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We propose a trade-off between the Lipschitz constants of the position and momentum probabil-
ity distributions for arbitrary quantum states. We refer to the trade-off as a quantum reciprocity
relation. The Lipschitz constant of a function may be considered to quantify the extent of fluctua-
tions of that function, and is in general independent of its spread. The spreads of the position and
momentum distributions are used to obtain the celebrated Heisenberg quantum uncertainty rela-
tions. We find that the product of the Lipschitz constants of position and momentum probability
distributions is bounded below by a number that is of the order of the inverse square of the Planck’s
constant.

I. INTRODUCTION

[Please also see the response to comment on this
manuscript, appended at the end of the manuscript.]

Uncertainty relations are considered to be among the
pillars of quantum mechanics, both in terms of under-
standing and utility of the latter [1–20]. And so, while
they are useful in finding the border between classical
and quantum worlds, they are also effective to provide
security in quantum cryptography [21–23]. One of the
most well-known among these relations is the Heisenberg
uncertainty relation [1, 2] between position and momen-
tum distributions of an arbitrary quantum state. In its
usual form, it is conveyed as a constraint on the prod-
uct of spreads, quantified by standard deviations, of the
position and momentum probability distributions of an
arbitrary quantum system, say, moving on a line. As a
consequence, if the profile of the position probability dis-
tribution of a quantum system is very sharp (i.e., of low
spread), the momentum distribution is very broad (i.e.,
of high spread), and vice-versa. This is in sharp contrast
to the case of a classical point particle, which can have
very well-defined values of both position and momentum.

We address here a complementary question: What if
the position probability distribution of a quantum system
moving on a line is devoid of any features (fluctuations),
i.e., it is flat (uniform distribution)? As can be eas-
ily seen, the corresponding momentum probability dis-
tribution, obtained through the Fourier transform [24],
has a single large spike (similar to a Dirac delta func-
tion [25, 26]). It therefore appears that the fluctuations
of position and momentum distributions satisfy a trade-
off, which we term as a “quantum reciprocity relation”.
We quantify the fluctuation of a probability distribu-
tion by the square root of its Lipschitz constant [27–
31], assuming that the same exists. Uniform (probabil-
ity) distribution on an infinite line and the Dirac delta
function are not mathematically well-defined. Approxi-
mating them by Gaussian probability distributions, we
find that the product of the fluctuations for position
and momentum distributions equals (1/~)

√
2/eπ. We

find by examining several examples, including the excited
states of the quantum one-dimensional simple harmonic
oscillator, and quantum states corresponding to Cauchy-
Lorentz and Student’s t as position distributions, that
this Gaussian lower bound is not violated. Haar uniform
generation over the space of Hermite polynomials how-
ever provide a numerical lower bound of the product of
the fluctuations approximating 0.3/~. The classical limit
of the reciprocity in terms of the Lipschitz constants is
quite unlike the same of the Heisenberg uncertainty in
terms of spreads. In particular, here, the classical case
falls within the quantum mechanically accessible region.
We emphasize that the bound that is being proposed has
not yet been proven analytically, and is being currently
based on numerics and specific examples.

We arrange the paper in the following way. In Sec. II,
we provide a brief recapitulation of Lipschitz continuous
functions, and the corresponding Lipschitz constants. In
Sec. III, we recount a method of evaluating the Lipschitz
constant for differentiable functions. A discussion on ev-
idence for a non-zero lower bound of the product of fluc-
tuations of Lipschitz constants is presented in Sec. IV.
The case of eigenstates of the simple harmonic oscillator
is considered in Sec. V. In Sec. VI, we consider quantum
systems on the line, for which the position distributions
are Cauchy-Lorentz or Student’s t-distributions. Next,
in Sec. VII, we use the completeness of Hermite poly-
nomials on the space of square-integrable functions to
determine the minimum-reciprocity state. In Sec. VIII,
we try to interpret the reciprocity relation, and compare
it with the usual Heisenberg uncertainty relation. It also
contains a discussion on the classical limit of the pro-
posed reciprocity relation. A conclusion is presented in
Section IX.

II. LIPSCHITZ CONTINUITY AND LIPSCHITZ
CONSTANT

A mapping f : D → C from domain D (⊆ Rn) into
the set of complex numbers C is said to be Lipschitz
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continuous if there exists a positive real constant η such
that

|f(x1)− f(x2)| ≤ η|x1 − x2|, ∀ x1, x2 ∈ D, (1)

where the modulus on the right-hand-side of inequality
(1) denotes the Euclidean norm of its argument. An im-
portant point to note is that while η can depend on the
domain, D, it is independent of x1 and x2. Lipschitz con-
tinuous functions are of course continuous functions, but
may not be differentiable. We refer to the minimal η that
satisfies inequality (1) as the Lipschitz constant (LC) of
f in D. The Lipschitz continuity and the Lipschitz con-
stant are designed to account for, and measure, changes
of function values relative to changes in the independent
variables in the entire domain D. The Lipschitz constant
is certainly dependent on the function f , and varies from
being small for one function to large for another. If η is
small, then f(x) can change only a little, with a small
change of x, while if η is large, then f(x) may have a
large variation for only a small change of x. Along with
cases for bounded domains, we will also be interested in
cases where D is unbounded. In particular, for quantum
systems moving in one dimension, we are interested in
the functions f : [x1, x2] → C as well as the functions
f : R→ C.

III. THE METHODOLOGY

We begin here by briefly recapitulating a procedure to
find the Lipschitz constant for any differentiable function
f(x). For this purpose, we consider the mean value the-
orem [31], which states that if f(x) is defined and con-
tinuous in the closed interval [x1, x2] and differentiable
in the open interval (x1, x2), then there is at least one
number z in (x1, x2) such that

(f(x2)− f(x1))/(x2 − x1) = f ′(z). (2)

The supremum of |f ′(z)| in (x1, x2) will be the Lipschitz
constant for f in [x1, x2]. Note however that this method
is certainly not the only method for evaluating the LC.
In particular, this will not work in those cases where the
function is Lipschitz continuous but not differentiable, in
the relevant domain.

IV. EVIDENCE OF A LOWER BOUND

While the considerations can be readily generalized to
higher dimensions, we will mostly be considering one-
dimensional systems. Consider, therefore, a quantum
system moving along the x-axis, and described by the
quantum wave function ψ(x) in co-ordinate representa-
tion, with the position probability distribution given by
f(x) = |ψ(x)|2. Let the LC for f be denoted by ηx. The
momentum representation of the same quantum system

is obtained by the Fourier transformation of ψ(x):

φ(p) =
1√
2π~

∫ ∞
−∞

ψ(x)e−ixp/~dx. (3)

The momentum probability distribution is then given by
g(p) = |φ(p)|2, and let us denote the LC for g as ηp.

We want to focus on the characteristics of the prod-
ucts of Lipschitz constants of position and momentum
probability distributions for arbitrary quantum states. In
particular, we want to study the quantity

η̃xη̃p, (4)

where η̃x =
√
ηx and η̃p =

√
ηp.

For any position probability distribution f(x), if the
Lipschitz constant is zero, then |f(x1) − f(x2)| = 0 for
all x1, x2, lying in the relevant domain, which implies
that f is a constant, say, f(x) = c2, with c being real.
This function is not normalizable, and hence cannot be
a probability distribution in the strict sense. But, as
is usual, we will interpret it as the relative density of
the number of particles, e.g. in a scattering experiment.
The corresponding momentum probability distribution is
a Dirac delta function in momentum space. A Dirac delta
function

δ(ξ − ξ0), (5)

as a function of ξ, is unbounded at ξ = ξ0 and vanishes
elsewhere, so that its LC diverges. In a similar way, a
vanishing ηp implies a diverging ηx. Therefore, the Lip-
schitz constants of position and momentum probability
distributions of a single quantum system cannot vanish
simultaneously. This provides evidence for a non-zero
lower bound for η̃xη̃p. We will get back to this point
when we consider the ground state of simple harmonic
oscillator, and again when the Cauchy-Lorentz distribu-
tion is investigated.

V. EIGENSTATES OF THE SIMPLE
HARMONIC OSCILLATOR

We begin with a paradigmatic quantum system, viz.
the one-dimensional simple harmonic oscillator (SHO).
Below we discuss the behavior of the products of LCs of
position and momentum distributions corresponding to
energy eigenstates of the SHO. The Gaussian probability
distribution, given by

fg(x : µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R, (6)

where µ and σ are respectively the mean and standard
deviation of the distribution, will be of relevance here.

Let us first consider the ground state of a quantum
simple harmonic oscillator of mass m. It is well-known
that the position probability distribution of the ground
state of the SHO is a Gaussian distribution and is given
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by f0(x) = fg(x : 0, 1
2α ), where α = mω

~ , with ω being the
natural oscillator frequency, and the potential is chosen
to be centered at the origin. Now, to find the LC in
position space, we need to calculate the maximum value
of the derivative of f0(x), and we obtain

ηx =

√
2

eπ

mω

~
. (7)

The Fourier transformation of a Gaussian distribution is
also a Gaussian distribution, and the corresponding mo-
mentum probability distribution function for the ground

state of SHO is g0(p) = fg(p : 0, α~
2

2 ). By approaching
in a similar way as stated above, we find the LC of the
momentum probability distribution to be

ηp =

√
2

eπ

1

mω~
. (8)

Therefore, for the ground state of SHO, the product of
fluctuations for position and momentum distributions is
given by

η̃xη̃p =
1

~

√
2

eπ
≈ 0.4839

~
. (9)

Note that the reciprocity product of fluctuations of posi-
tion and momentum is of the order of 1

~ , whereas in the
traditional uncertainty relation, the uncertainty product
in terms of spreads of the position and momentum dis-
tributions for arbitrary quantum states is of the order of
~, or higher.

Let us now consider the case when α → 0. In this
limit, f0(x) tends to a constant function. In this case, as
mentioned earlier around (5) and as seen from Eq. (7),
the value of ηx converges, linearly, to zero with α. The
corresponding momentum probability distribution can be
considered to tend to the Dirac delta function, and has its
LC diverging as 1

α . Therfore, the quantity η̃xη̃p does not
depend on the value of α, even when α → 0. There-
fore, if we approximate the constant and Dirac delta
functions respectively by sequences of Gaussian distri-

butions, fg(x : 0, αn~
2

2 ) and fg(x : 0, 1
2αn

), with αn → 0
as n→∞, then the evidence of a non-zero lower bound
on η̃xη̃p, for arbitrary quantum states, alluded to around
Eq. (5) in Sec. IV, turns into a proof.

A. Excited states of SHO

We now want to investigate the behavior of the reci-
procity product of LCs of position and momentum dis-
tributions, when the SHO is in its higher excitation lev-
els. The wave functions in coordinate representation, cor-
responding to the excited states of the one-dimensional
SHO, are given by

ψn(x) =
(α
π

) 1
4

1√
2nn!

Hn(
√
αx)e−

αx2

2 , n = 1, 2, 3, . . . .

(10)
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FIG. 1: (Color online.) The reciprocity product in terms of
Lipschitz constants for energy eigenstates of the quantum sim-
ple harmonic oscillator in one dimension. The horizontal axis
represents the energy levels, while the vertical axis represents
the reciprocity product, given in Eq. (4). The horizontal axis
represents a dimensionless quantity, while the vertical one is
in units of 1/~.

Here, the function Hn is the Hermite polynomial of nth

order, and can be expressed as

Hn(z) = (−1)nez
2 dn

dzn
(e−z

2

). (11)

The corresponding probability distribution in the posi-
tion space is fn(x) = |ψn(x)|2. Note that the probability
distributions corresponding to the energy eigenstates of
the SHO in position as well as in momentum spaces are
differentiable in the entire spaces.

Now let us consider the first excited state of the SHO,
which is obtained by setting n = 1. Then, the LC of
the position probability distribution is obtained by max-
imizing the derivative of f1(x), so that ηx ≈ 0.6626 α.
Similarly, using momentum representation, we find that
the LC of the momentum probability distribution cor-
responding to the first excited state of the SHO is
ηp ≈ 0.6626/α~2. Therefore the corresponding reci-
procity product of the fluctuations for position and mo-
mentum distributions is given by

η̃xη̃p ≈
0.6626

~
, (12)

which, just like for the ground state, is also of the order
of 1

~ , but of a higher value.
In a similar fashion, we can find the reciprocity prod-

ucts for LCs of SHOs with n = 2, 3, . . .. We have per-
formed the calculations to investigate the feature of the
quantity η̃xη̃p upto the 60th excited level. Fig. 1 shows
that among the energy eigenstates of SHO, the reci-
procity product attains its lowest value for the ground
state, and that after a few levels, the product has a value
that is close to 0.63/~.
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FIG. 2: (Color online.) The Cauchy-Lorentz probability dis-
tribution. The function Lfc(x : x0 = 0, γ) is plotted on the
vertical axis against x/L for different values of γ/L. L is a
constant that has the unit of length. Both axes represent
dimensionless quantities.

Therefore, for the quantum systems considered until now,
we have

η̃xη̃p ≥
1

~

√
2

eπ
. (13)

VI. FURTHER PROBABILITY
DISTRIBUTIONS

Let us now consider quantum systems whose position
distributions follow two other distributions, namely, the
Cauchy-Lorentz and the Student’s t-distribution, to in-
vestigate the behavior of the quantity η̃xη̃p.

A. Cauchy-Lorentz distribution

Let us now consider quantum systems whose position
distributions follow the Cauchy-Lorentz distribution, in-
troduced by M. G. Agnesi, S. D. Poisson, A.-L. Cauchy,
H. A. Lorentz, and others. It is a continuous probability
distribution function, given by

fc(x : x0, γ) =
γ

π

1

(x− x0)2 + γ2
, x ∈ (−∞,∞), (14)

where γ > 0 and x0 are distribution parameters. This
corresponds to the position probability distribution of
the state ψc(x) = (fc(x : x0, γ))

1
2 , x ∈ (−∞,∞), of a

quantum system moving on the x-axis. See Fig. 2.
Since the function fc(x) is differentiable, one can cal-

culate the Lipschitz constant in position space by maxi-
mizing the derivative of fc(x). We thereby obtain

ηx =
3
√

3

8πγ2
. (15)
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FIG. 3: (Color online.) Profile of gc(p), corresponding to
the Cauchy-Lorentz probability distribution in position. The
function (~/L)gc(p : x0 = 0, γ) is plotted on the vertical axis
against Lp/~ on the horizontal axis, for different values of
γ/L. The constant L has unit of length. Both axes are di-
mensionless.

Now, in momentum representation, the wave function
φc(p) corresponding to ψc(x) is given by

φc(p) =

√
γ

√
2π2~

∫ ∞
−∞

e−ixp/~√
(x− x0)2 + γ2

dx. (16)

So, the corresponding momentum probability distribu-
tion is gc(p) = |φc(p)|2. In Fig. 3, we plot this momentum
probability distribution for different values of γ.

The momentum distribution plots suggest that the
Lipschitz constant for gc(p), denoted by ηp, diverges,
irrespective of the values of x0 and γ. Moreover, the
following argument will help us to understand this di-
vergence more precisely. Consider the domain Rε, where
Rε = (−∞,−ε]∪ [ε,∞), ε being a small positive number.
We have numerically estimated the value of the LC for
the function gc(p) in the domain Rε, for different values
of ε. The profile of the LC for gc(p) on Rε against 1/ε,
as depicted in Fig. 4, clearly indicates that ηp diverges
linearly with 1/ε. Therefore, we can say that η̃xη̃p di-
verges for the quantum system corresponding to which
the position distribution is Cauchy-Lorentz.

We therefore find that the η̃xη̃p → ∞ point is shared
by the classical scenario as well as systems represented
by quantum states. We have already mentioned that
η̃xη̃p →∞ for the classical case, viz. the product of two
Dirac deltas in position and momentum. Here, we found
that for the quantum state corresponding to which the
position distribution is Cauchy-Lorentz, the reciprocity
product η̃xη̃p diverges. A similar feature will be seen for
the case of the quantum system whose position distribu-
tion is the Student’s t for two degrees of freedom.
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FIG. 4: (Color online.) Divergence of the Lipschitz constant
for gc(p). The value of the LC of (~/L)gc(p : x0 = 0, γ)
considered as a function in the domain Rε is plotted on the
vertical axis against 1/ε on the horizontal axis. Both axes
represent dimensionless quantities. We set γ/L = 1. The red
dots indicate the values of 1/ε for which the LCs have been
computed numerically. The dots are seen to fit to a straight
line quite well. Note that ε is a dimensionless quantity on the
Lp/~ axis.

The Cauchy-Lorentz distribution can be considered to
be a constant function in the limit γ → ∞. In this
limit, ηx converges to zero as 1/γ2. The momentum dis-
tribution has a diverging LC for all γ, including when
γ → ∞. This provides further evidence for a non-trivial
lower bound of η̃xη̃p, for all quantum states.

B. Student’s t-distribution

Let us now consider the Student’s t-distribution due
to F. R. Helmert, J. Lüroth, “Student”, and others, for
which the probability distribution function is given by

fs(x : n) =
Γ(n+1

2 )
√
nπΓ(n2 )

(
1 +

x2

n

)−n+1
2

, x ∈ R. (17)

Here n is a distribution parameter, referred to as the
number of degrees of freedom. A graphical representation
for fs(x : n) is given in Fig. 5.

It is interesting to start our discussion with two de-
grees of freedom, i.e., n = 2. Note that for Student’s
t-distribution with n = 2, the mean exists but the stan-
dard deviation does not.

Consider now a quantum system moving on the x-axis,
and having the position distribution as fs(x : 2). Since
the function fs(x : 2) is differentiable, the Lipschitz con-
stant of the position distribution can be evaluated from
the derivative of the distribution, and is given by

ηx =
12

25
√

5
≈ 0.2147. (18)
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FIG. 5: (Color online.) The Student’s t probability distribu-

tion function. We plot the function Lf̃s(x, n : a,A), given

by f̃s(x, n : a,A) =
Γ(n+1

2
)

√
nπΓ(n

2
)
A
(
a2 + x2

n

)−n+1
2

, against x/L,

for A/Ln = 1 and a/L = 1. Both axes represent dimension-
less quantities. As before, L is a constant having the unit of
length.

In the momentum representation, by performing the
Fourier transformation of ψs(x : 2) = (fs(x : 2))1/2, the
momentum wave function is given by

φs(p : 2) =

8
√

2 4

√
|p|
~ K− 1

4

(√
2 |p|~

)
√
~ Γ

(
3
4

) , (19)

where Kν(z), ν ∈ R is the modified Bessel function of the
second kind. The probability distribution in momentum
space is gs(p : 2) = |φs(p : 2)|2, as depicted in Fig. 6,
which suggests that the corresponding LC diverges.

n = 2

n = 5

n = 50

- 2 -1 0 1 2
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0.5

1.0

1.5

2.0

2.5

Lp� Ñ

FIG. 6: (Color online.) Profile of the momentum probability
distribution corresponding to the Student’s t-distribution. We
plot (~/L)g̃s(p, n : a,A), where g̃s is the Fourier transform of

f̃s, against Lp/~. L is again a constant with the unit of length,
and we have chosen A/Ln = 1 and a/L = 1. Both axes are
dimensionless.

The following argument makes this statement more
precise. Consider the function gs(p : 2) in the domain
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FIG. 7: (Color online.) Behavior of the Lipschitz constant for
the momentum distribution corresponding to the Student’s t
distribution in position, for two degrees of freedom. We nu-
merically compute the LC for (~/L)g̃s, considered as a func-
tion in the domain Rε, for different values of ε. The LC is then
plotted on the vertical axis against ln(1/ε) on the horizontal
axis. Both axes represent dimensionless quantities. The red
line is a quadratic fit of the data. It therefore follows that
the LC diverges as (ln(1/ε))2 for ε→ 0. The coefficient of the
leading term in the quadratic divergence is ≈ 2.583.

Rε, as defined during our analysis of the Cauchy-Lorentz
distribution. We find the LC for this function for vary-
ing values of ε. This is depicted in Fig. 7, which clearly
indicates a diverging LC for ε → 0. Consequently, the
quantity η̃xη̃p diverges to infinity for ψs(x : 2).

The scenario changes for n > 2. Indeed, for n > 2, the
momentum distribution provides a finite LC. It may be
noted that the Student’s t distribution has finite variance
for n > 2, while the n = 2 case does not provide a finite
variance. It is known that for n → ∞, the Student’s t-
distribution approaches to the Gaussian distribution, i.e.,
towards the ground state of simple harmonic oscillator.
So it is expected that corresponding to the Student’s t-
distribution for n → ∞, the quantity η̃xη̃p will give the
same value as that of the Gaussian distribution, as given
in Eq. (9). Fig. 8 shows that the reciprocity product
in terms of the LCs of position and momentum distri-
butions, corresponding to the Student’s t-distribution in
position, for increasing degrees of freedom, n, converges
to a limiting value of ≈ 0.48/~, just as for the Gaussian
case (cf. Eq. (9)).

VII. COMPLETENESS OF POLYNOMIALS
AND RECIPROCITY RELATION

We now invoke the completeness of Hermite polyno-
mials in L2(−∞,+∞) [32] to determine the minimum-
reciprocity states among all quantum states correspond-
ing to systems of a single particle moving in one dimen-

FIG. 8: (Color online.) Reciprocity product of fluctuations
for position and momentum distributions for the Student’s t-
distribution in position. The limit of large n corresponds to
the Gaussian distribution. Numerically, we obtain this value
to be ≈ 0.48/~. This corresponds to the analytically obtained

value of (1/~)
√

2/eπ. The horizontal axis is dimensionless,
while the vertical axis is in units of 1/~.

sion. We Haar uniformly generate such functions, numer-
ically, by considering polynomials until degree 5. The
minimum-reciprocity product, η̃xη̃p, of the fluctuations
of position and momentum in terms of the Lipschitz con-
stants, for polynomials of different degrees, is given in Ta-
ble I. To check for the efficiency of the numerical method,
we have used it to find the minimum uncertainty bound
in terms of variances. We numerically find that the min-
imum of the quantity ∆x∆p/~, by considering Hermite
polynomials until degree 5, is 0.5, upto 6 decimal points,
where ∆x and ∆p are the standard deviations in position
and momentum respectively.

n ~η̃xη̃p
2 0.5

3 0.4

4 0.3

5 0.3

TABLE I: Numerical lower bound of quantum reciprocity
product. We Haar uniformly generate N polynomials of
degree n, for n = 2, 3, 4, 5, where N is chosen to be
sufficiently large so that convergence is obtained in the
lower bound for a particular n. We needed to have N =
3200, 12800, 25600, 102400 respectively for n = 2, 3, 4, 5.
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VIII. INTERPRETING THE RECIPROCITY
RELATION AND ITS DIFFERENCES WITH THE

UNCERTAINTY RELATION

The evidence presented in the preceding sections indi-
cate that we have the relation

η̃xη̃p &
0.3

~
. (20)

In this section, we try to interpret this relation and also
mention its differences with the uncertainty relation.

Mathematically, the Lipschitz constant of a function
gives an indication of how fast the function grows in its
domain. For a given wave function, ψ(x), of a quan-
tum particle moving in one dimension, η̃x is the square
root of the Lipschitz constant of the position probability
distribution f(x) = |ψ(x)|2. The quantity, η̃x, of a wave
function ψ(x) has been pressed into the job of quantifying
the fluctuations in the position probability distribution
f(x) = |ψ(x)|2. This is in contrast to the standard devi-
ation, ∆x, of f(x), which quantifies the spread of the dis-
tribution f(x). Intuitively speaking, while ∆x gauges the
horizontal spread (i.e., along the abscissa) of the distri-
bution f(x), η̃x measures the vertical motions (i.e., along
the ordinate) of the same. In this sense, the reciprocity
relation uncovers an aspect of quantum states that is
complementary to that revealed by the uncertainty rela-
tion. A parallel set of statements is true for the quantity,
η̃p, of φ(p), the Fourier transform of ψ(x), in relation to
the standard deviation, ∆p, of the momentum probabil-
ity distribution g(p) = |ψ(p)|2.

Just like the usual Heisenberg uncertainty relation
lower bounds the product of the spreads of position and
momentum distributions of a wave function, the reci-
procity relation between η̃x and η̃p lower bounds the
product of the fluctuations of position and momentum
distributions of such a wave function. The Heisenberg
uncertainty tells us that if the position distribution of
a quantum particle is very well-defined, its momentum
distribution must be very broad, and vice versa. Simi-
larly, the reciprocity relation tells us that if the position
fluctuations of a quantum particle are negligible, the mo-
mentum fluctuations must be very large.

The Heisenberg uncertainty relation between two ob-
servables emanates from the distinctly quantum property
of noncommutativity of the corresponding observables.
We note in particular that [x, p] = i~. It is plausible that
the reciprocity relation between any two observables is
also linked to a quantum property of the observables.

The Heisenberg uncertainty relation between position
and momentum is known to be saturated for Gaussian
probability distributions in position. Our numerical sim-
ulations imply that the reciprocity relation between po-
sition and momentum is saturated by certain Hermite
polynomials of degree 4 and 5.

It is in order here to present a few words about the
classical limit of this inequality. Traditionally, it has been
argued that the Heisenberg uncertainty limit and other

relations in quantum mechanics converge to their classi-
cal cousins in the limit of ~→ 0. This approach however
has several difficulties, as mentioned, for example, in [33–
36]. In spite of these difficulties, one usually claims that
the quantum mechanically allowed region for the uncer-
tainty product of spreads for position and momentum,
stretches from a factor of the Planck’s constant till the
positive infinity, while the classical case (for pure states)
is situated at zero. The classical case in this scenario is a
product of two Dirac deltas, respectively in position and
momentum. There is a region, on the axis of the uncer-
tainty product of spreads, near zero, that is forbidden to
all quantum states, so that there is a gap between the
quantum mechanically accessible region and the accessi-
ble point for the classical case. The reciprocity product
of fluctuations, again has a quantum mechanically for-
bidden region adjoining zero. However, the length of the
quantum mechanically forbidden region, on the axis of
the reciprocity product of fluctuations, is of the order of
inverse of the Planck’s constant. Moreover, the classical
case is at one end of the quantum mechanically acces-
sible region, instead of being in the quantum mechani-
cally forbidden region. This is akin to the case where
we have an ensemble of two non-orthogonal pure quan-
tum states [37], with the ensemble being a function of
the angle between the two state vectors. The limit of an
ensemble of two orthogonal states – the classical case –
is situated at one end but within the quantum mechani-
cally accessible region, on the axis of the angle between
the two vectors.

IX. CONCLUSION

The position and momentum probability distribu-
tions of arbitrary quantum states are constrained by
the Heisenberg uncertainty relation. In particular, their
spreads cannot both be arbitrarily small. We proposed
an independent restriction of the same distributions for
arbitrary quantum states, and termed it as the quantum
reciprocity relation. We found that Lipschitz constants
of the position and momentum distributions cannot both
be arbitrarily small. The lowest value of the product of
the square roots of the Lipschitz constants was found by
invoking the completeness of the Hermite polynomials in
the space of square-integrable functions. Specific quan-
tum states that were considered in the analysis include
the ground and excited states of the quantum simple
harmonic oscillator, and quantum states corresponding
to which the position distribution is Cauchy-Lorentz or
Student’s t distributions. It is to be noted that the pro-
posed bound has not yet been proven analytically, and is
currently based on numerics and specific examples.
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Reply to “Comment on ‘Quantum reciprocity
relations for fluctuations of position and momen-
tum”’

Abstract. In the article above, we had proposed an
inequality concerning Lipshitz constants of position and
momentum distributions, based on some numerical evi-
dence and some examples. In a comment on it, this has
been proven to be incorrect, by providing an example that
violates the inequality. In this reply, we wish to state that
the original article was based on a certain intuitive belief
about fluctuations of position and momentum wave func-
tions of a quantum state, which itself may still be correct.
The way in which we tried to enunciate its mathematical
form has of course been proven to be wrong. We indicate,
in this reply, a possible alternate mathematical form that
such a relation may assume.

We thank the author of the comment [I. Bia lynicki-
Birula, Phys. Rev. A 100, 046101 (2019)] for the exam-
ple. We wish to add the following.

First of all, we wish to mention that our proposed in-
equality is not an uncertainty for position and momen-
tum, as Lipshitz constants do not quantify the spread of a
function. While an uncertainty relation concerns spreads
along the “horizontal” axes (abscissae) of the relevant
functions, our proposed relation (“reciprocity relation”)
concerns fluctuation of the function values themselves
(“vertical” axes, i.e., ordinates).

The comment clearly provides a counterexample to our
proposed inequality in terms of the Lipshitz constants
of the position and momentum distributions of quan-
tum wave functions. However, we wish to note that the
point of departure for us was that if the position axes are
“featureless”, the momentum axes cannot be (and vice
versa). The counterexample uses a wave function that

deftly “stores” the position features in a phase. Eq. (1)
of the comment is a wave function in position that has a
lot of features even if a is very large. These features are
stored in the parameter b, which is finally made very large
(after Eq. (12)). In absence of b, Eq. (1) is featureless
for a large a. But not so, if b is present, and especially
if b is large. These features of the wave function in Eq.
(1), due to the presence of b, are washed out in the po-
sition probabilities, but are present in the position wave
function.

A quantum system moving in one space dimension (x)
and that is featureless in position is to weakly depend on
x, even in its phase. We agree that we did not put this
constraint in our paper, instead requiring only that the
position probability be weakly dependent on x.

We believe that there will exist a nontrivial lower
bound for the product of the Lipshitz constants of posi-
tion and momentum distributions of arbitrary quantum
mechanical wave functions in position that satisfies the
condition of being weakly dependent on position on all
axes on the complex plane on which the wave function
is defined. The phrase weakly dependent” could, e.g., be
defined again by employing the Lipshitz constant along
the corresponding axis of the said complex plane.

For a general quantum mechanical wave function that
does not satisfy the weak dependence criterion, one needs
to identify a quantity that involves Lipshitz constants
along all axes (or possibly, just the real and imaginary
axes) for the wave function in coordinate and momentum
representations, instead of simply the product of Lipshitz
constants of position and momentum probability distri-
butions.

We thank Michael Hall for useful comments.
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