
ar
X

iv
:1

81
2.

05
15

8v
2 

 [
qu

an
t-

ph
] 

 2
6 

M
ar

 2
01

9

Interference-induced localization in quantum random walk on clean cyclic graph
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We quantitatively differentiate between the spreads of discrete-time quantum and classical random
walks on a cyclic graph. Due to the closed nature of any cyclic graph, there is additional “collision”-
like interference in the quantum random walk along with the usual interference in any such walk on
any graph, closed or otherwise. We find that the quantum walker remains localized in comparison
to the classical one, even in the absence of disorder, a phenomenon that is potentially attributable
to the additional interference in the quantum case. This is to be contrasted with the situation
on open graphs, where the quantum walker, being effectively denied the collision-like interference,
garners a much higher spread than its classical counterpart. We use Shannon entropy of the position
probability distribution to quantify spread of the walker in both quantum and classical cases. We
find that for a given number of vertices on a cyclic graph, the entropy with respect to number of
steps for the quantum walker saturates, on average, to a value lower than that for the corresponding
classical one. We also analyze variations of the entropies with respect to system size, and look at
the corresponding asymptotic growth rates.

I. INTRODUCTION

Quantum interference is one of the key aspects of quan-
tum mechanics that leads to a plethora of interesting
phenomena, such as interference pattern in double-slit
experiments and Anderson localization of electron wave
packets [1, 2]. It also leads to the qualitatively differ-
ent behavior of quantum random walks (QRWs), first
introduced by Aharonov, Davidovich, and Zagury [3] in
1993, from their classical counterparts - the classical ran-
dom walks (CRWs) [4]. Superposition over walker-coin
states where the walker has pursued different paths as
instructed by the different coin states, and the result-
ing entanglement [5] between the coin and position de-
grees of freedom in a discrete-time QRW are at the root
of its differences with a walker in the classical case. In
particular, there is inherent interference between the left
and the right propagating components in the dynamics
of a QRW on a line, and the clockwise and anti-clockwise
components on a circle (cyclic graph). Based on the cho-
sen initial conditions or by varying the coin parameters,
interference may affect the symmetry of the probabil-
ity distribution, of the walker on both the line and the
cyclic graph, in position space [6–9]. QRWs have been
shown to be useful in realizing quantum memory [10], in
search algorithms [11–14] (see also [15–17]), for simulat-
ing dynamics of physical systems [18–20], etc. Success-
ful experimental implementation of QRWs have been re-
ported in various physical systems, such as optical Galton
board [21], nuclear magnetic resonance systems [22, 23],
atoms trapped in an optical lattice [24], photons [25–30],
and trapped ions [31, 32]. Proposals for experiments in-
clude [33–35]. Introduction of disorder in the system,
e.g. by randomizing the “coin parameter” of a discrete-
time quantum random walk [36], or by introducing static
disorder in a continuous-time quantum random walk on
the glued trees graph [37], or by inserting other imperfec-
tions on graphs where the distances between the vertices
vary slightly from edge to edge [38] may lead to “local-
ization” of the wave packet in position space. See also

[39–43] in this regard. Notice that this is analogous to the
phenomenon of localization in condensed matter physics
[44].

For a discrete-time quantum random walk on a line,
the spread of the probability distribution, as quantified
by the standard deviation, scales linearly with the num-
ber of steps of the walker, referred to as “ballistic spread”.
The corresponding “speed” of the walker is only square-
root of the number of steps for a classical walker [6, 45]. It
is possible that for quantum and classical random walks
on a cyclic graph, the scaling behaviors with respect to
steps or system-size may hide interesting information.
The long-time properties of the time-averaged probabil-
ity distributions in both the cases have already been stud-
ied [46–48]. Quantum walks on a cyclic graph having the
additional feature of “one-step memory” was investigated
in [49]. By allowing the coin operation to change at every
step according to a sequence or by random means, the
associated probability distribution is seen to converge to
a uniform distribution over the nodes of a cyclic graph
[50]. In another work, the periodicity of the evolution
matrix of a Szegedy walk, a type of discrete-time quan-
tum walk, on various types of finite graphs have been dis-
cussed [51]. A special feature of QRW on a cyclic graph
is that it “mixes” almost quadratically faster than the
corresponding classical case [52]. QRWs on cyclic graphs
have been implemented experimentally, and further pro-
posals thereof have also been given. In an experimental
implementation using an arrangement of linear optical
elements, clockwise and anti-clockwise cyclic walks have
been realized [53]. In another experimental implementa-
tion, continuous-time quantum walks on cyclic graphs us-
ing quantum circuits have been realized [54]. Travaglione
et al. have proposed a scheme to implement QRW on a
line and on a circle in an ion trap quantum computer
[55]. Another proposal for experimental implementation
of QRW on a cyclic graph, using a quantum quincunx,
which may be realized with cavity quantum electrody-
namics, is also known [56]. QRWs of non-interacting and
interacting electrons on a cyclic graph, with the graph
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being formed of semiconductor quantum dots, have been
studied in [57].
In this paper, we analyze the behaviors of quantum and

classical random walks on cyclic graphs. We find that the
“collision”-like interference effects on the cyclic lattice,
occurring due to the topology of the lattice, leads to a
“localization” behavior of the wave packet in a Hadamard
quantum walk. The localization behaviors, both with re-
spect to number of steps and number of sites, are inferred
by analyzing the patterns of Shannon entropies of the
corresponding position probability distributions. This is
in contrast to the well-studied localization induced by
some form of disorder introduced in the system. We
then show that the behavior is generic, in that it ap-
pears also for non-Hadamard walks, and that it is inde-
pendent of the initial state. Moreover, we find that the
scaling exponents of the entropies with respect to system
size, when the number of steps is sufficiently large, are
different for classical and quantum random walks. Fur-
thermore, the ratio between these entropies again implies
that the quantum system is localized with respect to the
classical one. Finally, we introduce a distance measure
using the l1-norm, for measuring the closeness of two dis-
tributions, specifically, the time series data of Shannon
entropies for a QRW and a CRW on cyclic graphs of in-
creasing size. Using this measure, we quantify the differ-
ence in the spreads of QRW and CRW on cyclic lattices
of different size.
The paper is structured as follows. Section II intro-

duces the general aspects of a CRW on a cyclic graph
and its operational formalism. Section III introduces the
broad facets of a QRW on a cyclic graph, the operational
formalism, and describes the localization behavior with
respect to steps in Hadamard and non-Hadamard quan-
tum walks. In section IV, we study the behavior of CRW
and QRW on cyclic graphs with respect to the system
size. Section V analyzes closeness of the two time se-
ries data distributions by inspecting the corresponding
l1-norm. We present a summary in Section VI.

II. CLASSICAL RANDOM WALKS

We begin this section by giving a short introduction to
CRW on the infinite line. We next introduce the cyclic
graph and discuss about the features of the probability
distribution of the walk after a large number of steps. We
also briefly indicate the mathematical formalism that is
used to deal with CRWs on the cyclic graph.
The mathematical setting for random walks are graphs

G(V,E) with a vertex set V and an edge set E. Classical
random walks consist of a walker localized at a given ver-
tex v who moves by means of randomly choosing one of
the two directed edges, for example, of an infinite line or a
cyclic graph, with probabilities p and q (p+ q = 1) at ev-
ery step. We are restricting ourselves to situations where
there are exactly two edges emanating from every vertex,
and the graph is connected. This motion is dictated by

the result of toss of a coin which could be unbiased or
not. Let us however assume that the coin is unbiased, so
that p = q = 1/2. A natural question of interest is the
following: What is the pattern of probability distribution
of the walker over all the vertices after a given number of
coin tosses? It turns out that for relatively small num-
ber of coin tosses or steps, the binomial distribution, a
discrete probability distribution, characterizes the proba-
bility of finding the walker at each vertex. In the limit of
a large number of steps, a Gaussian distribution provides
the vertex-wise probabilities.
We mention here that a cyclic graph is one which is

like a necklace with the beads representing vertices and
the strings between the beads, the edges. In other words,
a cyclic graph consists of a single cycle. We note that the
line and the cyclic graphs are both connected as well as
two-regular, assuming the line to be infinite. A “bipar-
tite” graph consists of a graph in which the vertices can
be colored with two different colors, and where each edge
connects vertices of different colors. In a non-bipartite
graph, such a coloring scheme is not possible. For a cyclic
graph with an even number of sites (= N1) - a bipartite
graph - the probability for the walker to be at the (2i)th

site is 2/N1, and the same for the (2i + 1)th site is van-
ishing, for i = 0, 1, ...N1− 1, after a large even number of
steps. The roles of the even and odd sites get reversed if
the number of steps is a large odd number. For a cyclic
graph with odd number of sites (= N2) - a non-bipartite
graph - in the limit of large number of steps, we get a
uniform probability distribution with all the sites having
a probability of 1/N2. This is the distinction between
CRWs on a bipartite and a non-bipartite cyclic graph.
Let us now discuss the action of the CRW on a cyclic

graph in a bit more detail. It consists of a classical walker
moving on sites x ∈ {0, 1, ...N−1}, based on the outcome
of a coin toss. The jump is only to the adjacent vertices.
Here the random variable is the position of the walker,
whose values are determined by the values of another
random variable, the coin toss. We associate a “proba-
bility vector” corresponding to the site-wise probability
distribution at every step. Now we look at the discrete-
step evolution of the probability vector facilitated by a
transition matrix (stochastic matrix). For a cyclic graph

with N sites ∈ V , the probability vector, ~P (n), will have
N elements. Here, n denotes the number of steps. Let
~P (n) = (P0(n), P1(n)...PN−1(n))

T ∈ R
N . The elements

of the transition matrix are given by

Tij =

{

1

2
if j is the nearest neighbor of i

0 otherwise,
(1)

where i, j ∈ {0, 1...N − 1}. From a given vertex i, the
walker randomly chooses to move along either of the two
edges to reach the nearest neighbors j with a uniform
probability of 1/2. This is because the degree of every
vertex of a cyclic graph is two and we are assuming an

unbiased coin. Note that Tij = Tji. ~P (n) is obtained by
the action of the transition matrix T : RN → R

N on the
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probability vector after n− 1 steps, ~P (n− 1) :

~P (n) = T ~P (n− 1). (2)

The elements of ~P (n) are given by

Pi(n) =
N−1
∑

j=0

TijPj(n− 1). (3)

III. INTERFERENCE IN QUANTUM RANDOM

WALK ON A CYCLIC GRAPH

In this section, we discuss about QRWs in general and
then move on to its features on a cyclic graph. We in-
vestigate the cases of symmetric and asymmetric initial
coin states for our analysis. The associated localization
is studied in some detail.
An initially localized wave packet of the walker evolves

as per the assigned local transition rules from a given ver-
tex through either of the two edges to the corresponding
two neighboring vertices based on the outcome of a coin
toss at every discrete step. This kind of discrete evolution
is facilitated by local action at the respective vertices and
modeled by a unitary operator without the conventional
Hamiltonian. We are interested in studying the global
properties of the walk, such as the spread, as quantified,
e.g., by standard deviation or Shannon entropy in posi-
tion space. In this paper, we will use the latter quantity
to measure the spread. It is defined as −

∑

i pi log2 pi, for
a probability distribution {pi}. We use logarithms of base
2 in all calculations of entropy, so that they are measured
in bits. For a discrete-time quantum walk (DTQW) on
a line, the vertex set V forms the position basis {|x〉: x
∈ Z} that spans the position Hilbert space, Hp. The two
basis states, |0〉c and |1〉c of the coin, which label the two
directed edges at any given vertex, span the coin Hilbert
space Hc. The unitary evolution of the walk at every
step is performed through a coin operation acting on the
coin basis states followed by a conditional shift operation
on the position basis states - conditioned on the states of
the coin. The coin operation is parametrized by a “coin
parameter” θ. We focus on the DTQW on a cyclic graph
for our study. We will henceforth be denoting DTQW as
QRW.
For a QRW on a cyclic graph, the dimension of the po-

sition Hilbert space, Hp, is fixed to N , the total number
of sites (vertices), and Hp = {|x〉 : x ∈ Z ∩ [0, N − 1]}.
Here, the basis states of the coin instruct whether the
next step of the walker will be in the clockwise or anti-
clockwise direction. On a line, a significant portion of
the quantum wave function - “significant” in terms of the
corresponding position probabilities - moves away from
the point of the initial position of the walker, and so, al-
though there is in principle room for interference between
the different parts of the significant portion, it does not
happen in a substantial way. The situation is completely
different in the case of the QRW on a cyclic graph, where

the different parts of the significant portion are forced to
“collide” (interfere) with each other due to the topology
of the graph, provided N is about the same order as n or
smaller than that, where n is the number of steps. This
is one of the reasons that makes the cyclic graph an in-
teresting class of graphs on which to study QRWs. For
a cyclic graph with an odd number of sites, N2, in the
limit of a large number of steps, the time-averaged proba-
bility distribution becomes a uniform distribution with a
uniform probability of 1/N2. In the case of an even num-
ber of sites, the time-averaged probability distribution is
not uniform. This is an interesting distinction between a
bipartite and a non-bipartite cyclic graph in a QRW.

We now study the QRW on a cycle in more detail, and
discuss the corresponding localization effects. To begin,
the “coin operator”, Ĉθ : Hc → Hc, is given by

Ĉθ = cos θ(|0〉 〈0|)c + sin θ(|0〉 〈1|)c
+ sin θ(|1〉 〈0|)c − cos θ(|1〉 〈1|)c, (4)

with θ ∈ (0, π
2
). We also consider the conditional shift

operator, Ŝx : Hc ⊗ Hp → Hc ⊗ Hp, which shifts the
position of the walker by a signed (i.e., directed) step
length ∆x = +1 if the coin is in the state |0〉c, and ∆x =
−1 if the same is in |1〉c. More precisely,

Ŝx =

N−1
∑

x=0

[|0〉c 〈0|c ⊗ |x+ 1 (mod N)〉p 〈x|p

+ |1〉c 〈1|c ⊗ |x− 1 (mod N)〉p 〈x|p] (5)

The state after n steps, |ψ(n)〉, is obtained by the action

of the unitary operator Û(θ) = Ŝx · (Ĉθ ⊗ I) : Hc⊗Hp →
Hc ⊗Hp on the state after n− 1 steps, |ψ(n− 1)〉 :

|ψ(n)〉 = Û(θ) |ψ(n − 1)〉 . (6)

The classical version of this equation is given in Eq. 2,
where the unitary is replaced by a transition matrix. Due
to the action of the unitary, the position and coin states
become entangled already after the first step of the walk,
and the general state of the walker after n steps, for fixed
number of sites N , takes the form

|ψ(n)〉 =
N−1
∑

x=0

[(ax(n) |0〉c + bx(n) |1〉c)⊗ |x〉p], (7)

where ax(n) , bx(n) are the probability amplitudes corre-
sponding to the clockwise and anti-clockwise directions.
From Eq. (7), the probability distribution over the sites
x after n steps of the walk is given by

P (x, n) = |ax(n)|2 + |bx(n)|2. (8)
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FIG. 1: Projection plot of the position probability distri-
bution of a Hadamard walk on a cycle with 10 sites. The
discrete probability distribution is plotted as a function
of sites and steps. A symmetric initial state of the coin
qubit is chosen. The components of the probability dis-
tribution, namely, the clockwise and the anti-clockwise
components “collide” after every few sites. See text for
precise definitions. The first few “collisions” are marked
on the horizontal axis with black dots. The regions in
shades of red indicate that the probability of finding the
walker is high. The vertical axis represents the site num-
bers, while the horizontal axis gives the number of steps,
and the applicate represents the probabilities. The ab-
scissa, ordinate, and applicate are dimensionless.

A. Hadamard walk on a cyclic graph

The “Hadamard” walk on a cyclic graph is the case
when the coin parameter θ = π

4
. The Hadamard coin

operator Ĥ is given in matrix form as

H =
1√
2

[

1 1
1 −1

]

(9)

in the {|0〉c , |1〉c} basis.

a. Symmetric initial coin state, enhanced interference

and the ensuing localization: We choose a symmetric

initial state for the coin, viz.
|0〉

c
±i|1〉

c√
2

. The sign in

front of i is unimportant for further calculations. We
begin the discussion for N = 10 and θ = π

4
, for differ-

ent numbers of steps. The joint initial state is taken to

be |ψ(0)〉 =
|0〉

c
±i|1〉

c√
2

⊗ |6〉p. The choice of the initial

state of the walker is of course arbitrary. The position
probability at the site 6 begins with unity at the initial
time, gradually diminishes with increase of the number
of steps, reaches a minimum (a local minimum at site

6 with respect to number of steps) and then again in-
creases to reach a maximum (a local maximum at site 6
with respect to number of steps) before diminishing once
more. Each such maximum is called a “meeting point”,
arguably of the clockwise and anti-clockwise components
of the joint state. The corresponding number of steps are
denoted by nmeet. Fig. 1 exhibits the symmetric site-wise
probability distribution for N = 10 and θ = π

4
, for dif-

ferent numbers of steps. The first few meeting points are
marked in black dots on the horizontal axis in the figure.
The first meeting happens after 16 steps of the walk, the
second meeting after 42 steps, and so on. Due to the os-
cillatory nature (with respect to number of steps) of the
entropy of the probability distribution P (x, n) for fixed

n, we take the average entropy, HQ
meet up to every nmeet

to measure the fluctuation in the probability distribution,
instead of considering the entropy itself:

HQ
meet(nmeet) =

1

[nmeet]

∑

n

N−1
∑

x=0

(−P (x, n) log
2
P (x, n)),

(10)
where the sum over n runs up to nmeet from just after
the previous meeting point, and where [nmeet] denotes
the number of steps in that interval between the meeting
points.

FIG. 2: Localization in quantum random walk in com-
parison to classical one, as inferred from step-wise en-
tropy, averaged over steps between consecutive meeting
points. From Fig. 1., the meeting points, nmeet, are
noted down. The average site-wise entropies between two

meeting points, as denoted by HQ
meet(nmeet), are plotted

on the vertical axis against nmeet on the horizontal axis.
These are represented as blue dots in the figure. The
classical case is represented as red crosses. The horizon-
tal axis is dimensionless, while the vertical one is in bits.

The plot of HQ
meet against nmeet, in Fig. 2, captures

an important feature of the interference-induced dynam-
ics in a QRW on a clean cyclic graph. The plot is done
up to a sufficiently large number of meeting points so
that no further appreciable change occurs in the value

of HQ
meet. The plot of the same quantity in the classical

case is denoted by HC
meet and depicted by red crosses

in Fig. 2. The associated probability distribution of
the CRW is shown in Fig. 3. HC

meet exhibits very lit-
tle fluctuations with the number of steps and saturates
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approximately around the value of 2.32 bits. It may be
noted here that the classical walker does not encounter a
“collision” between the anti-clockwisely and clockwisely
traversing components. The corresponding plot, for a
QRW (blue dots in Fig. 2), displays significantly higher
fluctuations (than in the classical case) and saturates ap-
proximately around the value of 2 bits, and being lower
than the corresponding classical value of 2.32 bits, indi-
cates a localization behavior.

FIG. 3: Position probability distribution of a classical
random walk on a cycle with 10 sites and with an un-
biased classical coin. This is the classical counterpart of
the quantum case in Fig. 1. All other considerations are
as in Fig. 1.

We now compute the entropies themselves (instead of
the average entropies), in the classical and the quantum
cases, of the position probability distributions, for every
n up to a value of n after which we do not envisage any
further significant change of behavior, for a fixed num-
ber of sites N . We perform the analysis on cyclic graphs
for N = 10, 20, 30, 500, 600, and 700 (see Figs. 4 and
5). We refer to these entropies as “site-wise” entropies to

differentiate them from the “average entropies”, HQ
meet.

We find that irrespective and in spite of the fluctuations
present, the entropy with respect to number of steps for
the QRW saturates to a value that is lower than the cor-
responding value in the classical case, for cyclic graphs of
various sizes, indicating a certain amount of localization
in the quantum case. We also search for the asymptotic
behavior of the Shannon entropy by calculating its value
for cyclic graphs of size N as high as 1000, and observe
that the entropy on a cyclic graph of a given size for the
QRW still saturates to the same value as inferred from
Figs. 4 (a) and 5 (a). We notice that as we increase
the number of sites, the fluctuations in the entropy with
number of steps in the quantum case is reduced.

(a) (b)

FIG. 4: Comparison between classical and quantum random walks with respect to their variation of step-wise entropy
of position probability distribution. The quantum case is presented in panel (a), while panel (b) depicts the classical
case. For a given system size N , we plot the entropy of {P (x, n)}x for every n up to a sufficiently large number of
steps in panel (a). The corresponding classical case is plotted in panel (b). The maximal number of steps is so chosen
that no further appreciable change in entropy occurs for higher number of steps. The plot in the classical case does
not fluctuate after having reached its steady value. There are however significant fluctuations in the quantum case.
These fluctuations in the quantum case gets diminished for larger N (see Fig. 5 (a)). For any N , the steady-state
value in the classical case is higher than the average (over steps) in the quantum walk.



6

(a) (b)

FIG. 5: The description is the same as in Fig. 4 except that cyclic graphs of site numbers N = 500 (in blue), 600
(in red), and 700 (in black) are considered. Just like in Fig. 4, panels (a) and (b) are respectively for the quantum
and classical cases. In panel (b), we needed to consider a larger number of steps to obtain convergence of the entropy
with respect to number of steps.

b. The case of asymmetric initial coin states: The
study performed until now was based on a symmetric
initial state of the coin. Let us now check whether the
trends of the probability distribution of QRW on a cyclic
graph are independent of this choice. Towards this aim,
we now choose an asymmetric initial coin state, viz.
cos(Θ/2)|0〉c + eiΦ sin(Θ/2)|1〉c. As an example, let us
begin with the case when the joint initial state of the coin-
walker system is |ψ(0)〉 = |0〉c |25〉p on a cyclic graph with
50 sites. Fig. 6 shows the variation of site-wise entropy
with respect to number of steps for this case. The inset
of the same figure provides the behavior for a different
pair of Θ and Φ. Comparing Fig. 6 with Figs. 4 and 5,
we conclude that the global effect still remains the same,
i.e., the quantum walker still shows the localization be-
havior. We have checked that broadly the same behavior
is obtained for other values of Θ and Φ also. This shows
that regardless of whether the coin state is symmetric,
localization of the wavepacket occurs. This implies, once
again, that localization in quantum random walks on the
cyclic graph is a consequence of the interference (“colli-
sion”) between the clockwise and anti-clockwise compo-
nents of the coin-walker quantum wavefunction.

FIG. 6: Variation of site-wise Shannon entropy with
number of steps for a Hadamard walk on a cycle with 50
sites for an asymmetric initial coin state. The variation is
seen up to 200 steps. The chosen initial state, in the main
figure, is |ψ(0)〉 = |0〉c |25〉p. The overall behavior is very
similar to that of the corresponding case with a symmet-
ric initial coin state. The behavior remains similar in the
inset, where the initial state of the coin-walker joint sys-
tem is chosen to be (cosΘ|0〉c + eiΦ sinΘ|1〉c) |25〉p with

Θ = π/3, Φ = π/2. This shows that the symmetry of the
initial coin state has little to no effect on the localiza-
tion behavior. The vertical axes represent the Shannon
entropy (in bits) and the horizontal axes represent the
number of steps (dimensionless).
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B. Non-Hadamard walks

Let us now examine the variation of site-wise entropy
with number of steps for four non-Hadamard walks on a
cyclic graph with 50 sites, namely for θ = π

12
, π

6
, π

3
and

5π
12
. The Hadamard walk is for θ = π

4
, and was the object

of discussion in the preceding subsection. The aim of such
investigation is to identify the effect of θ (in Ĉθ) on the
overall behavior of the site-wise entropies with increase
in number of steps. The initial state of the coin is chosen
to be 1√

2
(|0〉 ± i|1〉). As depicted in Fig. 7, we find

that the site-wise entropy still saturates, approximately
around the value of 4 bits, with the number of steps, like
in the Hadamard case. This shows that using a biased
coin operation at every step of the quantum walk has
no bearing on the overall average variation of site-wise
entropy. However, we observe that for lower values of θ,
the fluctuation in the entropy with number of steps is
relatively more than that for higher values.

(a) (b)

(c) (d)

FIG. 7: Variation of site-wise Shannon entropy with the
number of steps for non-Hadamard walks on a cycle up
to 200 steps. We set the number of sites on the cycle as
50 and notice that for four different values of the coin
parameter namely, (a) θ = π

12
, (b) π

6
, (c) π

3
, and (d) 5π

12
,

the entropies converge to almost a fixed value. Therefore,
even for non-Hadamard walks, the localization behavior
persists and the overall behavior is roughly the same as
for Hadamard walks. Note that on increasing the value
of θ from π

12
to 5π

12
, the fluctuations seen in the entropy

keeps decreasing. The vertical axis represents the Shan-
non entropy (in bits) and the horizontal axis represents
the number of steps (dimensionless).

IV. BEHAVIOR WITH RESPECT TO

SYSTEM-SIZE

Until now, we have mainly been looking at the behavior
of site-wise entropy as a function of the number of steps
for a given number of sites. We now do a role reversal
and study the patterns of site-wise entropy with respect
to system size for quantum and classical random walks on
cyclic graphs. After fitting suitable functions to the plots,
we find out the limiting behavior of the ratio of the two
functions as the system size grows to infinity. We find
this ratio for three different functions in the quantum
case since all of them have small and comparable least
square errors in their respective fits.

FIG. 8: Variations of site-wise Shannon entropy, aver-
aged over steps in the “saturation” region, with respect
to system size for quantum and classical walks on a cyclic
graph. The fitted curve in the quantum case is given by
Eq. (11) for ν = 2. For the classical walker, Eq. 12
is used. The vertical axis represents Shannon entropy
(in bits) and the horizontal axis represents system size
(dimensionless).

Site-wise entropy with respect to system size for a QRW

on a cyclic graph: We have already observed that in gen-
eral, the site-wise entropy for a fixed number of sites reg-
isters a steep monotonic increase up to a certain number
of steps, after which saturation to a certain extent oc-
curs. See Figs. 4 (a) and 5 (a). Due to the fact that
significant fluctuations may be present even in this “sat-
urated” regime, a characteristic “converged” value can
be obtained, for a given system-size (number of sites),
only by performing an average, over steps, in this satu-
rated regime. We present these converged values in Fig.
8 against system size for a quantum random walk on a
cyclic graph, with the initial state of the coin being again
chosen to be 1√

2
(|0〉±i|1〉). For a system size ofN , we de-

note the converged site-wise Shannon entropy byHQ(N).
We fit the function

α log
2
(1 + βNν), (11)

for ν = 1, 2, 3 to the obtained values of HQ(N) against
N . For each ν, we use the method of least squares to
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find α and β. We find that α = 0.6810, β = 0.3583 for
ν = 1, α = 0.3305, β = 0.1765 for ν = 2, and α = 0.2198,
β = 0.0767 for ν = 3. The respective least squares errors
are 0.0574, 0.0352 and 0.0338.
Site-wise entropy with respect to system size for a CRW

on a cyclic graph: We perform a parallel set of calcula-
tions for the classical walker. Again, the site-wise entropy
for a given system size has a steep monotonic increase up
to a certain number of steps, after which it saturates.
Unlike in the quantum case, there are no fluctuations in
the saturated region. See Figs. 4 (b) and 5 (b). The
corresponding saturated values, HC(N), behaves as

HC(N) = log
2

(N

2

)

. (12)

Quantum vs. classical in the large system-size limit:

The ratio HC(N)/HQ(N) in the large N limit is 1/(αν),
so that it is 1.4684, 1.5129, and 1.5165, respectively for
ν = 1, 2, and 3. The ratio of the entropies in classical
to the quantum case is greater than one, which indicates
that the CRW spreads out more compared to the QRW
for a given system size. This characterizes the spreading
behavior in both the scenarios implying a slowdown or
“localization” in the quantum case. We also note that
the two curves corresponding, respectively, to the classi-
cal and quantum walkers, never meet for any (non-zero)
value of N .

V. DISTANCE BETWEEN THE SPREADS OF

CLASSICAL AND QUANTUM WALKERS

In this section, we compare the spread of the probabil-
ity distribution of the walker’s position in a QRW with
that of a CRW on a cyclic graph using the l1- norm.

FIG. 9: Distance between the spreads of classical and
quantum walkers. We plot here the variation of the l1-
norm between the spreads as we increase the number of
sites on a cyclic graph up to 60. The two populations
namely, the time series data of entropies of a QRW and
a CRW on a cyclic graph with a given number of sites
are generated. The number of steps chosen while eval-
uating the distance is 200. The vertical axis represents
the l1- norm (in bits) and the horizontal axis represents
the system size (dimensionless).

We start by choosing the symmetric initial states,

|ψ(0)〉 =
|0〉

c
±i|1〉

c√
2

⊗ |0〉p for the quantum walker. Our

aim is to use a measure that quantitatively captures the
difference between the spreads of a QRW and a CRW
on a cyclic graph. We use the l1-norm for comparing
the variation of Shannon entropies with respect to the
number of steps. For a given system size, the site-wise
Shannon entropies for increasing number of steps is sim-
ilar to a time series data, where the steps represent time.
We consider the time series data for the classical and the
quantum cases. The distance between two time series
data sets, a = {ai} and b = {bi}, each of length N, can
be quantified, by using the l1-norm, as

Dl1(a, b) =
1

N

∑

i

|ai − bi|. (13)

Fig. 9 depicts the behavior of the distance, based on
the l1-norm, between the time series data sets for the
classical and quantum cases, with respect to the number
of sites on a cyclic graph. It is worthwhile to note that the
distance measure satisfies the usual properties of being a
metric [58].

VI. DISCUSSION

To conclude, we investigated the spreading behavior
of a quantum random walker and compared the situa-
tion with that for a classical one, on a cyclic graph. The
walk of a quantum entity dictated by a quantum coin is
distinct from that of a classical one commanded by a clas-
sical coin, due to the superposition of different positions
of the quantum walker and due to entanglement between
the quantum walker and the quantum coin during the
evolution. For the quantum walker on the infinite line,
e.g. when using a symmetric coin, the position probabil-
ity distribution dissociates into a bi-modal distribution,
and the spread of the position is qualitatively higher than
the corresponding classical walker on the same graph.
Replacing the infinite line by a cyclic graph, there is a
role reversal between the quantum and classical walkers
with respect to their spreads. This shift in behavior of
the quantum walker for a switching of the lattice is po-
tentially attributable to an additional interference in the
quantum walker wavefunction. For the initial few steps,
the quantum walkers on the infinite line and the cyclic
graph are no different. The situation changes when the
number of steps is large enough, and we see that the ini-
tial bi-modal position probability distributions have the
possibility to “collide” in the case of a cyclic graph. A
single classical walker on any graph does not have this
option. A quantum walker on an infinite line, in prin-
ciple, has this option, but the dynamics of the system
does not let this happen. A quantum walker on a cyclic
graph, however, is made to collide by the very dynam-
ics due to the topology of the graph. The classical ran-
dom walker keeps spreading on a cycle and reaches a
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steady state where the time-averaged probability distri-
bution becomes a uniform distribution over all the sites of
the cyclic graph. The quantum walker on a cyclic graph
however has a lesser spread, and we refer to this as an
instance of “localization”. The spreads are captured by
the Shannon entropies of the position probability distri-
butions of the walkers. While we began with the case
of the quantum coin operator being so chosen that the
corresponding quantum walk is the “Hadamard” walk,
we have later on also altered the coin parameter (to con-
sider non-Hadamard walks), which introduces different
degrees of interference in the dynamics, and have an-
alyzed the consequent nature of localization. We found

that for all the different values of the coin parameter con-
sidered, localization persists albeit with varying degrees
of fluctuations in the entropy with respect to the number
of steps. We saw that the symmetry of the initial coin
state has minimal effect on the spreading behavior but
has significant effect on the symmetry of the probabil-
ity distribution. Subsequently, we compared the quan-
tum and classical walkers by considering the behaviors
of their entropies with respect to system size. Finally, we
have used the l1-norm as a distance measure between the
variations of entropies with respect to number of steps in
the quantum and the classical scenarios.
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