for the system under consideration, the average

position and the spread of the position distribution can-

not be represented in terms of the mean and standard

deviation of the same. We may however conveniently use

the median and the semi-interquartile range for these pur-

poses.

For position probability distribution function, |ψC(x)|2,
the values of first and third quartiles are Qx

1,C = x0−γ and

Qx
3,C = x0 + γ. So, the semi-interquartile range = γ. For

the momentum space wave function φC(p) corresponding

to ψC(x), the momentum probability distribution is given

by

|φC(p)|2 =

∣∣∣∣
1√
2π~

∫ ∞

−∞
e−ixp/~ψC(x)dx

∣∣∣∣
2

. (16)

Now, to find the first quartile, Qp
1,C , we need to solve the

following equation:

∫ Qp

1,C

−∞
|φC(p)|2dp =

1

4
. (17)

We solve this equation numerically by considering the Gaus-

sian quadrature and VanWijngaarden-Dekker-Brentmeth-

ods [40], to obtain the Qp
1,C for γ = 1, 2, 3, 4. The numeri-

cal values obtained are correct to three decimal places. In a

similar way, we compute the third quartiles, Qp
3,C . for the

same values of γ. The semi-interquartile ranges for φC(p)

are given by 0.094~, 0.047~, 0.032~, 0.024~, for γ = 1, 2, 3, 4

respectively. The products of the semi-interquartile ranges,

for γ = 1, 2, 3, 4, are therefore ≥ 0.094~. In other words,

the median-based quantum uncertainty product, ∆̃x∆̃p,

for the Cauchy-Lorentz position probability distribution,

with the parameter γ = 1, 2, 3, 4, is ≥ ~

10.6 .

Let us mention here that the Cauchy-Lorentz distri-

bution has a finite differential entropy [41] for γ > 0.

However, there exists quantum states for which the dif-

ferential entropy diverges. An example of such a state is
∑∞

k=2

√
pk|x = k〉, where pk = 1

αk(ln k)2 , with α ≈ 2.1 [41].

This implies that there exist states for which one cannot

meaningfully consider the entropic quantum uncertainty

relations [16, 17, 21, 42] although the median-based one

does remain physically relevant and mathematically well-

defined.

3.2. Gaussian distribution

The Gaussian distribution is a well-known continuous

probability distribution, for which the probability distri-

bution function is given by

fG(a : µ, σ2) =
1√
2πσ2

e−
(a−µ)2

2σ2 , a ∈ R, (18)

where µ and σ2 are the distribution parameters. Consider

now a quantum system in one dimension, for which the

wave function in coordinate representation is given by

ψG(x) = (fG(x : µ, σ2))
1
2 , x ∈ R. (19)

Previously, we have stated that the mean-based uncer-

tainty relation is saturated by quantum wave functions

whose position distributions are Gaussian. However, this

is not true if one considers the semi-interquartile range as

the measure of dispersion. The first and third quartiles

for both position and momentum distributions can be ob-

tained analytically in this case. Indeed, it is possible to

numerically check that the quartiles for the position dis-

tribution are given by Qx
1,G = µ − 0.674σ and Qx

3,G =

µ + 0.674σ, so that the corresponding semi-interquartile

range is 0.674σ. And with some algebra, the momentum
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distribution function, |φG(p)|2, yields a semi-interquartile

range of 0.337~
σ . Therefore, the median-based quantum un-

certainty product, ∆̃x∆̃p, for a quantum wave function,

whose position distribution is Gaussian with mean µ and

standard deviation σ, equals ~

4.396 . Note that this is much

higher (precisely, 141 %) than the bound obtained for the

Cauchy-Lorentz position distributions.

3.3. Student’s t-distribution

The probability distribution function of the Student’s

t-distribution, due to F. R. Helmert, J. Lüroth, “Student”,

and others, is given by

fS(a : n) =
Γ(n+1

2 )√
nπ Γ(n2 )

(
1 +

a2

n

)−n+1
2

, a ∈ R, (20)

where n, which is a distribution parameter, is referred to

as the number of degrees of freedom. Here, we are inter-

ested in the case when the t distribution has two degrees

of freedom, i.e. n = 2. In this case, while the mean ex-

ists (and is vanishing), the standard deviation diverges to

infinity.

Consider again a quantum system in one dimension

whose wave function in coordinate representation is given

by

ψS(x) = (fS(x : 2))
1
2 =

1

(2 + x2)3/4
, x ∈ R. (21)

The first and third quartiles corresponding to the position

distribution can be obtained analytically, and are given

by Qx
1,S = −

√
2
3 and Qx

3,S =
√

2
3 , so that the semi-

interquartile range equals
√

2
3 . Let us now focus on the

momentum space wave function, φS(p) for n = 2. We nu-

merically find the quartiles corresponding to the momen-

tum probability distribution by again utilizing the same

methods as for the Cauchy-Lorentz distribution, to obtain

Qp
1,S = −0.161~ and Qp

3,S = 0.161~ (correct to 3 deci-

mal figures), so that the corresponding semi-interquartile

range is 0.161~. Therefore, the median-based quantum

uncertainty product, ∆̃x∆̃p, for the quantum wave func-

tion with the Student’s t distribution (for two degrees of

freedom) as the position probability distribution, equals

0.131~, i.e., ~

7.63 . The Student’s t distribution is therefore

somewhat midway between Cauchy-Lorentz and Gaussian

distributions with respect to the bound on the median-

based uncertainty product.

4. Ordering of states with respect to distance from

minimum uncertainty state

We have already obtained several examples of probabil-

ity distributions which are non-Gaussian and yet provide

lower median-based quantum uncertainty products than

Gaussian states. It may seem that the Gaussian distribu-

tion still provides the minimum uncertainty state among

distributions having finite mean and variance. To investi-

gate this question, we consider the Student’s t distribution

with three degrees of freedom, i.e., n = 3, which has a finite

mean and a finite variance. Consider therefore a quantum

particle moving in one dimension with the wave function

in coordinate representation being given by

ψS′(x) = (fS(x : 3))
1
2 =

√
6
√
3√

3(3 + x2)
, x ∈ R (22)

The first quartile, Qx
1,S′ , of the position distribution, is

given by sin θ+θ+ π
2 = 0, where θ = 1

2 tan
−1 Qx

1,S′√
3
, leading

to Qx
1,S′ = −0.765, correct to three significant figures. By

symmetry, Qx
3,S′ = 0.765, so that the semi-interquartile

range is 0.765. In the momentum space, we have found

the quartiles numerically. They are Qp
1,S′ = −0.200~ and

Qp
3,S′ = 0.200~ (correct to 3 decimal figures), so that the

corresponding semi-interquartile range is 0.200~ . There-

fore, for n = 3, the median-based quantum uncertainty

product, ∆̃x∆̃p, is equal to 0.153~ , i.e., ~

6.54 . The Stu-

dent’s t distribution with three degrees of freedom is there-

fore a non-Gaussian distribution with finite mean and fi-

nite variance, and yet better off in the race for the mini-

mum uncertainty state than the Gaussian. This therefore

implies that the ordering of states with respect to distance

from the minimum uncertainty state is altered in the case
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of the median-based uncertainty relation, in comparison

to the mean-based one.

The F distribution, due to R. Fisher and G. A. Snedecor,

does not have finite mean and variance for the degrees of

freedom d1 = 5 and d2 = 2, and is a probability distribu-

tion that is asymmetric around its median. For a quantum

particle moving in one dimension and whose wave function

is the square root of such an F distribution, the median-

based uncertainty product provides a value much higher

than that of the Gaussian distributions.

5. Completeness of polynomials and uncertainty

relation

We now invoke the completeness [43] of Hermite poly-

nomials in L2(−∞,+∞) to determine the minimum un-

certainty state among quantum states corresponding to

systems of a single particle moving in one dimension. We

Haar uniformly generate such functions numerically, ob-

taining convergence by considering polynomials until de-

gree 8, and find that the median-based uncertainty relation

can be expressed as ∆̃x∆̃p ≥ ~

5.88 . The minimal state is

not Gaussian, as all Gaussian states provide a value of

~

4.396 for the median-based uncertainty product. This is to

be compared with the mean-based quantum uncertainty

product (see relation (5), where r = 2), which is saturated

by the Gaussian position distributions. Note that the nu-

merical search have disregarded the Cauchy-Lorentz and

Student’s t distributions, possibly relegating them to some

zero-measure sets, as both provide a lower minimum for

the median-based uncertainty product. Therefore, among

the distributions considered in this paper, we obtain

∆̃x∆̃p ≥ ~

r̃
, (23)

where r̃ = 10.6.

Physical quantities like entropy and entanglement [44]

are extensive properties of a system, and typically scale

with the size of the system. Therefore they diverge when

one considers Haar uniform generation of states in the en-

tire state space. It is crucially important to analyze such

extensive physical quantities under physically motivated

resource constraints, like those on energy [45, 46, 47, 48,

49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. In this pa-

per, we have generated superpositions of Hermite polyno-

mials Haar uniformly, and find that the product of semi-

interquartile ranges of the position and momentum con-

verges with increasing degree of the Hermite polynomials.

Similar convergence is seen for the product of variances

of position and momentum, which we have also checked

within the scenario of numerical Haar uniform generation

of Hermite polynomials of increasing degrees (and found

that considering Hermite polynomials until degree 5 pro-

vides convergence to 1/2 up to 6 decimal points in units of

~). Such products of spreads are therefore intensive phys-

ical quantities, and even though an energy-like constraint

is not absolutely necessary in these cases, it is certainly in-

teresting to analyze intensive quantities under a resource

constraint.

Although we have restricted ourselves in this paper to

pure quantum states of a system in one dimension, the

considerations can be extended to mixed states and higher

dimensions.

Additionally, it is important to mention here that the

considerations can be taken over to quantum systems with

discrete degrees of freedom. However, since spreads of ob-

servables in discrete systems are always finite, it is nat-

ural to consider sums of spreads (or squares thereof) for

analyzing uncertainty relations in such systems. As an ex-

ample, let us consider the two observables, σx and σy , the

Pauli matrices of a spin-1/2 system. We now show that for

an arbitrary quantum spin-1/2 state |ψ〉, ∆̃σx
2
+ ∆̃σy

2
6=

0. Clearly, ∆̃σx and ∆̃σy can be either 0 or 1. There-

fore, the sum of their squares can only be among 0, 1, 2.

We, however, show that quantum mechanics dictates that

∆̃σx
2
+ ∆̃σy

2
≥ 1. To prove this, let us assume that

∆̃σx = 0, which implies that both the first and the third
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quartiles are equal to the +1 eigenvalue of σx or both are

equal to the −1 eigenvalue of the same. In such a case,

the state |ψ〉 can be expressed as

|ψ〉 = √
p | − x〉+ eiθ

√
1− p |+ x〉, (24)

with the condition 3/4 < p ≤ 1. θ is a real number in

[0, 2π), and | ± x〉 are the eigenstates of σx. Now,

|〈±y|ψ〉|2 =
1

2

[
1± 2

√
p(1− p) sin θ

]
, (25)

where |± y〉 = 1√
2
(|0〉± i|1〉) are the eigenstates of σy. For

∆̃σy to be zero, we must have either of |〈±y|ψ〉|2 greater

than 3/4, and the latter is disallowed, because p > 3/4.

This shows that if ∆̃σx = 0, then we must have ∆̃σy 6= 0,

for arbitrary quantum states of a qubit. A similar argu-

ment holds with the roles of σx and σy reversed, implying

that ∆̃σx
2
+ ∆̃σy

2
≥ 1.

6. Conclusions

In this paper, we conceptualized a quantum uncer-

tainty relation for arbitrary quantum states that has a

wider applicability than the traditional one. The tradi-

tional one is based on the concept of the mean – it is a

bound on a product of standard deviations, a key role in

whose definition is played by the mean. By contrast, the

uncertainty relation presented here is based on the concept

of the median, and its corresponding dispersion quantity,

namely the semi-interquartile range. There are distinct sit-

uations where the mean of a distribution does not provide

the best representative value of the distribution, including

situations where the mean or the standard deviation does

not exist.

In the course of working with the mean, it was realized

that quantum wave functions whose position distributions

are Gaussian, are the minimum-uncertainty states. The

picture changes when we deal with the median, and the

Cauchy-Lorentz position distributions seem to be the func-

tions of choice for being the same. Moreover, the ordering

of quantum states with respect to their distance from the

minimum uncertainty state is also drastically altered by

moving over to a measure of spread with universal appli-

cability.
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