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Considering ground state of a quantum spin model as the initial state of the quantum battery,
we show that both ordered and disordered interaction strengths play a crucial role to increase the
extraction of power from it. In particular, we demonstrate that exchange interactions in the xy-
plane and in the z-direction, leading to the XY Z spin chain, along with local charging field in the
x-direction substantially enhance the efficiency of the battery compared to the model without inter-
actions. Moreover, such an advantage in power obtained due to interactions is almost independent
of the system size. We find that the behavior of the power, although measured during dynamics, can
faithfully mimic the equilibrium quantum phase transitions present in the model. We observe that
with the proper tuning of system parameters, initial state prepared at finite temperature can gener-
ate higher power in the battery than that obtained with zero-temperature. Finally, we report that
defects or impurities, instead of reducing the performance, can create larger amount of quenched
averaged power in the battery in comparison with the situation when the initial state is produced
from the spin chain without disorder, thereby showing the disorder-induced order in dynamics.

I. INTRODUCTION

In modern era, devices which store energy for later
purposes are extremely useful to fulfil our daily needs
ranging from communication appliances to medical ac-
cessories like artificial cardiac pacemakers, hearing aids.
Prominent examples of such energy storage include bat-
teries consisting of one or more chemical or electrochem-
ical cells, converting chemical energy to electrical one.
They can either be disposable or rechargeable – the later
ones can be charged externally by using electricity and
are very convenient due to their multiple usage facili-
ties. On the other hand, it has been realized over a last
few decades that technologies like computers, communi-
cation gadgets based on quantum mechanical principles
can perform more efficiently than their classical analogs
[1]. Importantly, such devices have already been built
in laboratories by using physical systems like photons,
ion-traps, superconducting qubits [2–12].

It is therefore natural to ask whether quantum me-
chanical properties like coherence [13], entanglement [14]
can also play a role to efficiently store or generate en-
ergy. In this respect, two distinctly different versions of
quantum batteries are proposed – (1) arbitrary number
of independent quantum systems acts as cells of a bat-
tery and entangling unitary or nonunitary operations are
applied for a suitable time period to drive the system
leading to the extraction of energy from it [15–25]; (2)
secondly, the ground state of an interacting spin model
can be considered as the initial state of the battery which
can then be used as a storage media where charging is
performed via quantum mechanically allowed operations
[26, 27]. Although the former proposal have extensively
been studied in recent years, the later one have recently
been explored and was shown that nature of coupling of
the initial ordered Hamiltonian is crucial for obtaining
the improvement in the power [25]. In this paper, we
concentrate on the second kind where the initial state of
the battery is prepared in the ground or thermal state of
the quantum spin chain and local charging field is used
to to drive the system required to extract power from

the battery. With the development of ultracold atoms
trapped in optical lattices or in trapped ions or in po-
lar molecules, the basic ingredient for quantum battery,
quantum many-body Hamiltonians, can currently be im-
plemented and engineered in laboratories, thereby creat-
ing possibilities of manufacturing quantum technologies
using these systems [4, 8, 28–31].

On the other hand, the systems without any impuri-
ties or defects are in general difficult to build and at the
same time, keeping them at absolute zero temperature is
also hard. Therefore, disordered systems [32–40] and ef-
fects of temperature on physical properties of many-body
systems have attracted lots of attentions in recent times
[41–48]. Moreover, it was discovered that the disordered
models posses exotic phases like Bose glass [49–52] (cf.
[53–57]) which are not present in the homogeneous sys-
tems as well as can show counter-intuitive phenomena
like Anderson localization [32], many-body localization
[58–62], high-Tc superconductivity [63, 64]. These disor-
dered systems can also be created in a controlled manner
in ultracold gases, and hence one can observe these phe-
nomena and quantum phases in experiments, making this
field more appealing [65–70].

In this paper, we first investigate the role of many-body
interactions, ordered as well as disordered, of the parent
Hamiltonian and the temperature of the initial state on
the efficiency of the battery. Specifically, we show that
in case of the transverse XY and the XY Z model with-
out disorder, power of the battery critically depends on
the interactions and its characteristics like the ferromag-
netic or the antiferromagnetic ones. We also find that the
advantages in power generation due to the interactions
remain almost same for different system sizes. Moreover,
signatures of quantum critical points, present in these
models, are clearly visible in the trends of the power.
Note that although the output power of the battery is
measured in the evolution of the system, it can still indi-
cate the equilibrium property of the parent Hamiltonian
(cf. [71, 72]). We also show that suitable tuning of inter-
actions and temperature lead to a situation where power
of the quantum battery increases with the increase of
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FIG. 1: Schematic diagram of a quantum battery. Initially,
thermal or the ground state of a spin chain, having interaction
part, Hint and the local magnetic field part, Hfield, acts as
a quantum battery. It is then driven by the local magnetic
field, Hcharging to extract maximal power from the battery.

temperature, although one intuitively expects that the
initial state prepared at high temperature can destroy the
effectiveness of the quantum battery. Moreover, we ob-
serve that the Gaussian-distributed random interaction
strengths, both in the xy-plane and in the z-direction of
the XY Z model, enhance the quenched-averaged power
compared to that of the ordered case. Such counter-
intuitive phenomena were already demonstrated in phys-
ical quantities like magnetization, correlation length, en-
tanglement computed in the static scenario i.e., in the
ground or in the thermal states of the disordered mod-
els [73–92]. Our results indicate that such advantages
can also be found in closed dynamics of the systems with
defects.

The paper is organized as follows: In Sec. II, we intro-
duce the concept of quantum battery and the respective
measure to quantify its efficiency. We then discuss the
quantum spin models, both ordered and disordered ones,
that we use for modelling quantum battery (Sec. III). We
then present the results in Sec. IV for ordered spin mod-
els with the initial states of the battery being either the
ground state or the thermal state with finite temperature.
Finally, we show that models with random exchange in-
teractions can increase the quenched averaged power of
the battery in Sec. V. The conclusion is in Sec. VI.

II. QUANTUM BATTERY BUILT FROM
QUANTUM SPIN CHAIN: SET THE STAGE

A quantum battery is usually considered as N iden-
tical and independent quantum mechanical systems, in
arbitrary dimension, expressed by a Hamiltonian, H0,
having non-degenarate eigenvalues. To extract work, the
system is driven by an interacting Hamiltonian, acting
on the total N -party system, Hg

charging, which can, in

general, be time-dependent [15–25]. Such Hamiltonian
can, in principle, create entanglement in the dynamical
state.

In contrast to this, we choose a quantum battery, made
up of N interacting spin- 1

2 particles governed by a Hamil-
tonian, H0. In this work, one of our primary goal is to
study the effect of interactions and its nature on the effi-
ciency of the battery. Hence the Hamiltonian considered
here constitutes of two parts, given by

H0 = Hfield +Hint, (1)

where Hfield represents the external local magnetic field,
while Hint is two or more-body interactions between the
spins of the spin-chain. To drive the system (or more
precisely, the battery), a local charging field Hcharging,
is applied on each individual spin. See Fig. 1 for the
schematic representation of the battery. With Hint =
0, the battery and its charging process only consist of
local terms, so that it becomes exactly analogous to a
situation which cannot posess any quantum features like
entanglement or quantum discord. Note that the similar
scenario is considered in Ref. [26, 27] although unlike the
local field, the interacting part of the Hamiltonian along
with the charging field is employed to extract the work
from the battery.

Let us first notice that one can trivially increase the
efficiency of the battery by multiplying some constant
(greater than one) to H0, or by increasing the magnitude
of the local part, Hfield, of the Hamiltonian. To make
the analysis non-trivial, we normalize H0 as

1

Emax − Emin
[2H0 − (Emax + Emin)I]→ H0 (2)

where Emin and Emax are minimum and maximum en-
ergy eigenvalues of H0 respectively. Due to this normal-
ization, the spectrum of H0 is now bounded in [−1, 1]
irrespective of the parameter values. This normalization
enables us to exactly find out the consequence of Hint in
power compared to the case with vanishing interaction
part, i.e., Hint = 0 which may not have any quantum
characteristics.

The charging of the battery in a closed system takes
place according to the unitary operator, given by

U(t) = exp(−iHchargingt), (3)

which is responsible for the time-evolution of the initial
state, ρ(t = 0), of the battery. Initially, the battery is
prepared either in (i) the ground state of the normal-
ized Hamiltonian, which corresponds to the situation of
absolute zero temperature, or in (ii) the canonical equi-
librium state, ρth = exp(−βH0)/Z, for a given inverse
temperature, β = 1/kBT , with Z = Tr(exp(−βH0)) and
kB being the corresponding partition function and the
Boltzmann constant respectively. It is important to note
here that since the absolute zero temperature is hard to
achieve in experiment, a state with finite temperature is
a natural choice for the initial state of the battery. At
a particular time instant t, the total work-output by the
battery can be defined as

W (t) = Tr(H0ρ(t))− Tr(H0ρ(t = 0)), (4)

where ρ(t) = U(t)ρ(t = 0)U(t)† is the evolved state of
the system. The corresponding average power for a given

time t can be written as P (t) = W (t)
t . The aim in prepar-

ing the battery is to maximize the extractable power, and
hence it is important to choose a proper time when the
evolution should be stopped. Towards this objective, the
maximum average power obtained from a given battery
can be quantified as

Pmax = max
t

W (t)

t
, (5)
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where the maximization is performed over time, t. In the
rest of the paper, we call Pmax as the power of the bat-
tery which is the maximum power, obtained in optimized
time.

We use exact diagonalization techniques to obtain the
ground (or thermal) states as well as the evolved states.
For optimization over time, t, we first use global opti-
mization algorithms (simulated annealing and straight-
forward grid method), and then employ the widely used
COBYLA local optimization algorithm [93].

III. QUANTUM SPIN MODEL AS BATTERY

Let us describe the properties of quantum XY Z
Heisenberg spin chain with magnetic field which we con-
sider as H0. Its ground or canonical equilibrium state
serves as the possible initial state of the battery. The
Hamiltonian consisting of N spin-1/2 particles with open
boundary condition reads as

H0 =
1

2
h

N∑
j=1

σzj︸ ︷︷ ︸
Hfield

+
1

4

N−1∑
j=1

Jj [(1 + γ)σxj ⊗ σxj+1 + (1− γ)σyj ⊗ σyj+1] +
1

4

N−1∑
j=1

∆jσ
z
j ⊗ σzj+1︸ ︷︷ ︸

Hint

, (6)

where σα (α = x, y, z) represents the usual Pauli spin
matrices, h is the strength of the external magnetic field
at each site, 0 ≤ γ ≤ 1 is the anisotropy constant, and
{Jj}, {∆j} are the nearest neighbor coupling constants
in the xy-plane and in the z-direction respectively. They
may or may not depend on site j. In a closed system,
the quantum battery can be charged by applying local
external magnetic field in the x-direction with strength
ω, as

Hcharging =
ω

2

N∑
j=1

σxj . (7)

To obtain the work and then power of the battery, the
time-dynamics is computed by constructing the unitary
operator via Eq. (7) where the ground or the thermal
state of the spin model in Eq. (6) is used as the initial
state. It is important to stress here that realizability of
these models by currently available technologies create
possibilities to implement the proposed battery in labo-
ratories.

A. Quantum XYZ Heisenberg model with
homogeneous interaction

Depending on the scenarios, whether the sets, {Jj} or
{∆j} is site-independent or not, the spin-system can be
called ordered or disordered. In this paper, we will ex-
plore both the cases. Let us first consider the system
with Jj = J and ∆j = ∆, i.e. the parameters involved in
Eq. (6) are site independent, leading to the ordered spin
chain. In one dimension, Eq. (6) represents a paradig-
matic families of Hamiltonians with nearest neighbor in-
teractions, having a rich phase diagram at zero temper-
ature. Let us now discuss some important sub-classes of
H0, and their phase portraits.

1. ∆ = 0, and γ ≥ 0 [94–96]: γ = 0 represents
the transverse XX spin chain, while the XY spin
model having transverse magnetic field is with

γ 6= 0. They belong to two different universal-
ity classes – the former one has a gapless spin-
liquid (SL) phase for |J/h| > 1, and a paramag-
netic (PM) phase for |J/h| < 1, while the later
one belongs to the Ising universality class, con-
sisting of a PM (|J/h| < 1), an antiferromagnetic
(AFM) (J/|h| > 1), and a ferromagnetic (FM)
(J/|h| < −1) phases. Both the models can be
solved analytically by Jordan-Wigner transforma-
tions [94–96] for arbitrary system size including in
the thermodynamic limit.

2. γ = 0, ∆ 6= 0 [97–99]: The model is known as the
XXZ spin chain. For h = 0, the model is inte-
grable – with J = 1, there is an AFM region for
∆ > 1, and ∆ < −1 corresponds to the ferromag-
netic (FM) one, while −1 < ∆ < 1 is the gapless
SL phase. By using different approximate and nu-
merical techniques, quantum critical lines and their
corresponding phases of the system with h 6= 0 has
also been explored [97]. For example, with small
values of magnetic field and ∆, a new phase, Néel
order in the y-direction, develops, which is known
as spin-flop phase (SF).

3. ∆ 6= 0, γ ≥ 0 (XY Z model)[100–102]: The model
is not exactly solvable. Several numerical and ap-
proximate studies of the XY Z model with field re-
veal that it has a very rich phase diagram. In par-
ticular, like the XXZ model, it also posses FM,
AFM and SF phases although for non-zero values
of γ, two new quantum phase transitions [103, 104]
of different kinds appear – one from SF to a new
phase called gapless floating phase (FP), while an-
other one is from the FP to the AFM phase.

We will show in the next section that tuning parameters
leading to different quantum spin models play an essen-
tial role to build and maintain the performance of the
battery.
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B. Quantum XY Z model with random interaction
strength: Disordered quantum spin model

Let us now consider the system, in which one of the in-
teraction strengths are chosen randomly. It can be found
during the preparation process of the materials or due to
dislocations of atoms from their regular lattice sites or
due to environmental effects [105–109]. Since the change
of disorder in these systems remains almost fixed for cer-
tain times, specifically a much longer duration than that
of the evolution of the system, this kind of disorder can
be called “quenched” which we will consider in this pa-
per. It can also be created and controlled in laboratories
with cold atoms in optical lattices, linear chains of ions
etc. [65–70]. In this paper, two situations are considered
which are as follows:

1. The nearest neighbor exchange interaction in the
xy-plane, {Jj/|h|}, are randomly chosen from a

Gaussian distribution with mean J/|h| and the
standard deviation σJ which we refer as the
strength of disorder. σJ = 0 corresponds to the
ordered case. Here, {∆j/|h|} = ∆/|h| remains in-
dependent of the sites. Quenched averaging is per-
formed by first computing the power of the bat-
tery for each realization with random-distributed
{Jj/|h|}, and then by taking the average over all re-
alizations. Mathematically, for a physical quantity,
O, and for a randomly chosen parameter, {Xj},
with mean X and standard deviation σX involved
in the system, quenched averaged quantity can be
represented as

〈O(X,σX)〉 =

∫ ∫
...

∫
O{Xj}d{Xj}, (8)

where the integration is carried out with respect
to the probability distribution by which the {Xj}
are chosen. In our case, the power of the quantum
battery (Pmax) is the physical quantity, which has
to be quenched averaged over the parameter-space,
{Jj/|h|}, denoted by 〈Pmax〉.

2. Fixing {Jj/|h|} = J/|h|,∀j, we also study the ef-
fect of disorder on power by choosing {∆j/|h|}
randomly from a Gaussian distribution with mean
∆/|h| and standard deviation σ∆.

IV. INTERACTION ENHANCES THE POWER:
ORDERED CASE

In this section, we address the question whether near-
est neighbor interactions can be beneficial for increasing
the extraction of power from the battery. To demonstrate
this, we first consider the ground state as the initial state
of the quantum ordered XY model with transverse mag-
netic field as the battery, and then move on to the role of
interactions in the z-direction by considering the XY Z
model. We further study the effects of finite temperature
on the efficiency.
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FIG. 2: (Color online.) Pmax (ordinate) vs. J/|h| (abcissa).
Pmax is computed for the transverse XY model (i.e., ∆/|h| =
0) with different values of the anisotropy parameter, γ. Here
N = 8. In the paper, all the plots are for the same system size,
unless mentioned otherwise. Both the axes are dimensionless.

A. Effects of interaction term in the XY model

Let us consider the ground state of the transverse XY
model, and compute the power, Pmax, with the varia-
tion of J/|h| for fixed values of system size, N . The
behavior of power, depicted in Fig. 2(a), shows that the
battery prepared by using interacting Hamiltonian has
higher power as output for certain system parameters
than that of the system without interactions. For demon-
stration, we fix some values of γ, and the strength of the
charging field as ω = 2|h|. The interesting observations
in the pattern of Pmax are listed below:

1. Positive vs. negative interaction strength. Positive
and negative coupling constants, i.e., J/|h| > 0 and
J/|h| < 0 indicate the nature of interaction to be
antiferomagnetic (AFM) and ferromagnetic (FM)
ones. As depicted in Fig. 2(a), we observe that
Pmax increases when 0 < J/|h| . 1, and reaches
its maximum value close to J/|h| ≈ 1, while it
decreases for J/|h| < 0. Typically, static physi-
cal quantities, like magnetization, classical corre-
lators, entanglement [14], in the ground state are
symmetric across J/|h| = 0-line [30, 31, 110]. The
asymmetry observed here arises due to the choice
of uniform charging field in the x-direction, given
in Eq. (7) and also the battery Hamiltonian, H0.
Specifically, when interaction strength is large i.e.,
|J/h| > 1, the initial state is either in the AFM
phase or in the FM phase where spins are oriented
in the x-direction for higher values of γ. Now, since
the charging field is in the x direction, it can easily
drive the system without demanding more energy,
leading to low amount of power generation. On the
other hand, when |J/h| < 1 i.e. in the PM phase,
spins have affinity towards the z-direction due to
the external field. Therefore, the charging Hamil-
tonian needs more energy to drive the system out-
of-equilibrium, thereby leading to high amount of
power in this phase. However, the pattern of Pmax
clearly establishes that the interaction of H0 helps
to improve the performance of the battery in the
paramagnetic phase of the XY model. It is clear
from the Fig. 3(b) that for any values of anisotropy



5

0.00 0.25 0.50 0.75 1.00
γ

0.00

0.25

0.50

0.75

1.00

1.25

J
m
a
x
/|h
|

(a)

N = 4
N = 5
N = 6
N = 8
N = 10

0.00 0.25 0.50 0.75 1.00
γ

0.0

0.1

0.2

0.3

0.4

0.5

P
a
d
v

m
a
x

(b)

N = 4
N = 5
N = 6
N = 8
N = 10

FIG. 3: (Color online.) Dependence of Pmax on the inter-
action strength and the anisotropy parameter, γ. Plots are
for different system sizes and ∆ = 0. (a) Jmax/|h| vs. γ.
Jmax/|h| represents the interaction strength for which Pmax
reaches its maximum value for a given value of γ and N .
Note that for higher values of γ, Jmax/|h| does not depend
on N . (b) P advmax against γ. The advantages in power due the
introduction of XY -exchange couplings are measured by the
quantity P advmax = Pmax(Jmax/|h|) − Pmax(J/|h| = 0). Inter-
estingly, P advmax becomes scale invariant for the entire range of
γ. Both the axes are dimensionless.

parameter ( 0 ≤ γ < 1), power gets increased in
presence of interaction in the PM phase. So, in
terms of the enhancement of power we find that
the observation is independent of the anisotropy
parameter (γ).

2. Dependence on γ. Although, the increment
of power of the battery is independent of the
anisotropy parameter, the magnitude of enhance-
ment, however depends on γ. Precisely, maxi-
mal power of the battery greatly depends on the
anisotropy parameter, as it is evident from Fig.
2(a). Among all the γ values, if the battery is ini-
tially in the ground state of the XX model having
γ = 0, the power output is maximum, as compared
to the other values of γ. Also, from Fig. 2(a), we
find that the range of J/|h|, where the advantage
in power can be obtained, shrinks with increasing
γ. The reason behind this feature is the same as
stated in the previous point, that, with increasing
γ, the strength of exchange interaction in the y-
direction decreases, and as a result, the tendency
to align (or anti-align) in the y-direction also de-
creases. Therefore, it continuously becomes easier
for the charging Hamiltonian to drive the system.
To visualize the γ - dependence, we identify the
interaction strength, J/|h|, for which Pmax reaches
its maximum value, which we refer as Jmax/|h|. We
then investigate the behavior of Jmax/|h| with γ for
different system sizes, as shown in Fig. 3(a).

3. Role of exchange interaction: Scale invariance.
The interaction part, Hint, in H0 is important in
Pmax as already discussed. To quantify its influ-
ence, we introduce a quantity,

P advmax = Pmax(Jmax/|h|)− Pmax(J/|h| = 0), (9)

where Pmax(Jmax/|h|) and Pmax(J/|h| = 0) are
respectively power measured at Jmax/|h| defined
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FIG. 4: (Color online.) Dependence of power on system size,
N , for γ = 0.1 and ∆ = 0. We plot the variation of Pmax with
J/|h| for different system size, N . (Insets) Finite-size scaling
of the critical points, JcN/|h|, as indicated by the power. We
plot ln |(JcN − Jc∞)/h| (both numerical data and fitted lines)
as functions of lnN for FM ↔ PM (left inset) and AFM ↔
PM (right inset) transitions. Both the axes are dimensionless.

above and at J/|h| = 0. P advmax reaches its maximum
value at γ = 0, and decreases with the increase of
γ as seen in Fig. 3(b). Specifically, we find that
when γ = 0, nonvanishing interaction, in the chain
of N = 8 sites, can produce upto 28.8% increase in
power, thereby showing the relevance of quantum
battery. Note, however, that for γ = 1, we find
that P advmax = 0, i.e., the local scenario is most effi-
cient, and interaction does not help. Importantly,
we observe that P advmax does not depend on the num-
ber of spins in the chain, showing scale invariance
property of the advantage.

4. Quantum phase transition signaled through power.
The second-order quantum phase transition [41,
111, 112] in the XY model at zero temperature can
be detected by the first derivatives of several physi-
cal quantities, which include correlation length [41],
entanglement [14], quantum discord [113, 114] etc.
Since Pmax is measured in the evolution, it is not
apriori clear that it can identify quantum phase
transitions. We here show that for low values of
γ, the dynamical quantity, Pmax itself, can signal
quantum phase transition by showing a finite jump
around |J/h| ≈ 1. For higher values of γ, Pmax
changes its curvature from concave to convex so
that its derivative shows the kink. It is interesting
to note here that in a different context of dynamical
phase transition [71, 72], quantity like Loschmidt
echo defined as the distance between the ground
and the evolved states of the quantum spin model
can also mimic the equilibrium phase transition.
Our results, therefore, suggests that it will be in-
teresting to find (some) other dynamical quantities,
similar to power output, which can also carry the
information about the equilibrium phases of the ini-
tial systems.
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5. Dependence of power on N. With the variation of
N , we observe that in the range of −1 . J/|h| . 1,
the power does not change its behavior substan-
tially. However, Jmax/|h| which leads to maximum
Pmax shifts towards J/|h| = 1 with the increase of
N , although the value of the maximum power, as
well as maximum advantage in power remain al-
most unaltered with N (see Figs. 3 and 4). This
is possible because the curvature of Pmax becomes
steeper with N . On the other hand, finite-size ef-
fects on Pmax are visible for J/|h| < −1 as well as
for J/|h| > 1 (Figs. 2(a) and 4).

6. Scaling. Since power of the battery can detect
equilibrium quantum phase transition as discussed
above, it is now natural to ask the scaling law fol-
lowed by it. Ambitiously, we find the finite-size
scaling of critical points, as indicated by the be-
havior of Pmax as∣∣∣ (JcN − Jc∞)

h

∣∣∣ = 1.039×N−1.78, (10)

for both FM↔ PM and AFM↔ PM transitions for
γ = 0.1 ( Fig. 4(insets)). Here JcN/|h| is computed
where the power shows a first jump for a fixed value
of N , while Jc∞/|h| = 1 as known for the trans-
verse quantum XY model in the thermodynamic
limit. The reason for choosing the first jump in the
evaluation of scaling is discussed in Appendix A.
Note, moreover, that we possibly should not com-
pare the scaling exponent obtained above with the
other indicators of QPT – (1) other physical quan-
tities detecting QPT are calculated in the ground
states while the power output is found in dynam-
ics; the above study establishes that even the dy-
namical quantity can also carry information about
QPT, (2) secondly, the system sizes simulated are
too small to demand any comparison.

B. Role of entanglement

We have already shown that many-body interactions
can increase the efficiency of a quantum battery. Let
us now ask a natural question – does inter-spin entan-
glement play any role in the performance of the battery?
To answer this query, we compute bipartite entanglement
[14] of the reduced density matrix obtained by tracing out
all the parties except two from the middle of the chain
of both the initial state and the state at the time when
Pmax is optimized. We take the pair of spins from the
middle of the chain to minimize any boundary effects due
to the open boundary condition. In particular, we cal-
culate logarithmic negativity [115] which is the modulus
of the negative eigenvalue of the partial transposed state
for two spin-1/2 particles [116, 117].

Let us first consider the XY model. If one compares
Figs. 5 (a) and 2 with J/|h| > 0, we find that the nearest
neighbor entanglement qualitatively mimics the features
of Pmax – it increases in regions, −1 . J/|h| < 0 as
well as 0 . J/|h| < 1 and then decreases with J/|h| for
different values of γ 6= 0. Such characteristics indicates
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FIG. 5: (Color online) Plot of nearest neighbor entanglement
of the ground state in the XY Z model having different val-
ues of γ with the variation of J/|h| (x-axis). Plots are for
specific values of the interaction strengths in the z-direction,
∆/|h|, as mentioned in the headings of each plot. We observe
that entanglement is symmetric with J/|h| = 0 which is not
the case for Pmax (comparing Figs. 2 and 6) although the
patterns for both of them are qualitatively similar in some
regions for γ > 0. Hence one can argue that entanglement
can be a necessary ingredient for good quantum battery, but
not sufficient.

that entanglement can be a necessary ingredient to ex-
tract more power, but not sufficient, which is in parity
with the earlier results (see [25] and references therein).

C. Introduction of interaction in z-direction leads
to enhancement in Power

Let us now move to the XY Z model with magnetic
field, given in Eq. (6). We will now address the question
whether the additional interactions in the z-direction,
i.e., the model with ∆/|h| 6= 0 is required to increase the
power of the battery. As before, the battery is initially
prepared as the ground state of this model.

Comparing Figs. 6 with 2, we find that with the
increase of ∆/|h|, the power increases in the region of
J/|h| < 0 where the power was decreasing in absence of
∆/|h|, thereby establishing the usefulness of the coupling
in the z-direction. Moreover, we observe that for moder-
ate values of ∆/|h|, there is a lower bound on the cou-
pling constant in the xy-plane, denoted by Jc/|h| < 0,
where Pmax increases beyond the value obtained with
the initial state of the battery being the ground state
of the Hamiltonian without any XY exchange interac-
tion, i.e., with J/|h| = 0. Note, however, that the model
with J/|h| = 0 and ∆/|h| 6= 0 corresponds to the system
having nonvanishing interactions, since the field, given
to drive the system, is in the complementary direction
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FIG. 6: (Color online.) Pmax (vertical) agianst J/|h| (horizontal) for the quantum XY Z Heisenberg model with different values
of γ. Plots are for specific values of the interaction strengths in the z-direction, ∆/|h|, as mentioned in the headings of each
plot. Both the axes are dimensionless.

of the exchange interaction of the parent Hamiltonian.
Again, with the increase of γ, Jc/|h| decreases although
it is much bigger than that obtained for the XY model.
It shows that even if the tuning of the system parameters
cannot be performed properly, the XY Z model is more
appropriate to build the quantum battery than the XY
model.

Although the XY Z model has several competing fac-
tors which lead to the generation of high power from the
battery, there can be a physical explanation in the same
line discussed for the XY model. With non-zero ∆/|h|,
spins gain another competing tendency which is to anti-
align themselves in the z-direction. In the PM phase
of the XY model with J/|h| < 0, we do not find any
enhancement. However, with the introduction of ∆/|h|
along with the field in the z-direction, the charging field
in the x-direction possibly requires more energy to drive
the system out-of equilibrium, resulting more power.

D. Effect of temperature on Power of the battery

We have already shown that the zero-temperature
state as the initial state of an interacting Hamiltonian is
advantageous for generating high amount of power in the
quantum battery. We will now see whether such improve-
ment persists (or even increases) when the initial state
is the thermal state, ρth, having a finite temperature.
This is important because in the laboratory, absolute zero
temperature is not easy to obtain. To produce power, lo-
cal charging Hamiltonian, in Eq. (7), is again applied to
each site. As one expects, we see that Pmax vanishes for
infinite temperature, i.e., for β = 0, then starts increasing
as β increases, and finally saturates to the power of the
zero-temperature. However, we notice that the variation
of Pmax with increasing β is not always monotonic, and
can have one or more nonmonotonic bumps depending
on the system parameter, which signify that we can have
situations, where the battery performs more efficiently
at higher temperature than the lower ones. More inter-
estingly, and quite counter-intuitively, it turns out that
battery may output more power at finite temperature
than that of the absolute zero temperature.

Quantitatively, we consider a quantity which can cap-
ture the advantages gained at finite temperature over the

zero-temperature, given by

PT−diffmax = Pmax(T > 0)− Pmax(T = 0), (11)

where Pmax(T > 0) and Pmax(T = 0) are the extractable
power, obtained with the thermal state and with the
ground state respectively. Indeed, we find that PT−diffmax

is positive for certain choices of J/|h| and β/|h| (see Fig.
7 for four sets of values of (∆/|h|, γ)), thereby showing
the gain of choosing the thermal state as an initial state.
Numerical simulations also confirm that changing system
parameters does not alter the results qualitatively.
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FIG. 7: (Color online.) Map of PT−diffmax (see Sec. IV D for
definition) with respect to |h|β (abcissa) and J/|h| (ordinate).
Here N = 4. (a)-(b): They are for the XY model with two
different values of γ, γ = 0 and γ = 0.4 while (c) and (d)
depict the behavior for the XY Z model with ∆/|h| = 1 and
the same values of γ as in (a) and (b). Positivity of PT−diffmax

indicates the advantage of considering initial state at finite
temperature while the negative values of PT−diffmax show the
benefit for the ground states. Both the axes are dimensionless.
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FIG. 8: (Color online.) Quenched averaged power, 〈Pmax〉,
against J/|h| for different disorder strength σJ . Note that
σJ = 0 refers to the ordered case. Disorder is introduced in
the coupling constant in the xy-plane, Jj/|h|, for fixed values
of ∆/|h| and γ. The choices of ∆/|h| and γ are same as in
Fig. 7. The twin advantages mentioned in the text can be
visualized from the plots with ∆/|h| 6= 0. Both the axes are
dimensionless.

V. DISORDER-ENHANCED POWER FROM
THE BATTERY

In this section, we examine how the presence of impuri-
ties in interactions can induce in power generation by the
battery. The observations are mainly classified into two
situations – (i) random XY exchange interactions, i.e.,
randomly chosen Gaussian-distributed {Jj/|h|}, keeping
{∆j/|h|} = ∆/|h| fixed for all sites, and (ii) disorder
in {∆j/|h|}, with {Jj/|h|} = J/|h| being site indepen-
dent. In general, impurities reduce the physical proper-
ties like magnetization, conductivity in systems [32–34]
and hence the performance of the tasks. However, we re-
port that both the disordered cases considered here can
deliver some advantages – (1) disorder enhances power
generation over the ordered case for suitably chosen sys-
tem parameters – disorder-induced order; (2) increment
in the interaction strength of the disordered case leads
to a more increase in the power than that of the ordered
one. It implies that the curvature of quenched averaged
power, 〈Pmax〉, in the model with random interactions
has sharper increase towards the maximum than the sys-
tem without any impurities.

A. Effects of Randomness in XY -exchange
interaction

Let us concentrate on the first scenario with
{∆j/|h|} = ∆/|h| and the disorder being in {Jj/|h|},
chosen from the Gaussian distribution with a given mean,

J/|h|, and a standard deviation, σJ . As mentioned in
Sec. III B to obtain the quenched averaged value of the
power, we here perform averaging over 5000 realizations,
which we find to be sufficient to converge 〈Pmax〉 upto
a second decimal place. Below we emphasize our pri-
mary observations regarding the effects of randomness in
XY -couplings as depicted in Fig. 8.

1. For ∆/|h| = 0, i.e., for the transverse XY model,
increasing the mean interaction strength, |J/h|,
from J/|h| = 0, does not help to increase the
maximum power over the ordered scenario (Fig. 8
(a)-(b)). On the other hand, for given values of
system parameters, there are situations, both in
J/|h| > 0 and J/|h| < 0 -regions, where increas-
ing disorder strength, σJ , results better produc-
tion of power, 〈Pmax〉, than that in the ordered
case, thereby showing disorder-induced power out-
put. Such advantages is prominent for lower values
of the anisotropy parameter, γ, and negative values
of J/|h| (Fig. 8 (a)-(b)).

2. Interestingly, in presence of strong and constant in-
teraction in the z-direction (e.g., when ∆/|h| = 1
as shown in Fig. 8 (c) and (d)), we find that for
J/|h| < 0, there are situations where we can get
better quenched averaged power output by increas-
ing |J/|h| than the one obtained in the ordered
XY Z model. Secondly, for fixed values of system
parameters, |J/h|, battery produces more power
with the increase of σJ . Specifically, we observe
that there exists regions in |J/h| where 〈Pmax〉 with
σJ = 1 produces maximum power than any values
of σJ . Moreover, as shown in all the situations, in-
crease in the anisotropy parameter suppresses the
power generation from the battery.

B. Effects of Impurities in the interaction strength
in z-direction

Let us now move to the case where randomness is in-
troduced in the interaction strength in the z-direction,
i.e., {∆j/|h|} are taken randomly from Gaussian distri-

bution with mean, ∆/|h|, and standard deviation, σ∆,
with keeping {Jj/|h|} = J/|h| fixed for every sites (Fig.
9). As before, we take 5000 different realizations for
quenching.

Comparing Figs. 9 (a) - (b) with 8 (a) - (b), we safely
claim that the pattern of 〈Pmax〉 for model with ∆/|h| =
0 is almost identical to the disordered transverse XY
model. Note that ∆/|h| = 0 refers to the disordered
XY Z model and does not correspond to the XY model.

However, it turns out that the Hamiltonian with
∆/|h| > 0 is much more beneficial (see Fig. 9) as com-
pared to the previous cases, where randomness was in
{Jj/|h|} and also when ∆/|h| = 0. Two prominent dif-
ferences between these two types of disordered scenarios
are as follows:

1. Advantages in power with increasing disorder
strength and fixed values of system parameters are
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FIG. 9: (Color online.) 〈Pmax〉 with J/|h| for specific choices
of mean ∆/|h| and the anisotropy parameter, γ. Plots show
the effects of disorder in the interaction, {∆j}, in the z-
direction, on the power for different disorder strength, σ∆.
The choices of ∆/|h| and γ are same as in Fig. 7. Both the
axes are dimensionless.

less affected by increasing γ than any previous sit-
uations considered in this paper. Instead of dimin-
ishing the power, we find that the moderate values
of γ leads to more efficiency in power production of
the battery in presence of strong disorder.

2. With non-zero ∆/|h|, we observe that the quenched
averaged power increases with the variation of
σ∆ for the entire region of |J/h|, thereby show-
ing advantages of systems having impurities for
preparing quantum battery. In particular, as seen
in Fig. 9(d) with ∆/|h| = 1 and γ = 0.4, σ∆ = 1
generates maximum quenched power, 〈Pmax〉
than any other values of σ∆. As argued before
for the XY and the XY Z models, this kind of
advantage can also be explained as follows: We
choose ∆̄/|h| = 1, from a Gaussian distribution
with mean unity and standard deviation σ∆ which
implies that the value of ∆/|h| are approximately
between 1 − 3σ∆ and 1 + 3σ∆. Thus the nonvan-
ishing nearest-neighbor interaction along with the
magnetic field in the z-direction dominates over
the xy-coupling which is not possible in the XY
model and hence the driving field in the x-direction
requires more energy to take out the system from
equilibrium, thereby producing more power. Such
a phenomenon of having advantage of disordered
system over the clean case can be referred as
disorder-induced order observed in dynamics.

VI. CONCLUSION

Batteries convert chemical energy to the electrical one,
thereby accomplishing our high demands of electricity in
daily life. On the other hand, technological developments
lead to the devices which is smaller and smaller in size,
and hence the effects of quantum mechanics on them are
inevitable. Moreover, it was discovered that quantum-
based technologies are more efficient than the existing
classical ones. Therefore, it is natural to explore whether
storage devices can also be improved by using quantum
mechanics. It was recently found that this is indeed the
case.

If we build quantum battery which is initially prepared
in the ground or thermal states of the quantum spin
chain, the power extracted via local external magnetic
field is higher for the interacting models than the nonin-
teracting ones. In particular, we illustrate the usefulness
of interacting Hamiltonian by considering the ground
state of the transverse XY and the XY Z model with
magnetic field as the initial state of the battery. We ob-
serve that performance of the battery in terms of produc-
ing power declines with the increase of γ. Specifically, the
best model which demonstrates the maximum efficiency
is the transverse XX model. Although the natural in-
tuition tells us that the performance of a device can de-
cline with the increase of temperature, we find that the
suitable tuning of system parameters leads to a scenario
where maximal power generation is higher with the ini-
tial state prepared at finite temperature than the state
with absolute zero-temperature . Finally, we report that
impurities help to improve the generation of quenched
averaged power from the battery build up by using the
ground state of the XY Z model with random couplings
either in the xy-plane or in the z-direction in compari-
son with the ordered systems – a phenomena known as
disorder-induced order. Both the presence of impurities
and finite temperature are unavoidable in experiments.
Hence the enhancement obtained in both the cases indi-
cate that the implementation of the battery is possible
even when the control over the system is not adequate.
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APPENDIX A

Let us briefly discuss here in details the consequence
of finite jumps observed in Fig. 2. In this respect, let us
first note that finite jumps can only occur for low values
of the anisotropy parameter γ, where interactions in the
x and y directions have comparable strengths. Since, we
are working with very small systems (N = 4, 6, 8, 10),
the quantum fluctuations are typically large, and the ex-
change interactions face problems to align (or anti-align)
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FIG. 10: (Color online.) Order parameters MFM
x and

MAFM
x , and the fidelity 〈ψJ |ψJ+δJ〉 for N = 10 and γ = 0.1,

0.8. Here, we take δJ = 0.005|h|. The order parameters have
non-zero finite values in the corresponding ordered phases,
which may not be easily visible in the plots for γ = 0.1.
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the spins along some specific directions in the xy-plane
when the value of γ is small. That is why the transition
points at J/|h| = ±1 gets bifurcated into different points
which correspond to the finite jumps in the power curve.

We can confirm this by calculating the ferromagnetic

and antiferromagnetic order parameters

MFM
x =

∑
j

〈σx〉 /N

and

MAFM
x =

∑
j

(−1)j 〈σx〉 /N

respectively, as well the fidelity 〈ψJ |ψJ+δJ〉 (see Fig. 10).
Clearly, the finite jumps in power occur exactly at the
same positions where the order parameters show non-
analyticity and the fidelity shows a dip from ≈ 1. Hence,
we can argue that all the jumps technically correspond
to the phase transition point, which have been bifurcated
from the thermodynamic point due to finite-size effects.
On the other hand, for high values of γ, say, 0.8, such
a problem cannot persist, since in that case, interaction
in the x direction dominates compared to that of the y
direction, and spins can easily align (or anti-align) in the
x-direction.

To clarify such finite-size effects further, we compute
same order parameter for larger system-sizes. E.g., in
Fig. 11, we observe the first two non-analytic points in
MAFM

x for N = 10, 15, 20, 30, and first few for N =
40. Clearly, with increasing system-size, all non-analytic
points become smoother, and the second one approaches
(as well as the later ones also) to the first one and ulti-
mately merges into one. Therefore, we can expect that
the first non-analytic point approaches to the thermody-
namic value, i.e., J/|h| = 1 and hence we consider the
first jump in the analysis of scaling.

For the plots, we employ exact diagonalization method
and density matrix renormalization group (DMRG) [118–
123] technique. For calculating order parameters, we add
uniform (or staggered) field of magnitude 10−4|h| in the
x-direction to the Hamiltonian to break the Z2 symmetry.
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