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Hierarchies of localizable entanglement due to spatial distribution of local noise
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Complete characterization of a noisy multipartite quantum state in terms of entanglement requires
full knowledge of how the entanglement content in the state is affected by the spatial distribution of
noise in the state. Specifically, we find that if the measurement-basis in the protocol of computing
localizable entanglement and the basis of the Kraus operator representing the local noisy channel
do not commute, the information regarding the noise is retained in the system even after the qubit
is traced out after measurement. Using this result and the basic properties of entanglement under
noise, we present a set of hierarchies that localizable entanglement over a specific subsystem in a
multiqubit state can obey when local noise acts on the subparts or on all the qubits of the whole
system. In particular, we propose two types of hierarchies — one tailored according to the number of
noisy unmeasured qubits, and the other one that depends additionally on the cardinality of the set
of noisy measured qubits, leading to the classification of quantum states. We report the percentage
of states satisfying the proposed hierarchies in the case of random three- and four-qubit systems
and show, using both analytical methods and numerical simulations, that in almost all the cases,

anticipated hierarchies tend to hold with the variation of the strength of noise.

I. INTRODUCTION

Quantum entanglement [1], in both its bipartite and
multipartite form, has been proved to be an impor-
tant ingredient in quantum information processing
tasks, including quantum teleportation [2-7], quan-
tum dense coding [8-16], entanglement swapping [17,
18], quantum cryptography [19-25], quantum metrol-
ogy [26-30], and measurement-based quantum com-
putation [31-34]. Along with designing photonic se-
tups for performing quantum protocols [35-41], quan-
tum many-body systems such as trapped ions [42-47],
superconducting qubits [48-50], nuclear magnetic res-
onance molecules [51, 52], ultracold atoms in optical
lattices [53-56], and solid-state systems [57] are also
potential candidates for realizing quantum computa-
tional tasks as well as quantum transport over a short
distance. This has also led to the study of entanglement
properties in the characteristic phases of paradigmatic
quantum many-body systems [58, 59], especially in the
vicinity of quantum criticality. However, successful ex-
perimental realizations suffer from environmenntal in-
teractions with the system, thereby reducing the entan-
glement content in the system. This has motivated rig-
orous investigation in understanding the behaviour of
entanglement when different types of noise is present
in the system [60-65].

Recent emergence of various noisy intermediate-
scale quantum (NISQ) devices [66-68] has highlighted
the need for appropriately characterizing the quantum
states, which are prepared in these systems, and are
envisioned as resources in quantum protocols. Note
that all of them are currently constituted of less than
100 qubits and are viewed as the potential pathways
to achieve quantum supremacy [69]. A major step
towards such characterization is the investigation of
the spatial distribution of entanglement in these mul-

tipartite systems, subject to the presence of noise in
different parts of the system. Spatial distribution
of entanglement has recently been proven useful in
enabling Einstein-Podolsky-Rosen (EPR) steering [70]
in atomic clouds [71] and in Bose-Einstein conden-
sate [72]. Moreover, entanglement has been generated
between atoms occupying different spatial regions of
a multipartite system composed of thousands of ultra-
cold atoms [73], which puts the importance of the study
of the effect of noise present in different spatial parts
of the system into perspective. Apart from the many-
body systems, inspiration of such studies can also be
found in the possible relation between the quantum
yield of a light-harvesting complex [74-77] and the spa-
tial distribution of entanglement among its different
components [78].

Despite extensive studies on the effect of local as well
as global noise on the entanglement content of a mul-
tiparty system [60-65], it is not yet clear how the spa-
cial distribution of noise, in the form of the presence
and absence of local noise at various parts of a multi-
party system, affects the entanglement content of the
whole system as well as a certain block of the sys-
tem, which may consist of two or more sites. While
the notion of locality of noise is well-established [79, 80],
a major issue towards the line of investigation of the
latter is the quantification and subsequent computa-
tion of entanglement in different parts of a multiparty
quantum system. In this paper, we focus on the max-
imum average entanglement that can be localized in
subparts of a multiparty system by performing lo-
cal projection measurement on the rest of the system,
which is also referred to as the localizable entanglement
(LE) [81-84] (cf. [85]). It has been shown to be an ap-
propriate quantifier in measuring entanglement since
it still keeps information about the quantum corre-
lations in the measured subparts of the original sys-



tem. In particular, the measure is made for the mul-
tiqubit Greenberger-Horne-Zeilinger (GHZ) [86] and
stabilizer states [79, 87, 88], and states emerging in the
studies of quantum networks and entanglement per-
colation (see [89] and references thereto). Also, the
potential of localizable entanglement, even when com-
puted over a pair of qubits, to be considered as a mul-
tipartite measure of entanglement [90, 91] makes it an
appropriate candidate for the investigation of the effect
of spatial distribution of noise on the entanglement at
different parts of the system.

In this paper, we establish the hierarchies of the val-
ues of localizable entanglement based on the sites on
which local noise acts and local measurements are per-
formed to different subparts of a multiparty quantum
system. We show that the proposed ranking is inde-
pendent of the strength of the noise. We divide the
ranking of states into two categories. One of them de-
pends only on the cardinality of the set of noisy qubits
where measurements are not performed, and we call it
as envelope ranking. On the other hand, there can also
be a fine-grained hierarchy, which additionally depends
on the cardinality of set of noisy qubits on which lo-
cal measurements are performed. To demonstrate this
classification among states, we consider local uncorre-
lated Pauli noise including the bit-flip, phase-flip, and
depolarizing noise as the non-dissipative ones, and lo-
cal amplitude-damping noise as an example of the dis-
sipative noise. We analytically derive conditions under
which the information about the local Pauli noise on
the measured qubits is re-encoded in the system even
when the measured subsystems are traced out in the
computation of localizable entanglement. For simplify-
ing the investigation, we use the restricted localizable
entanglement (RLE) [87, 88] in which local measure-
ments are restricted to spin measurements based on
Pauli matrices. When three-qubit states belonging to
the paradigmatic generalized GHZ and W states, GHZ
- and W-class are subjected to local noise, we compute
the percentage of states satisfying fine-grained and en-
velope hierarchies for LE and RLE. We also discuss the
existence of characteristic noise strengths in relation to
the vanishing of the RLE and LE, and point out its re-
lation with the hierarchies. We extend our results to
Haar uniformly generated random four-qubit systems,
and compare the results with three-qubit random states
regarding the validity of this characterization. We also
observe that rankings of LE in states based on only the
cardinality of the set of noisy qubits fail with increase
of noise.

The rest of this paper is organized as follows. In
Sec. 11, we provide necessary definitions of localizable
and restricted localizable entanglement, and different
local noise models considered in this paper. The effect
of local noise on restricted localizable entanglement,
when noise is applied to the whole or a group of qubits
in the system, is described in Sec. III. The hierarchies of
localizable and restricted localizable entanglement has
been introduced in Sec. IV, and the validity of them in

the systems of three and four qubits has been discussed
in Sec. V-VII in a case-by-case basis. Sec. VIII contains
the concluding remarks.

II. DEFINITIONS AND FORMALISM

In this section, we briefly discuss localizable entan-
glement, and the issue of its optimization. We also
define terminologies used while considering different
types of local noisy channels.

A. Localizable entanglement

In a multiqubit system constituted of N qubits, the
maximum possible average entanglement that can be
accumulated over a chosen set S of N — n qubits
by performing independent local projection measure-
ments on the rest of the n qubits forming the set R,
with RU S = ), is called the localizable entangle-
ment (LE) [81-84] over the qubits in S. Let us de-
note the qubits in the N-qubit system by 1,2,--- | N,
and an arbitrary qubit by ¢, ¢ = 1,2,--- ,N. Without
any loss in generality, we always assume that the mea-
surement is performed over the last n qubits, such that
ieR={N-n+1,N—-n,N—-n—-1,--- ,N—1,N}.
For a quantum state p describing the N-qubit system,
the LE over the set S of qubits is given by

2" —1

Eg =max Y  ppE(%). (1)
k=0

Here, the maximization is performed over the com-
plete set of single-qubit rank-1 projection measure-
ments on the qubits in R. The multi-index & =
EN—n+1kN—n -+ kn denotes the outcome of the mea-
surement corresponding to the projectors {P/ =
|k:) (k;]} on the qubits i € R. The reduced state ﬁ(sk)
of the qubits in S is obtained by tracing out the qubits
in R from the post-measured state §* corresponding to
the outcome k, given by

5 1
p* = — MuipM,. 2)
Pk

The probability of obtaining the measurement-
outcome k is p, = Tr [Mk p./\/l};} , and the measurement
element is given by

My, =Q P Q) 1;, 3)

i€R jes

with I; being the identity operator in the Hilbert space
of qubit j.

In the case of qubit systems, the rank-1 projectors
corresponding to each qubit i € R can be parametrized



using two real parameters 6; (0 < §; < 7) and ¢;
(0 < ¢; < 27) as PF = |k;) (ki|, k; = 0,1, with [79]

0; i . O
0), = cos |0), + €' sin - 1),

i
.6 i 0;
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where {|0),,[1),} is the computational basis of the
Hilbert space of qubit i. This parametrization reduces
the maximization in Eq. (2) to a maximization prob-
lem involving 2n real parameters. However, the max-
imization becomes challenging when n is a large inte-
ger [81-84, 92]. There exists only a number of systems
for which the optimal measurement basis for maximiz-
ing LE can be determined analytically, viz. a number
of paradigmatic quantum states including the multi-
qubit Greenberger-Horne-Zeilinger (GHZ) [86, 92], the
W [92-94], the Dicke [92, 95, 96], and the stabilizer [33,
34, 87, 88] states, and quantum spin Hamiltonians with
certain symmetries [97].

The definition of LE (Eq. (2)) depends also on the
computability of a chosen entanglement measure F,
which is called the seed measure [92], for the re-
duced state pg. In cases where one has to deal with a
mixed state describing the N-qubit system, such as the
scenarios involving noise, subsequent reduced post-
measured states pg are also mixed. The scarcity of com-
putable entanglement measures for mixed states in ar-
bitrary dimension [1] makes the determination of LE
difficult in these situations. In this paper, we restrict
ourselves to the cases where n = 2, for which several
computable entanglement measures are available [1].
We select negativity [98] as the entanglement measure
for calculating LE, which, for a generic bipartite state,
0Oab, describing parties a and b, is defined as

Elow) = |

Tq
Qab

1. )
1

Ta
Qab
tained by performing a partial transposition of the state
0ap With respect to the party a. It can be shown [99, 100]
that the negativity E(g,;) can be computed from the

eigenvalues {)\;} of gl¢ as the absolute sum of the neg-
ative eigenvalues, given by

E(ow) = Y [Nl (6)

Ai<0

Here,

is the trace-norm of g};g, which is ob-
1

Since oz has only one negative eigenvalue when g,
describes a two-qubit state [101], E(0q4) = |A| for A < 0.

B. Restricted localizable entanglement

In many of the systems where analytical computa-
tion of LE over a pair of qubits is possible, the optimal
bases corresponding to the local projection measure-
ments on the rest of the qubits belong to the eigenvec-
tors of the Pauli matrices, ™Y [33, 34, 87, 88, 92, 97].

These results inspire the following assumption, and the
subsequent definition of a restricted LE (RLE) [87, 88],
which is obtained by allowing only Pauli projections
over the qubits ¢ € R (cf. restricted quantum dis-
cord [102]).

Assumption: Corresponding to each of the qubits r; € R,
projection measurements “only” in the basis of (i) o7 (0; =
¢i = 0), or (ii) o7 (6; = §,¢; = 0), or (iii) o} (0; = ¢; =
5) are allowed in order to accumulate entanglement on the
qubits in S.

The real parameters {6;, ¢;} are defined in Eq. (4), and
the subsequent discussion. Evidently, under the above
assumption, there can be a total of 3" combinations of
Pauli bases on the n-qubits in R, for each of which 2"
measurement outcome is possible and an average en-
tanglement, representing a possible value of RLE, can
be computed.

Let us now denote the Pauli matrix corresponding
to the measurement bases on the qubit ¢ € R by o},
where values of «;, given by «; = 0, 1, 2, represent the
Pauli matrices o7, o/, and o7, respectively. The overall
Pauli measurement configuration over the region R is
represented by 0%, where o = an_nt1ON—p - Qn iS
the multi-index having values 0,1,2,---,3" — 1. For
each of the all possible measurement combinations
{o%;a = 0,1,---,3™ — 1}, one can compute a value
of the RLE, denoted by E/ g. The maximum value of
RLE, denoted by 7

Eg = §n§>}<E;,s, )
%R
is obtained by maximizing E, ¢ over the complete

set of Pauli measurement configurations {o%,a =
0,1,---,3™ — 1}. From the definition of LE, we have

E&,S S Efs‘ S ES (8)

The importance of E§ lies in the existence of quan-
tum states, such as the stabilizer states without [33, 34]
and in the presence [87, 88] of local uncorrelated Pauli
noise, and ground states of certain quantum many-
body systems [81-84, 92, 97], for which Ey = Egs.
Moreover, if one now considers the absolute error orig-
inated due to the restriction, given by |Es — E%|, with
|Es— E%| < ¢, e being a small number, typically ~ 1073
or less, then the LE can be safely approximated by the
RLE. In this situation, the definition of RLE can be used
to obtain closed form expressions, which represents the
LE with negligible error, and which can not be obtained
analytically otherwise. This will be clear in subsequent
sections.

C. Models of uncorrelated noise

We shall focus on local noise models in this paper,
where the noise is confined at and is identical for in-
dividual qubits of the total system. We assume a sce-
nario where single-qubit uncorrelated noise acts on m
(m < N) qubits in the N-qubit system, forming the



4

set L. For a fixed value of m, there can be (TJX ) such
noise configurations with m =0, 1,2,--- , N (see Fig. 1
for an example of a four-qubit system). We shall show
the interplay between the set of qubits, R, on which
the measurements are made, and the set, L, on which
the noise acts. Let us denote an N-qubit quantum state
by pR, where the subscript and the superscript specify
the number of qubits in the system and the number of
noisy qubits respectively. The noiseless state is repre-
sented by p9%; in this notation. The noise map, for the
initial N-qubit state p7, is given by

PN = P = AL(pR). )

We assume uncorrelated single-qubit noisy channels,
and employ the Kraus operator representation for the
evolution A, of a multiqubit state p%;, where the op-
eration Ay (.) can be expressed by an operator-sum de-
composition given by [79, 80]

N
(10)
|

with {K, = \/p.K,} being the Kraus operators satis-
fying >°, KK, =1,and

f(u = ®Kuw Pu = Hpuw (11)

1€L i€L

where Zi;lo pu, = 1 for a specifici € L, and p =

“+ fhi—1fifi+1 - - - 1S the multi-index corresponding to
the m-qubit Kraus operators for the qubits i € L.
Here, In_,, = ®z‘¢ 1, 1; is the identity operator in the
Hilbert space of the subsystem of (N — m) noiseless
qubits, {K,,;pu; = 0,1,---,d — 1} is the set of Kraus
operators corresponding to the noisy channel on the
qubit ¢, and d is the cardinality of the set {K,}. In
this paper, we shall focus on non-dissipative single-
qubit Pauli noise including the bit-flip (BF), phase-flip
(PF), bit-phase-flip (BPF), and depolarizing (DP) chan-
nels [79, 80], while the amplitude-damping (AD) chan-
nel [79, 80] is considered as an example of a dissipative
noise. The single-qubit Kraus operators corresponding
to these channels for an arbitrary qubit /; are given by

BE Channel: d = 2; Ko = /1~ 21, K = faf;
PF Channel: d = 2; Ko = /1 — gli, K, = \faf;
DP Channel: d = 4; Ko = /1 — %p[i, K = \/Eaf, Ky = \/gaf, Ky = \faf;

AD Channel: d = 2; Ky = <(1) \/1071)> K

where the subscripts of the Kraus operators K are the
different values of p;, I; is the identity matrix in the
Hilbert space of qubit 4, and p (0 < p < 1) can be inter-
preted as the strength of the noise.

III. EFFECT OF LOCAL PAULI NOISE ON
RESTRICTED LOCALIZABLE ENTANGLEMENT

In this section, we shall discuss the effect of local
Pauli noise on the restricted localizable entanglement
(see Sec. IIB) of an arbitrary noisy quantum state p7;.
Later, we shall show that there exists quantum states
for which these results can safely describe the same for
localizable entanglement with negligible error.

Computation of RLE in quantum states subjected to
local Pauli noise requires a projection measurement in
the basis of a chosen Pauli matrix ¢’ on a qubit j in
the noisy state p};. This measurement is followed by a
partial trace operation on the same qubit. For demon-
stration, we choose the BF noise, where the noisy state

0

p'n, obtained from the noiseless N-qubit state pY; by the
application of the BF noise, can be written as

m P m P TYL—lp . .
PN:(1_§> P(J)v+<1_§> 52%/’9\/‘71‘
VieL

m—2 2
o)) 3 e
VijeL
i#j
+...
) | @x|w|@]. o
VieL VieL

We assume a projection measurement on the qubit j
in the basis of a chosen Pauli operator o?-", where the
index a; has been defined in the discussion preceding
Eq. (7). The projection operation can be written as
w1 b o

P =5 [+ (=D)ra57], (14)
where k; = 0,1 represents the measurement outcomes
corresponding to the bases of 7. From the properties



of Pauli operators,
07P,?_j o] = P]?,_j, (15)

withy =0, 1,2, where k), = k; if y = a],andk =kj+1
modulo 2 if v # «j. Note that v = «; descrlbes
the situation where the projection operator P, ), and

o) have the same basis, while v # «; indicates oth-
erwise. While the projection measurement destroys all
quantum correlation between the qubit and the rest of
the system, the information regarding the noise on the
measured qubit depends both on the basis of the pro-
jection measurement as well as the basis of the single-
qubit Pauli noise. We formulate this via the following
proposition.
Proposition I. When a projection opemtzon P ., i1 the basis
of a chosen Pauli matrix o®, oy = 0,1, 2, is performed on
a chosen qubit [ corresponding to an N —qubit state pRy ob-
tained by the application of local uncorrelated bit-flip noise
on m qubits forming a set L, followed by a tracing out of the
measured qubit [, then for | € L, the information regarding
the noise on the measured qubit encoded in the probabilities
corresponding to the Kraus operators is lost if the Pauli op-
erator chosen for measurement matches with Kraus operator
corresponding to the local bit-flip noise which is not iden-
tity, i.e., if oy = 0, and is retained in the rest of the system
otherwise, i.e., if oy = 1, 2.
Proof. First, we note that two situations are possible
corresponding to the chosen qubit I. First, we assume
that! ¢ L, i.e., the measured qubit is noiseless. This is a
situation where application of the projection operation
on qubit / and subsequent tracing out of the measured
qubit results in an (N — 1)-qubit post-measured states
on the rest of the qubits, with all the noisy qubits in L
present in the system. The post-measured states corre-
sponding to both the outcomes k; = 0, 1 on the remain-
ing N — 1 qubits after tracing out the qubit [ are of the
form given in Eq. (13), where the information regard-
ing the noise on qubit [ is lost.

As the second situation, we consider the case [l € L,
i.e., the situation described in the proposition. In this
scenario, two possibilities exist.

Casel. v = qy.

This situation occurs in the case of BF noise when «; =
0. Application of P on p}} leads to the post-measured
states on the remammg N — 1 qubits as

m—1.k P\ ok
PNJ F= (1 - 5) PN-1

m—2
D) S o

VzEL\l
p P2 ¢ o 0k =z _z
+<1 2) ( ) Z 070 PN 107 0]
Vi,jeL\l
i#]

+..
p m—1 T 0,k; x| (16
T3 ® oi | PNZ1 ® o7 | (16)

vieL\l vieL\l

for k; = 0,1, where L\l represents the set of noisy
qubits with the qubit ! removed, and

PN =T [PR X PR (17)
We remind ourselves that the superscript “0” in p%™,
or in any other quantum state represents the fact that
the state is noiseless (m = 0), while the superscript “0”
in P,gl stands for a; = 0, which implies the basis of the
projection operator P to be that of o”. The state in
Eq. (16) has a form identical to the state in Eq. (13).
Note that this is identical to the situation where the
qubit ! is noiseless, and the number of noisy qubits is
m — 1 in a quantum state of N — 1 qubits.

Case 2. v = a;.

This, for the BF noise, describes the case oy = 1,2.
Eq. (15) indicates that for half of the terms in p%

(Eq. (13)), projection operation Pkll’2 leads to applica-
tion of Pkl,’2 on p%, where k; = k; + 1 modulo 2. For the

rest of the terms, P ? applies to p%. This results in the
post-measured states of the form

~m—1,k p k , P 1,k
ot = (1= R+ LR, )

on the N — 1 unmeasured qubits including the remain-
ing m — 1 noisy qubits forming the set L\, where o,
k; = 0,1, has the form given in Eq. (16), and k} = k; + 1

modulo 2. Note that 57_1'* has contribution of both

o 1M (with probability 1 — p/2, which is the same as

the probability with which the state of qubit [ under

BF noise is kept unchanged) as well as Qﬁj’kl[ (with

the same probability p/2 by which the state of qubit{ is
flipped), which results from the re-encoding of the in-
formation about the single-qubit noise on qubit / in the
rest of the system after tracing qubit [ out. Hence the
proof. [
In situations where the noise and the projection mea-
surement on a group of qubits, say r = {71,792, , 7/}
where r C R and r C L with m’ < m, have the
same basis, the following corollary follows directly
from Proposition I.
Corollary 1.1. For a multi-qubit state as given in Eq. (9)
where Ay represents uncorrelated identical single-qubit
Pauli noise on m qubits in L, the restricted localizable en-
tanglement E,, 5 where the values of « correspond to pro-

jection measurement on the m' noisy qubits in the basis that
is identical with the basis of the noise, obeys the relation

= E{y 1) (pgg m ) . (19)

Proposition I can be extended to the case of local pro-
jection measurements in the Pauli basis on a group of
qubits in R. The next Proposition is for the PF channel,
having a proof similar to that of Proposition I.

Proposition IL. When a projection operation Py in the ba-
sis of a chosen Pauli matrix ™, a; = 0,1, 2, is performed

Eéa,l?) (PN)



on a chosen qubit | in a state p'{ originating from local un-
correlated phase-flip noise on m qubits, and subsequently the
qubit [ is traced out, the information regarding the noise on
the measured qubit encoded in the probabilities correspond-
ing to the Kraus operators is lost if oy = 2, and is retained
in the rest of the system if oy = 0,1, when [ is a noisy qubit.
The situation, however, is slightly different in the case
of DP noise, which is given in Proposition III, and
which can clearly be seen from the form of the corre-
sponding Kraus operators in Eq. (12).

Proposition ITL. When a projection operation Py, in the ba-
sis of a chosen Pauli matrix o™, oy = 0,1, 2, is performed
on a noisy qubit | in a state p having local uncorrelated
depolarizing noise on m qubits, and subsequently a tracing
out of qubit | is performed, the information regarding the
noise on the measured qubit encoded in the probabilities cor-
responding to the Kraus operators remains in the rest of the
system irrespective of the values of .

Proof. We proceed in a fashion similar to the proof of
Proposition I, identifying two possible situations (i)
l ¢ L,and (ii) [ € L. The outcome of the situation (i) is
complete loss of information, as shown in Proposition
I. On the other hand, in situation (ii), as before, two
possibilities exist: (a) v = a4, and (b) v = «;. However,
in the case of DP noise, the situations (a) or (b) never ex-
clusively arise as the Kraus operators involve all three
components of the Pauli matrices. While a; = v for a
specific value of v, oy # 7 for the rest of the values of
~. Therefore, the information regarding the noise on
the measured qubit encoded in the probabilities corre-
sponding to the Kraus operators remains in the rest of
the system irrespective of the values of q. |
We point out here that the possible sustainability of
the effect of local Pauli noise, after performing the lo-
cal projection measurement and the subsequent tracing
out operation, is in contrast with the complete disap-
pearance of the effect of noise when the noisy qubit is
traced out without performing any measurement. The
latter is guaranteed by the trace-preserving properties
of the Kraus operators used to characterize the local
noise on individual qubits (see Egs. (12)).

IV. SETTING THE STAGE: HIERARCHIES OF
LOCALIZABLE ENTANGLEMENT

In this section, we discuss the possible hierarchies
of the values of LE and RLE depending on the num-
ber of qubits on which local noise is applied. From
now onward, unless otherwise stated, we localize en-
tanglement over a region constituted of two specific
qubits, say, 1 and 2, by performing local projection
measurement on the rest of the N — 2 qubits, indexed
as 3,4,---, N, and forming the set R. To keep the no-
tations uncluttered, we discard the subscript *S’, and
denote the LE (RLE) by E12(p) (E12(p%)) in the fol-
lowing, where p}; is the noisy state with local noise ap-
plied to m of the N qubits, forming the set L of noisy
qubits. In terms of the pair of qubits on which entangle-

ment is localized, three different situations exist: when
(i) none, (ii) any one, or (iii) both of the qubits 1 and 2
belong(s) to the set L, i.e., is (are) influenced by the lo-
cal noise. These scenarios, along with the general intu-
tions gathered about the trends of entanglerment mea-
sures under local decoherence [60-65], motivate us to
propose certain intuitive orderings amongst the values
of LEs and RLEs, independent of the local noise mod-
els. In succeeding sections, for specific noise models,
we shall illustrate whether the LE and the RLE follow
such classifications. We assume m to be the maximum
cardinality of L, following the notations used in Sec. IIL.

(i) Scenario 1. Let L C R, such thatm < N — 2, 1i.e.,
qubits 1 and 2 are not affected by noise. There
can be (" ?) possible sets L of noisy qubits in
R, which, in general, will correspond to different
values of the LE and the RLE. We expect the fol-
lowing relation between the values of the LE and
the RLE, as well as the cardinality of the set of
noisy qubits:

max{&123;) (pN)} < min{&12(;) (0%}, (20)

where £ = E(E’) representing the LE (RLE), m/
is the maximum cardinality of a different set L’
of noisy qubits obeying the situation (i) (marked
in the subscript), and we have assumed m’ < m
without any loss in generality. Possible scenarios
with four qubits are exhibited in Fig. 1(a). Note
that for clarity, we denote the state p'{ by pi,1,...1,,,
for all illustrations, where the subscripts denote
the qubits subjected to noise.

(if) Scenario 2. In this case, any one of the qubits 1
and 2 are considered to be noisy, i.e., either 1 or
2 € L, and consequently m < N — 1. For each
of the qubits 1 and 2 in L, the number of possible
values of both LE and RLE for pt is m() 7). In

m—1
situation (ii), we predict

max{&3) (o)} < min{€3. ()}, (1)

where the superscript j = 1, 2 denotes the choice
for noisy qubits from the unmeasured set of
qubits, and € and m/(m’ < m) have similar defi-
nition as in situation (i), as depicted in Fig. 1(b).

(iii) Scenario 3. Both the qubits, 1 and 2, are noisy,
implying 1,2 € L, and m < N. The total number
of possibilities for choosing the set of noisy qubits
L from the N qubits is (N ~2). In this case, we
anticipate

max{&123;s1) (PN)} < min{E1ais) ()}, (22)

where £ and m' have similar definition as in situ-
ation (i), and m’ < m. See Fig. 1(c).
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FIG. 1. (Colour online.) Fine-grained hierarchies. The hi-
erarchies Hi, H>, and Hj for different distributions of lo-
cal noise on a system of N = 4 qubits. The configurations
of noise are shown by the cluster of bubbles, where a clear
(opaque) bubble represents a noiseless (noisy) qubit. The
state py,1,...1,, implies that the qubits {l1,l2,- - , I} are sub-
jected to noise in the N-qubit system.

And finally, between the different situations, we pro-
pose

) < mln{512(“)( /)}7
)< min{512(i)(PN )}

Note here that the inequalities (23)-(24) together can
be satisfied even when some, or none of the inequalities
(20)-(22) are valid. In this sense, (23)-(24) are consid-
ered as an envelope over the fine-grained hierarchies of
LE presented in (20)-(22). For the purpose of compar-
ison, as shown in Fig. 1, we denote inequalities (20)-

(23)
(24)

maX{SIQ(iii) (
max{gl(é)(ii) (pr

12(”) <p134) = min {51(22” (p13 12 (31) p14 H2

(22) by Hy, Hs, and Hj respectively, while the enve-
lope inequalities (23)-(24) together are denoted by Hy4
(Fig. 2(a)). The inequalities (20)-(24) also imply that
more the influence of noise on the unmeasured qubits,
more can be the effect of noise on LE in the form of a
reduction in its value.

We point out here that the inequalities (20)-(24) are
designed with specifically LE in mind as the measure
for entanglement. For a bipartite or multipartite entan-
glement measure other than LE [1], which is usually
computed by using the density matrix of the whole
system or the reduced density matrix of a subsystem,
a more logical expectation would be a hierarchy in
terms of the cardinality of the set of noisy qubits. In
the present case, the ranking for entanglement over the
subsystem constituted by qubits 1 and 2, with m as the
parameter, is expected to be

max{&12(pR)} < min{E12(p% )}, (25)

where m > m/. Here, we have considered entangle-
ment over the same pair of qubits as in the cases of
(20)-(24) for the purpose of comparison. We denote (25)
by Hs. Note that Hs does not take into account the
configuration of noise on the qubits 1 and 2. However,
computation of the reduced state on qubits 1 and 2 en-
sures the complete loss of information about the local
noise applied on the rest of the qubits, and the effect of
noise on &5 will again be determined by the local noise
present on qubits 1 and 2 only (see discussions suc-
ceeding Proposition III). The difference between this
approach with the one discussed in Hy is the possibil-
ity of contribution to the local noise on qubits 1 and 2
from the local noise on the rest of the qubits due to the
projection measurement operation involved in the case
of Hy, which is absent in Hj, as illustrated in Fig. 2.
Specifically, when a large number of measured qubits
are noisy, the additional contribution to noise accumu-
lated on qubits 1 and 2 due to the measurement on the
noisy qubits other than (1,2) may be large enough so
that H, and H; differs substantially (see Sec. III for the
contribution from the measured noisy qubits).

V. CLASSIFICATIONS OF STATES WITH PHASE- AND
BIT-FLIP NOISE

In this section, by considering a multi-qubit system
under noise models, let us determine the hierarchies
between the values of LE corresponding to different
configurations of noise on the system. We remind our-
selves that we have adopted a notation where the noisy
state p}; is denoted by py,i,...1,,, Where the subscripts
provide the positions of the noisy qubits. We start the
discussion with a three-qubit system, and adopt the no-
tation used in Figs. 1-2 to describe the noisy states for
clarity. The hierarchies discussed in Egs. (23)-(24) in the
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FIG. 2. (Colour online.) Envelop hierarchies. The hierarchies H4 and Hs for different distributions of local noise on a system
of N = 4 qubits. The interpretation of the notation p;,i,...1,, is similar to that given in Fig. 1.

case of a three-qubit system becomes

max {512 (p123) ,512 (p12)}
< min{&12 (p13) , E12 (p23) , E12 (p1) , E12 (p2) } , (26)

max {€12 (p13) , €12 (p23) , €12 (p1) €12 (p2)}
< &2 (ps),

while the ones in Egs. (20)-(22) becomes

E12 (p123) < E12 (p12) (28)
max {€12 (p13) , E12 (p23)} < min {12 (p1),E12 (p2)},
(29)

where £ = E(E’) represents the LE (RLE). On the other
hand, in terms of the cardinality of the set of noisy
qubits, one should expect

512(P123) < Inin{glz(Pu),512(P13),512(P23)}»(30)
HlaX{Eu(Plz), 512(,013), 512(P23)}

< min{&12(p1), E12(p2), E12(p3) }
max{&12(p1), E12(p2), E12(p3)} < E12(p)-

according to Eq. (25). For future references, we denote
Egs. (26)-(27) together by “Env”, and Egs. (28) and (29)
by “A” and “B” respectively, while Egs. (30)-(32) to-
gether are represented by “C”. We shall now prove
whether such inequalities hold for a class of three-qubit
states.

gGHZ states. Let us first consider a paradigmatic class
of three-qubit states, namely, the generalized GHZ
(gGHZ) state, given by

(27)

(31)
(32)

1sGHZ) = cos % 1000) + € sin % 111),  (33)
where o (0 < o < m)and 5 (0 < [ < 27) are
real numbers. The three-qubit GHZ state is a spe-
cial case of the gGHZ state with 3 = 0, a = 7.
The LE over qubits 1 and 2 is obtained by perform-

ing local projection measurement in the basis of o5 on

qubit 3 in the GHZ state, leading to maximally en-
tangled post-measurement states |®*) = %(\00) +

[11)) on qubits 1 and 2, which subsequently leads
to E12(|GHZ) (GHZ|) = 1. On the other hand,
E12(|gGHZ) (gGHZ|) < E12(|GHZ) (GHZ)|) for all val-
ues of a, 3. Our numerical analysis suggests that in the
case of the three-qubit gGHZ states subjected to local
noise, examples of both Eq3 = E}, and E13 > Ef, ex-
ist, as discussed in the subsequent discussions. To com-
pare the LE and the RLE for the class of generalized
GHZ states, we specifically evaluate the absolute error
e = E12(p) — Ei5(p). We find that in presence of noise
on all the qubits or set of qubits, e ~ 1072. Fig. 3 depicts
¢ as bit-flip and amplitude-damping noise is acting on
the qubits in the three-qubit gGHZ states. Note that
for the PF noise, RLE can faithfully mimic LE with suf-
ficiently low error (~ 1073), which is not the case for
the other types of noise considered in this paper. For
the RLE under PF noise, £, = Ej 5, which implies
that the optimal Pauli measurement on qubit 3 is in the
basis of o*.
Note that from the symmetry of the gGHZ state,

512(/’13) = 512(P23); 512(91) = 512(P2), (34)

where £ = E,FE’, and for the RLE, local projection
measurement in the Pauli basis is always performed on
qubit 3. This modifies Egs. (26)-(29) as

max {&12 (p123) ; €12 (p12) }

< min{&12 (p13), 12 (p1)} (35)
max {&12 (p13) , €12 (p1)} < E12 (p3), (36)
E12 (p123) < E12 (p12) (37)
E12 (p13) < E12 (p1) - (38)

In the following Propositions IV-V, hierarchies among
the values of RLE for different values of m and for
different situations described in Sec. IV are discussed
when single-qubit BF and PF noise are applied to the
three-qubit gGHZ states.



Proposition IV. Phase-flip channel. The values of Ej,
corresponding to the different values of the cardinality m =
1,2,3, of the sets of noisy qubits, calculated by using nega-
tivity as the seed measure, over the qubits 1 and 2 of a three-
qubit generalized GHZ state subjected to local uncorrelated
phase-flip noise of strength p, 0 < p < 1, satisfy

El5(p123) < By (p12) = Ela (p13)
< Eiz (Pl) = Eiz (/)3) . (39)

The proof of the proposition can be found in Ap-

pendix B1. When the bit-flip channel acts on the
qubits, similar inequalities like 39 can be obtained by
calculating localizable negativity in different scenarios.
In particular, we have the following Proposition, the
proof of which is given in Appendix B 2.
Proposition V. Bit-flip channel. When local bit-flip noise
of strength p, 0 < p < 1, acts on all or some of the qubits
in a three-qubit generalized GHZ state, the RLE obey the
following ranking.

E5(p123) = Eia(p12) < Eja(p13)
= Eiz(ﬂl) < EQQ(PZS)- (40)

Robustness of RLE. At this point, a word on the ro-
bustness of RLE of the gGHZ states under local un-
correlated Pauli noise is in order. The robustness of
the RLE can be quantified by the value of p = p. at
which Ej,(p) vanishes. For the Markovian nature of
the single-qubit uncorrelated Pauli noise, the value of
E{5(p) remains 0 for p > p.. The higher is the value of
Pe, the more robust is the RLE for a specific set of noisy
qubits. In the case of the PF noise, the values of Ef,
for all possible different sets L of noisy qubits vanishes
only at p = 1. However, in the case of the BF chan-
nel, E1,(p3) never goes to zero, while E{,(p12) goes to
zero at a specific value p = p. < 1, which is computed
as the solution of the equation obtained from (B11) by
converting the inequality to an equality. The value of
p. depends completely on the initial gGHZ state, and
a value of p. < 1 implies a less robust behaviour of
E{5(p12) compared to that of the other sets L of qubits
under the BF noise.

Dynamics of LE. It is now logical to ask whether the LE
of the gGHZ states subjected to local noise on different
sets of qubits obey the same hierarchies as the RLE. We
anticipate from Fig. 4 that the answer can be negative.
To support this view, in Fig. 4, we consider examples
of the variations of the LE as a function of the noise
strength p, when local noise of BE, PF, DP, and AD types
are applied to a set of chosen qubits in |gGHZ) with
a = 5,3 = 0. Itis clear from the variation of E12(p123)
and FE12(p12) with p for the bit-flip noise that when the
noise strength is high (p > 0.7), E12(p123) < E12(p12),
although the maximum difference being very small (of
the order of 10~2). This modifies the hierarchy obeyed
by the LE, compared to the same for the RLE (Eq. (40)),
as

Ei2(p123) < Er2(p12) < E12(p13)
= E12(p1) < Er2(p3), (41)

for high value of p. On the other hand, for the PF chan-
nel, the hierarchy for the RLE mimics the same for the
LE with negligible error for the given example.

Note, however, that the modified hierarchy in
Eq. (41) is still in accordance with the proposed hier-
archies for three-qubit systems, as given in Egs. (26)-
(29). Our numerical findings suggest that the proposed
hierarchies remain valid for gGHZ states.
gW states. Let us now move to another class of three-
qubit states, namely, the generalized W states, whose
parametric form is given by

IgW) = cos a [001) + e sin a cos 3 |010)
+€2 sin a sin 3(001) , (42)

where 0 < o, < 7, and 0 < 71,72 < 27. Due to the
increased number of real parameters required for spec-
ifying the gW states, it is not possible to obtain analyti-
cal closed forms even for the RLE. We perform numer-
ical analysis and find that similar to the gGHZ states,
there exists gW states for which E13 — Ejy = ~ 1072
when even a low noise is applied to the qubits. This
suggests that the hierarchies of LE and RLE have to be
checked separately in the case of the gW states under
noise.

Let us first check whether inequalities. (26)-(29) re-
main valid for LE in the case of gW states. We observe
that the hierarchies labelled as “Env” are valid for LE
in all states generated after interaction of local BF and
PF noise with the gW states. However, there can be vi-
olation of microscopic hierarchies, labelled as “A” and
“B”. To consider the degree of violation of the hierar-
chy “B”, we consider a quantity

Ag = min {E2(p1), E12(p2)}
—max {F12(p13), E12(p23)} - (43)

In Fig. 5, Ap is plotted with « and 3, keeping v1 2 = 0,
for the bit-flip noise strength p = 0.1 for each qubit, and
we notice that Ap is positive as well as negative, con-
firming the violation. Numerical analysis suggests that
this feature remain qualitatively unchanged when the
strengths of the noise is also increased. Note, however,
that in the case of RLE, all the proposed hierarchies re-
main valid in the case of the gW states subjected to BF
and PF noise of all possible noise-strength.

Random 3- and 4-qubit states. Let us now investigate
what is the fraction of states for which these hierarchies
are violated in the case of three-qubit generic random
pure states sent through local noisy channels. Towards
this aim, we Haar-uniformly generate generic 3-qubit
pure states of the form

[0) = D @iyigis lirinis) (44)
i1i2i3=0,1
with 37, 001 |@iviis|? = 1 and @iyigiy = Qiyigis +

iBiyinis, Where v, iyi, and f;,4,:, are real numbers, by
choosing the values of a;,;,:, and B, 4,:, from a Gaus-
sian distribution of mean zero and standard deviation
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FIG. 3. (Colour online.) Absolute errors for gGHZ state under noise. The absolute value of the difference between the RLE
and the LE, |E12 — Ej», as a function of p, o, and 8 when single qubit bit-flip, depolarizing, and amplitude-damping channels
are applied to all, or a subset of the three qubits constituting a gGHZ state. All quantities plotted are dimensionless, except o

and 3, which are in radians.

Random three-qubit states under phase-flip noise

p=20.1 p=20.2 p=20.3
State Type | Env | A B A B Env | A B
GHZ Class | 98.78|82.29|100.00 | 98.95|81.53|100.00 | 99.07|81.15|100.00
W Class | 98.55|13.57|100.00 | 98.37|13.43|100.00 | 98.29|14.03|100.00
Random three-qubit states under bit-flip noise
p=20.1 p=20.2 p=20.3
State type | Env | A B Env| A B Env| A B
GHZ Class | 98.84|82.56| 99.99 |99.01|81.87] 99.99 | 99.10|81.42|100.00
W Class | 92.75|58.23|100.00 | 94.37|58.94|100.00 | 95.90|59.46|100.00

TABLE L Percentage of three-qubit states under phase- and bit-flip noise, for which the proposed hierarchies for three-qubit
systems are valid. For each type of initial states, the sample size considered is Ns = 5 x 10%.

unity [103]. Here, |ix) € {]0),]|1)}, & = 1,2,3, form
the computational basis of qubits 1, 2, and 3. These
states form the GHZ class of three-qubit states [94]. On
the other hand, there exists another class of three-qubit
states [94], called the W class of states, which can not
be transferred to a state from the GHZ class by stochas-
tic local operations and classical communication with a
single copy A generic state belonging to the W class is

represented as
|¥) = ag |001) 4 a1 [010) + ag [100) + a3 000) , (45)

with 327 |a;|? = 1, and {a;;1 = 0,1,2, 3} being com-
plex numbers a; = oy +i6;, | = 0,1,2,3, with real oy
and ;. Similar to the GHZ class states, random W class
states can be generated Haar uniformly by generating
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FIG. 4. Variations of the localizable entanglement (Y axis) as a function of p (X axis) in the cases of bit-flip(a), phase-flip (b),
depolarizing (c), and amplitude damping (d) noise acting locally on different sets of qubits in a three-qubit gGHZ state with
a =7/3, f = 0. All quantities plotted are dimensionless.
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FIG. 5. (Colour online.) Violation of hierarchy for gW states. Variations of Ap (Egs. (43)) for gW states as functions of «
and 3, with ;2 = 0. Bit-flip (a), depolarizing (b), and amplitude-damping (c) noise with p = 0.1 acts on all the qubits. The
parameters o and 3 are in radians, while Ap is dimensionless.

values of oy and 3;, 7 = 0,1, 2, 3, from a normal distri- e For both GHZ and W class states, the percent-
bution of mean zero and standard deviation unity. We age of states for which hierarchies “Env” and “A”
Haar uniformly generate three-qubit states belonging remains valid varies very slowly with increasing
to these two classes, and subject them to single-qubit noise strength for both the PF and BF noise. The
local PF and BF noise on different qubits. The percent- maximum variation between any two fractions of
ages of such states for which the hierarchies presented such states, corresponding to any two different
in Egs. (26)-(29) remains valid are tabulated in Table I. values of noise strengths, is ~ 1%.

The prominent observations from the data are as fol-

lows. e The hierarchy “B” remains valid for almost all

states belonging to the GHZ and the W classes
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Random 4 qubit states under phase-flip noise

p=0.1

p=0.2

Hy | Hs | H H, | H; H, | Hs

H> | H3 Hy | Hs | H: H, | H;

63.72]31.82]100.00{90.41]99.95 | 82.34|13.05|100.00|85.26|99.98 | 92.602|4.19|100.00|80.83(99.97

Random four-qubit states under bit-flip noise

p=0.1

p=0.2

H4 H5 H1 H2 H3 H4 H5

H, | Hs H, |Hs| Hi | Hy | Hs

63.85(31.65(100.00|89.46|99.59 | 82.87(12.79]100.00|84.72|99.82 | 92.69|4.34|100.00|80.66|99.94

TABLE II. Percentage of four qubit states subjected to phase-flip and bit-flip noise, for which the proposed hierarchies for
the four-qubit systems are valid. The sample size considered for each of the cases Ns = 5 x 10%.

under both PF and BF noise.

e The number of W class states for which the hier-
archy “A” is valid is considerably low in the case
of the PF noise. The number increases in the case
of the BF noise, but remains ~ half of the num-
ber of states in W class for which the hierarchies
“Env” and “A” are valid.

e We also observe that for the cardinality based hi-
erarchy, all of the GHZ and the W class states sub-
jected to local noise of BF or PF type are in agree-
ment.

In order to check whether similar trend exists for the
four-qubit systems as well, we Haar uniformly gener-
ate four-qubit states of the form

= >

41929374=0,1

Qiyigigia |1102%304) (46)

where the coefficients a;,;,i4:,, 91,%2,%3,74 = 0,1, and
the bases |ix), k = 1,2,3,4, have similar implications
as in the case for three qubits, and the complex state
parameters {a;} are sampled in a way similar to that
in the case of the 3-qubit GHZ and W class states. We
follow the same labelling scheme for the hierarchies in
four-qubit systems as in Figs. 1 and 2, where H, and
Hj represent the envelope hierarchies. In Tables II, we
have tabulated the percentages of Haar uniform ran-
dom four-qubit states that obey the hierarchies labelled
as Hy,-- -, Hs. Note here that while checking the hier-
archy Hp, in order to obtain the broad picture instead
of getting data cluttered with microscopic details, we
have combined the four microscopic hierarchies into
the following two:

max {51(5@)(0134)7 51(21'1')(”34)}
< min {q;%ii)(PlS):51(;2%)(/)14)7 51(321-0(”23)’ 51(321'“([)24)@47)
max {51(;211) (P13): Extiny (P14), Ex3(i0y (23, €30 (p24)}
< min {ng“) (p1): Exstar (pQ)} ’ )

where we have kept both unmeasured qubits at the

same footing. This is a logical choice when the states

are generated Haar-uniformly in the space of four-

qubit states, where noise on qubit 1 is equivalent to

noise on qubit 2 in terms of statistics of the state space.
We now summarize the observations.

e The percentage of states for which the hierar-
chy H, (equivalent to the hierarchy “Env” in the
three-qubit system) remains valid is considerably
low in the low-noise scenario (for example, p =
0.1) in the case of both PF and BF noise, and in-
creases with the increase in the noise strength.

e Almost all random Haar-uniform four-qubit
states obey the microscopic hierarchies H; and Hs,
while the percentages of states obeying hierarchy
H, is lower. Moreover, unlike the other micro-
scopic hierarchies for the four qubit states as well
as the three-qubit system, the percentage of states
obeying hierarchy H, decreases at a considerable
rate with increase in the noise strength for both
PF and BF noise.

e From our numerical data, it appears that the per-
centages of four-qubit states obeying hierarchy
H, is approximately complementary to the frac-
tion of four-qubit states for which hierarchy H;
is valid. As the noise strength in the case of
the PF and the BF noise increases, the fraction
of states for which hierarchy H, (H5) is valid de-
creases (increases). Note here that the hierarchy
Hj takes into account only the cardinality of the
set of noisy qubits, and not the intricacies of lo-
calizable entanglement.

VI. ORDERING OF STATES AFFECTED BY
DEPOLARIZING CHANNEL

In this section, we consider a symmetric noise model,

namely, the DP noise, as opposed to the asymmetric BF
and PF noise. Similar to the previous section, we start
with the effect of DP noise on the three-qubit gGHZ
state, and present the following Proposition VI for the
RLE.
Proposition VI. Depolarizing channel. When all or a
set of qubits of the generalized GHZ state are passed through
DP channel, according to the value of RLE, the following
classification of states is possible.

El5(p123) < Elo(p12) < Elo(p13)
< Eiy(p1) < Ela(ps).  (49)
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3-qubit states: Depolarizing noise

p=0.1 p=20.2 p=20.3
State Type | Env A B Env A B Env A B
GHZ Class | 99.93]100.00|100.00 | 99.65|100.00{100.00 | 99.22|100.00|100.00
W Class | 93.79/100.00{100.00 | 91.80{100.00|100.00 | 91.59(100.00|100.00
4-qubit states: Depolarizing noise

p=0.1 p=0.2 p=0.3
H4 H5 H1 H2 H3 H4 H5 H1 H2 H3 H4 H5 Hl H2 H3
33.04|62.23|100.00/100.00{100.00 | 51.05|33.14|100.00|100.00|100.00 | 68.68|8.236|100.00{100.00|100.00

TABLE III. Percentage of the three- and four-qubit states which, when sent through depolarizing channels, satisfy Eqgs. (26)-
(29) (for three qubits) and the hierarchies shown in Figs. 1-2. For each type of initial states, the sample size considered is

Ng =5 x 10%.

See Appendix B 3 for the proof. Note that in the case
of the DP noise, atp = 0,

E5(p123) = Ela(p12) = E1a(p13)
= EiQ(Pl) = Eiz(ﬂ:&)v

all of which have maximum value % sina at p = 0. For

0 < p < 1, E{5(ps) decreases linearly with p, vanish-
ing only at p = 1, thereby showing a higher robustness
compared to the same for E'5(p123), E1o(p12), Eia(p13)
and E7,(p1), which decrease monotonically with p, and
may vanish at p = p, < 1. The values of p. correspond-
ing to E5(p123) and Ej5(p12) are respectively given by
the solutions of the equations

E15(p123) = 0, E15(p12) = 0,

which depends on the chosen initial gGHZ state via the
parameter «. However, in contrast, for Ej,(p13) and
E{5(p1), pe = 3 and 2 respectively, which are indepen-
dent of the chosen initial state.

Let us now check the validity of the hierarchies in
LE in the case of the DP noise. For the gGHZ states, the
proposed hierarchy of three-qubit states remain valid
for LE, as demonstrated via the dynamics of the differ-
ent LEs in Fig. 4. However, in contrast to the BF noise,
for the gW states, no evidence is found for the viola-
tion of any of the three-qubit hierarchies, as given in
Egs. (26)-(29). This is demonstrated in Fig. 5 by the ab-
sence of negative values in the variation of Ag (Eq. (43))
against « and § for the depolarizing noise with a spe-
cific noise strength.

The trends of the fraction of randomly generated
three- and four-qubit states for which the rankings are
valid exhibit several contrasting behaviour to the same
for the PF and the BF noise (see Table III). For example,
in the case of the DP noise, both microscopic hierarchies
“A” and “B” are satisfied by all the randomly sampled
states from the three-qubit GHZ and W classes, which
is unlike the trend in the case of the PF and the BF noise.
On the other hand, the number of states from these
classes, for which the hierarchy “Env” is valid, has a
high value, which increases slowly with p, similar to
the PF and the BF noise. This behaviour remains un-
changed when the number of qubits is increased from

(50)

(51)

3 to 4, in the sense that all the microscopic hierarchies,
H,,H,, and Hj, are valid for 100% of the randomly
sampled Haar-uniform four-qubit states. However, the
envelop hierarchy H, is valid for a less number of states,
and the fraction increases at a considerable rate when
the noise strength is increased from p = 0.1 to p = 0.3.

Note here that the variation of the size of population
of four-qubit states, for which the cardinality-based hi-
erarchy Hs remains valid, also exhibits different trends
from that of the PF and the BF noise. The comple-
mentary nature of the values of the fraction of states
obeying H, and H; breaks down as the strength of the
DP noise increases, although the individual behaviour
of the percentages of four-qubit states obeying H4 and
Hj against the noise strength remains qualitatively the
same as in the case of PF and BF noise.

VII. RANKINGS OF STATES INDUCED BY

AMPLITUDE-DAMPING NOISE

We now consider a non-Pauli noise, namely, the
single-qubit uncorrelated AD noise. The first step is to
investigate its effect on the hierarchies of the RLE. In-
terestingly, in contrast with the cases of the Pauli noises
considered in this paper, in the case of the AD channel,
the hierarchies are altered when one crosses a specific
value p = p., on the p-axis. The value of p., is fully
dependent on the initial state parameters. This is de-
scribed by the following Proposition VII.

Proposition VII. Amplitude-damping channel. For the
gGHZ states, the effect of local AD channel on all or a set of
qubits may lead to a ranking of RLE given by

El5(p123) < Eia(p12) < Er2(p13)

< Eia(p1) < Era(ps)  (52)
for 3 <a<m When0<a<3,
Ei5(p123) < E12(p12) < E12(p13)
< Eia2(p1) < E12(p3)  (53)
for 0 < p < pep, and
El5(p123) < E12(p12) > E12(p13)
< Eia(p1) < Era(p3)  (54)
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3-qubit states: Amplitude-damping noise
p=0.1 p=20.2

State Type | Env | A B Env | A B Env | A B

GHZ Class | 99.08|78.54/100.00 | 98.90| 80.2 [100.00 | 98.53|81.92|100.00

W Class | 73.19|51.54|100.00 | 73.43{52.74|100.00 | 73.85|54.03[100.00
4 qubit states: Amplitude-damping Noise

H4 H5 H1 HQ H3 H4 H5 H1 H2 H3 H4 H5 Hl H2 HS
38.76|34.35/100.00|91.93{100.00 | 47.86{23.26|100.00{90.83|100.00 | 53.41|16.92|100.00{90.20{100.00

TABLE IV. Percentage of three- and four-qubit states satisfying 4proposed rankings under amplitude-damping noise. For each
type of initial states, the sample size considered is Ns = 5 x 10%.

for per < p < 1. Here, p., is given by
per = min [1, f(a)], (55)
where

2sina — \/4sinafsina + cosa — 1]
fla) = 2(1 — cos @) - (56)
Direct computation of all the expressions lead to the
inequalities as above, as shown in Appendix B4.
Our numerical analysis shows that the crossing point
P = per exists even for the case of LE ( Ej2(p12) and
p12(p13)) of gGHZ states subjected to AD noise, which
has been demonstrated in Fig. 4. While all of the three-
qubit hierarchies (Egs. (26)-(29)) remain valid for the
gGHZ states subjected to the AD noise, there exists a
considerable number of gW states which, when sub-
jected to AD noise, violates the microscopic hierarchy
“B”. In Fig. 5, a negative value of Ag demonstrates
a violation of the hierarchy “B”, which is found in a
considerable number of gW states, similar to the ones
found in the case of the PF and the BF noise. Also,
in the case of the three-qubit GHZ and W class states,
all Haar-uniformly sampled states follow hierarchies
“B” — a feature which remains constant qualitatively
as well as quantitatively when the noise strength is in-
creased. However, the fractions of the states obeying
“Env” and “A” are lower, and varies slowly with p. In
contrast, in the case of the four-qubit system, all the
microscopic hierarchies except H; remains valid for all
random four-qubit states, irrespective of the strength
of the noise. Also, the complementary nature of the
fractions of states obeying the envelope hierarchies H,
and Hj is lost in the present case, as in the case of DP
noise. However, the individual trends of the fractions
of random four-qubit states obeying H4 and Hs against
the noise strength remains qualitatively similar to that
found in the case of the PF, BF, and the DP noise, i.e.,
percentage of states satisfying H, increases with the in-
crease of p, while the same for Hy decreases.

VIII. CONCLUSIONS

A knowledge of how entanglement in a noisy quan-
tum state is affected due to a spatial distribution of

noise acting on the quantum state is essential for com-
plete characterization of the state. In this paper, we
studied different orderings of the values of localizable
and restricted localizable entanglement, computed us-
ing negativity as entanglement measure, over a specific
qubit-pair in a multiqubit system, when local noise acts
on the whole, or a group of qubits in the system. We
proved that the information on the noise applied to a
qubit in a multi-qubit state remains even after the local
projection measurement and subsequent tracing out of
the qubit from the system required to compute local-
izable entanglement (LE) as long as the measurement-
basis and the basis of the Kraus operators represent-
ing the noise model do not commute. This result re-
mains unchanged for single-qubit phase-flip, bit-flip,
and depolarizing noise. Depending on these results,
and the properties of entanglement in noisy environ-
ments, and on our analytical results regarding the ef-
fect of single-qubit noise on the restricted localizable
entanglement, we proposed a set of hierarchies that the
value of the localizable or restricted localizable entan-
glement should obey when local noise acts on a set of
qubits in the system. We tested the proposed rankings
among states based on localizable and restricted local-
izable entanglement in Haar uniformly generated ran-
dom three- and four-qubit systems. In the former, a
number of paradigmatic classes of states, such as the
generalized GHZ and the generalized W states, and
the GHZ and the W classes of states, are sent through
local noisy channels of the mentioned types, and the
percentages of states with respect to the validity of the
proposed hierarchies are reported. On the other hand,
we found that a hierarchy that emerges simply from the
cardinality of the set of noisy qubits is violated for both
three- and four-qubit states with the increase of the
strength of the noise. Our results, therefore, opens up a
new pathway for classifying the random states accord-
ing to LE in the states-space under the action of local
noisy channels, and are expected to be useful in quan-
tum information processing tasks like measurement-
based quantum computations and the quantum error-
correcting codes in which states with nonvanishing LE
can be used as resources.
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Appendix A: Projection measurement on gGHZ state
under Pauli noise

Here, we discuss the effect of the local projection
measurement in the basis of ¢* on the third qubit of
the three-qubit gGHZ state p = |gGHZ) (gGHZ| under
local uncorrelated Pauli noise, where we have adopted
the notation in Figs. 1-2 for the quantum states p5*. The
explicit forms of the noisy states corresponding to the
BF (), PF (z), and DP (xyz) noise are given by

® _ Py?
Plata = <l_§> P
p p § 6 5§
5 (1 - 5) (o1, pot, + a1, 01, ]

2
+ (g) al‘sl anpaflafz, foro =uz,2z, (Al)

+

pl(é) — (1 _ B) + Eg?po'lé, foré =z,z, (A2)

2

> (o) pof, + ol pop,)

d=x,y,z

5 8 5 &
Z 01,91,P91, 015,
8,0/ =x,y,z

(A3)

and
oyz 3p p
Pl(y)(14>0+462 alpol,  (A4)
=T,Y,z

where I; # I3 and [y, 12,1 € {1,2,3}. The projection op-
erators on qubit 3 in the basis corresponding to a spe-
cific Pauli operator o7, v = x,y, 2, are given by

1
Pl = 3 (I+(-1DFa7),

where k£ = 0, 1 corresponds to the pair of outcomes. In
the calculation, we shall use the following identity:

(A5)

Pl = P, (A6)

where k' = kif v = §, and ¥’ = k + 1 modulo 2 if
v # 6. Application of the projection operator P} for
7 = ,y, z, on any one of the qubits in the gGHZ state
yields

PIpP] =5 ® P, (a7)
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where p) is defined on qubits 1 and 2. For vy = z,
T = cos? % 100) (00| + sin? % 111) (11|

+(—1)k%sina [e77100) (11| + €' [11) (00]]
(A8)

for £k = 0,1. Note here that the superscript “z” in
py indicates a projection measurement on qubit 3 in
the basis of 0”. Using Egs. (A6)-(A8), the noisy post-
measured states on qubits 1 and 2 for different types
of noise can be determined in different scenarios in a

case-by-case basis.

1. Noise on two qubits: m = 2

We first consider the cases where noise is applied on
any two of the three-qubit system (Eqgs. (A1) and (A3)).
The possible situations constitute of two cases depend-
ing on whether noise is applied to the qubit 3, on which
the local projection measurement in the basis of % is
performed. The two different situations are as follows.

a li,ls € {1,2}

Here, the third qubit is free of noise, leading to &' = &
trivially from Eq. (A6). Without any loss in generality,
weassume [; = 1, l; = 2. Application of P} on the state
pl(fl)g (0 = z, 2) leads to the post-measured reduced state

;3%’“ on qubits 1 and 2 after tracing out qubit 3, where

(8% PN? o P p 5 5
Pt = (1 a 5) Pkt (1 a 5) [otpiot + ospiot]
2
+ (B) o103 k1 03,

5 (A9)

with § = z,%, and k = 0,1, which occurs with equal
probability p, = 1. Note that the superscript z in 57
indicates the operation of P on the initial gGHZ state,
while the index § (6 = z, z) in the superscript of ﬁg‘;’k)
denotes the type of noise (BF or PF) on the qubits 1 and
2.

In the case of the DP noise on qubits 1 and 2 also,
k = k' in Eq. (A6) due to application of pf on qubit 3 in

pl(fly;), which leads to

k 3p\°

= (1) 5
D 3p - -
S(1-2) Y (ool + adgiod)

d=z,y,z

P\? 5 68 ~x 5 5
+(Z> Z 0105 pRoY05 ,

6,0'=x,y,z

(A10)

after tracing out qubit 3, where p7 is given in Eq. (A8).
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In this situation, Eq. (A6) dictates the post-measured
quantum state. We assume /; = 1, /3 = 3. In the case of
BF noise (6 = z), k = k' according to Eq. (A6) for qubit
3, and the post-measured reduced two-qubit state over
qubits 1 and 2 is given by

5t = (1= ) 7+ Sotiiot,
corresponding to £k = 0,1, which stand for the out-
comes of the measurement with equal probability p;, =
3. However, in the case of PF noise (§ = z), k may not
equal to &’ on qubit 3 for all the terms in the expansion

of p(z) (Eq. (A1)), and the application of P}, k = 0,1,
on qubit 3 in {3 leads to

(A11)

= -1~ 1) b
+2 [(1JQ’) pi + Soipiot .
5= (Do)t ]
210D i

In the case of the DP noise, similar situations as in
the case of the PF noise arise, and the post-measured
states on qubits 1 and 2 corresponding to the projection
measurement outcomes k£ = 0, 1 due to the application
of P} on qubit 3 are given by

~(zyz,0 p 3p
- 0-p[6-1

. p §~x 6§
Pg"‘i Z oyp50q

d=m,y,z

p 3p “i p ~T
+3 (1— 4)01"’4 > olpiel | (Al4)
d=z,y,2
~(zxyz,1 p 3p ~ p ~T
g = (1—5) (1—4> Paf+1 Y. aipto]
d=x,y,2
P 3P\ P .
) (1 - 4) Po + 1 Z o} pgo? | (A15)
d=z,y,2

2. Noise on a single qubit: m =1

We now focus on the case Pauli noise applied to a
single quit in the three-qubit system (Egs. (A2) and
(A4)). Similar to the case of m = 2, here also exist two
different situations, as follows.

a 1#3

In situations where qubit 3 is free of noise, the post-
measurement two-qubit reduced state on qubits 1 and

2 corresponding to the different outcomes % of the pro-
jection measurement P on qubit 3 for different types
of noise are as follows.

BE/PF noise:

5k P\ oo D 5
P§2 ) = (1 - 5) Pr + §Ufpkal§, 6=u=x,z (Al6)

DP noise:

zyz,k
P(my )= ( _>

b. 1=3

k+* > oipkol- (A17)

5 Y,z

In situations where qubit 3 is noisy, the post-
measurement two-qubit reduced state on qubits 1 and
2 corresponding to the different outcomes £ of the pro-
jection measurement P on qubit 3 for different types
of noise are as follows.

BF noise:

5" = b (A18)

PF and DP noise:

Yz, z P\ -z P\ .z

P50 = o5 = (1=-2) i + () 1, (A19)
Yz, z p ~x p ~

P§2y R P§2 = <1 - 5) p1 + (5) po-  (A20)

Appendix B: Proofs of the Propositions
1. Proof of Proposition IV

We first consider the case of m = 3. A local pro-
jection measurement P on qubit 3 in the basis of o*

leads to the post-measurement states ﬁgé’k), k=0,1
(see Appendix A). The probabilities p;, of getting the
measurement outcomes k = 0, 1 on qubit 3 are the same
(p = 1/2,k = 0,1). The matrices obtained by perform-
ing partial transposition with respect to qubit 1 in the

states ﬁ§2 and ,012 Y have identical eigenvalues, given
by
1 1
AL = 3 (I4+cosa), g = 3 (1 -cosa),
1 1
A3 = 3 (1—p)’sina, Ay = —5 (1-p)’sina, (B1)

with p (0 < p < 1) being the single-qubit noise-
strength. From the definition of the gGHZ state, one
can assume cos? ¢ > sin® ¢ without any loss in gener-

s

ality, which imposes the restriction 0 < o < 7 on .



In this region, Ay < 0 while A; 23 > 0. Therefore, the
localizable negativity is given by

1
2
Proceeding in similar fashion, it can be shown that in
the case of m = 2,

Ely(p123) = 5(1 = p)’sina. (B2)

1 .
Eia2(p12) = Er12(p13) = 5(1 —p)*sina, (B3)
while in the case of m =1,

1
Eix(p) = 5(1 —p)sinaVli=1,2,3. (B4)

Noticing the power of (1 — p) in the expressions for
RLEs,

El5(p123) < Eis (p12) = Ela (p13)
< Eiz (Pl) = Eiz (Ps) . (B5)

Hence the proof. |

2. Proof of Proposition V

The case of the BF noise belongs to CASE 1 in the
proof of Proposition I. Hence, by using Corollary 1.1,

E1y(p123) = Eiz(/}u)’
Eiz(ﬂlii) = Eiz(ﬂl)a
Eiz(ﬂ%) = E12(92)~ (B6)

Straightforward algebra leads to the expressions of
E1y(p12), E1z(p1), and Eiy(p3) as

Biglpa) = g [smavF-2@-p)], @)

1 [\/p2 +4(1 — p) sin® « P} . (B3)

E12(P1) =

El5(p3) = = sina, (B9)

where
f=[P+@2-p? - 42 -p)’sin®. (B10)

Note that at p = 0, E5(p12) = E15(p1) = Ei5(p3). For
increasing p in the range 0 < p < 1, Ej,(p3) remains
independent of p, while E{,(p12) and E{,(p1) decreases
monotonically with p. Also, for p > 0, E{,(p1) = 0 iff
p = 1 Va # 0. This implies that Ej,(p1) < Ei5(ps3) for
the full range of p, the equality being only at p = 0.

On the other hand, the function E{,(p12) can be iden-
tified as |A|, where A = [2p(2 — p) — sinav/f] /8 is the
negative eigenvalue of the matrix obtained by perform-
ing partial transposition with respect to qubit 1 on the
post-measured state ,553”“) over qubits 1 and 2. Note
that X is negative since sin a/f > 2p(2 — p), which im-
plies that E’5(p12) = |A| when

[p? +(2— p)2]2 1 +sin? asin? 8
4p?(2 — p)? sin? o ’

DO

(B11)
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FIG. 6. (Colour online) Variation of E15(p1) — E12(p13) > 0
as a function of « and p, where « is in radian, and p is dimen-
sionless, so is the y-axis.

and Ej5(p12) = 0 otherwise. The condition (B11) de-
fines a critical value p = p. given by the solution of
the equation obtained by replacing the inequality in
(B11) by an equality, such that for p < p., Ei5(p12) =
|Al, while for p > p., Ejs(p12) = 0. Therefore, for
pe < p < 1, El5(p12) < Ei5(p1), where use use the
fact that Ei,(p1) = 0iff p = 1 Yo # 0. On the
other hand, in the range 0 < p < p., we observe that
prooving Ei,(p12) < Ejy(p1) is equivalent to proving
Ei5(p1) — max[Eiy(p12)] > 0. Noting that Ei,(pi12)
is maximum at 8 = 0,7, 27, -+, one can show that
E{5(p1) — max [Ef5(p12)] > 0in the range 0 < p < p,
thereby completing the proof. |

3. Proof of Proposition VI

Following the same prescription as in Appendix A
and the proofs of the Propositions IV-V, the expres-

sions for Ei,(p123), Ela(p12), Ei2(p13), Eia(p1) and
E1{,(ps3) are calculated as

Fia(pras) = § [20—p)Psina— (2~ p)p] , (B12)
Eiapw) = § [20— p)?sina — (2~ p)p] , (B13)
Ely(p1s) = é [Jm - 2p] : (B14)

Bialpr) = 5 [VIF+ 1o — 2], (B15)
Fialps) = 5 [(1 — p)sinal, (B16)

where
f1 =2sin® a (8 — 32p + 46p* + 8p* — 32p?) , (B17)
f2 =sin?a(p —2)(3p — 2). (B18)
It is clear from the expressions of E’5(p123) and

Ei5(p12) that Efy(p123) < Eiy(p12) for the full range
of p Va. Also, straightforward algebra shows that
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Ei5(p13) — El5(p12) can be simplified as
Eia(p13) — Bla(pr2) =
1 .
3 [\/4192 +/1—=21-p)(2(1 —p)sina —p)} (B19)

Simple algebra follows,
(4p> + f1) —4(1 — p)? (2(1 — p)sina — p)® =
4p3(2 — p) + 16sinap(1 — p)?

asin?al3 - 12p + 17p% — 12p° + 3p4} (B20)

which is a positive quantity for the full range of p, and
for the allowed values of ¢, ie., (0 < o < %), imply-

2
ing E{y(p13) > Ei9(p12). Similarly, for Ef5(p3) and
EiQ(pl)/

Ei(ps) = Ei(p1) = 5 sina [4(1 - p) + psin a[B21)
which is > 0 for all values of p and allowed values of «,
thereby proving E’5(p3) > E{5(p1). On the other hand,
Ei5(p1) — Ei5(p13) > 0 for all values of «, as shown in

Fig. 6. Hence the proof. |

4. Proof of Proposition VII

The expressions of Ei2(p12), Ei2(p13),E12(p1) and
Elg(pg) are

1
El5(p12) = 3 [(1 (sina+ pcosa — p)], (B22)
1
Eis(p13) = 1 \/fl +4p?sin = — 2psin® } , (B23)
, 10
Eiy(p1) = 3 fa+4p?sin® = —2psin® = |, (B24)
1
Elylps) = 5 [\/ ~psin a} , (B25)
10 o .
El5(p1as) = 3 (1 —p)3sin®a — p(1 — p)(1 — cos a)} ,
(B26)
where
fi =4(1 —p)?sina, (B27)
fo = 4(1 —p)sin®a. (B28)
Note that at p = 0, E{5(p12) = Els(p13) = Eia(p1) =

E{5(ps) and the maximum value of these quantities oc-
cur at &« = 7/2. In the range 0 < p < 1, Eqa(ps) ,
E{5(p13) and Ej,(p1) decrease monotonically with in-
creasing p, and vanish only at p = 1. In contrast,

E{5(p12) may vanish at a critical value p = p,., which
depends on the state parameter «, and is given by

P = min [cot %, 1} . (B29)

In the range 0 < o < 7§, cot § > 1, implying p. = 1.
On the other hand, in the range F<a<mcotg <1,
leading to p. = cot 5.

In the case of Ej5(p13) and Ei,(p1), note that both
fi,fa>0for0 <p <1,and fo > f; Vp, thereby leading
to Ef5(p1) > Els(p13). The values of these quantities
vanish only at p = 1.

Next, we consider the difference between E},(p13)
and Ej5(p12) as

El5(p13) — E1a(p12)

1
=1 <\/4(1 — p)2sin® a + 4p? sin? % — g) , (B30)

where
9 . o . .2 @ .
g = (4p” sin ) + 2sina — 2psin 7~ 2psin a{B31)
Note that the solution of p from the equation E{,(p13)—
Ei5(p12) = 0 provides a crossing point of the curves

representing the variations of E{,(p13) and E{4(p12),
which is given by
Per = min [1a f(Ot)] ) (BSZ)

where

2sina — y/4sinafsina + cosa — 1

]
2(1 — cos @) - (B33)

fla) =

Intherange 0 < a < 5,0 < p < per (Per < p < 1),
Eis(p3) > Ela(pi2) (Bla(p1s) < Eis(p13)). On the
other hand, in the range § < a < 7, Ej,(p13) —
Eis(p12) = Oonly at p = 1, and Ej,(p13) > Ejs(p12)
for the whole range of p.

Next, for E{4(p1) and Ef5(p3), we get

E15(ps) — Eiz(p1)
1
=1 (h— \/4(1 — p)sin® a 4 4p2 sin 2) (B34)
where
h = (2psin2%+2\/l—psina). (B35)
Since Ef,(p1) — E15(ps) > 0in the full range 0 < p < 1,

Ei5(p1) = Eis(ps). The proof of Eiy(p12) > Eis(pi23)
also follows from the fact that E{5(p12) — Ei5(p123) >
0 for all values of p, which can be shown by using
the expressions of Ej,(p12) and Ej,(p123 as given in
Egs. (B22) and (B26).
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