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Signaling versus distinguishing different preparations
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Abstract

Different ensembles of quantum states can have the same average nonpure state.
Distinguishing between such constructions, via different mixing procedures of the
same nonpure quantum state, is known to entail signaling. In parallel, different
superpositions of pure quantum states can lead to the same pure state. We show
that the possibility of distinguishing between such preparations, via different inter-
ferometric setups leading to the same pure quantum state, also implies signaling.
The implication holds irrespective of whether the distinguishing procedure is deter-
ministic or probabilistic.

1 Introduction

The state of a quantum system, if it is not pure, always has an infinite number of de-
compositions into ensembles. It is postulated within quantum mechanics that these de-
compositions represent the same physical situation. Indeed, it is known that if different
decompositions of the same mixed quantum state are distinguishable, it will result in in-
stantaneous communication of information between two spatially separated parties, who
can in principle be even space-like separated [1I, [2, B3]. In general, it has been found that
“tweaking” quantum evolutions, i.e., considering non-quantum evolutions, typically result
in signaling [2, 4, [5 ©, [7, 8, ©]. It is interesting to note that the no-signaling constraint
has been used with success in several areas. In particular, it has been used to obtain the
optimal approximate quantum cloning fidelity [10} [11], and fidelity for optimal quantum
state discrimination [12]. Also, there has been an important set of works that considered
the security in bit commitment protocols based on the no-signaling principle [13]. Cryp-
tographic protocols have also been considered where the eavesdropper is restrained not
by quantum mechanics but by the weaker condition of no-signaling [14]. It is interest-
ing to note here that the no-signaling condition has recently been generalized, leading to
interesting consequences [15].
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If the quantum state of a physical system is pure, it can be represented by superposi-
tions over an infinite number of bases of the corresponding Hilbert space. While different
decompositions of the same mixed state can be perceived of as different mixing strategies
during the preparation stage of the mixed state, different superpositions of the same pure
state can be viewed as different interferometric-type setups during the preparation stage
of the pure state. In this paper, we use different representations (superpositions) of the
same pure state to indicate that they have been prepared differently, as shown in Fig. [1]
Notice that these different preparation procedures of the same state, and an engagement
in trying to distinguish between them is an inverse of the attempt to identify and correct
errors in the same state in quantum error correction protocols [16]. Error correction codes
do exist within the ambit of quantum mechanics.

Here we show that a possibility of discrimination of different preparation procedures
of the same pure state, which is postulated in quantum mechanics to be impossible, will
result in signaling.

|0 af o) + B2

Figure 1: Two preparation procedures of the same state. We consider a photonic
set-up, where we denote the horizontal and vertical polarization states as |0) and |1)
respectively, and |+) = \%(!@ +{1)). The square boxes represent polarization beam
splitters, with their splitting ratios being indicated below them in the figure. The two
panels correspond to the two preparation procedures. In both the panels, the input is
from the left, and is the state |[4+). In the upper panel, the vertical final output is
discarded, while the state in the horizontal final output channel is |¢,5) = «|0) + 8]1),
where o and 3 are complex numbers, and |a|* + |3]|*> = 1. In the lower panel, the set-up
is otherwise the same, but there are two Hadamard gates inserted, denoted in the figure
as rectangular boxes with “H” written on them. Again, the vertical final output is
disposed of, and the horizontal final output is in the state |1,5) = v|+) + |—), where
a, B, v, 0 are so chosen that «|0) + 5|1) = v|+) + 6|—).



2 The association

Consider two parties, Alice (A) and Bob (B), sharing a pure state,
1

V2

of two spin-1/2 quantum particles, where

|®) A (Ihag) al0) B + [ys) all) ) , (1)

Yap) = al0) + B|1) (2)
is an expansion of the pure spin-1/2 quantum state |¢)) 4 in the o, basis, and
[¥5) = 7[+) +6]=) (3)

is an expansion of the same state |1) 4 in the o, basis. The two different representations,
|1ap) and |1),s), are used to imply that they are prepared differently, as shown in Fig. .
|0) and |1) of Bob’s system are again eigenstates of o,. All kets and bras in this manuscript
are normalized to unity, unless stated otherwise. The state, |®)ap, is equivalent to the
product (unentangled) state |¢) 4 ® |+)p. A potential preparation schematic is presented

in Fig. [2
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Figure 2: Schematic potential preparation procedure for the state |®)45. The state,
|®) 45, given in Eq. (I, can in principle be prepared by a machine, M, whose arms on
the right represents a qubit, spanned by |0)p and |1)p, and is in possession of Bob. The
output on the left of M are in possession of Alice. The lower arm on the left represents
the preparation procedure of the quantum state [¢)) via the method presented in upper
panel in Fig. [T} Parallely, the upper arm on the left represents that via the method
presented in lower panel in Fig. [I] Similar to that in, say type-I spontaneous parametric
down conversion [I7], upper and lower arms respectively on the right and left are
correlated, and coherently superposes with instances when the lower and upper arms fire
respectively on the right and left.

Let us now assume that Alice has a machine that distinguishes between the two prepa-
ration procedures, |¢,s) and |1),s), of the same pure state [¢)) 4. Note that the evolution
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(action of the distinguishing machine) is not quantum. But it is assumed that after its
application on a situation, it returns some situation of the same physical system. And
these situations are still represented by quantum states. Alice and Bob are in two sepa-
rate locations, say a distance (d) apart, and have had their clocks syncronized. It has also
been decided that if it rains at time, ¢y, at Alice’s location, Alice will apply her machine
to her part of the shared state. She won’t do anything if it doesn’t rain. It takes at least
a time % for light to travel from Alice’s location to Bob’s, where ¢ is the speed of light
in vacuum. A measurement at Bob’s end, say at ¢ty + d/2c, on his part of the shared
state, will reveal whether or not Alice had applied her machine. Indeed, suppose that the
distinguishing protocol runs by implementing the transformations

[Vas)al0)a, = Capltbag)an,,
thy5)al0)a, = Cyslts) an, s (4)

where, for the success of the distinguishing protocol of Alice, we must have |(,3[,5)] # 1.
cap and c,s are arbitrary nonzero complex numbers. A; is an auxiliary machine system
at Alice’s laboratory.

We now assume that the machine is linear on the superposition

1
7 (Ithas) 410) 4,10} 5 + [1y5) 4l0) 4, [1) ) , ()
although not necessarily on other superpositions. The shared state of the two laboratories
(consisting of A, Ay, and B), is exactly in the state in , which, after the action of Alice’s
machine, given by , is the unnormalized state

1 _ _
7 (Caplthap) 44, 10) B + C1s|t5) aa, 1) B) - (6)
If ](@aﬁmwﬂ # 1, this state will be entangled [18], in the AA;:B partition, i.e., it cannot
be expressed as ¢|xaa,)|Xx5), where ¢ is a complex number, and |xa44,) and |xp) are
vectors in the Hilbert spaces corresponding to AA; and B respectively. Consequently, the
local state at Bob’s (as well as Alice’s) end will possess a nonzero von Neumann entropy,
where the von Neumann entropy of a density matrix o is given by —tr(o log, o). This is
the situation if it rained at Alice’s location at time ty. If it didn’t, then Alice will not
apply the machine corresponding to Eq. , and consequently, the von Neumann entropy
at Bob’s (and Alice’s) end will be vanishing, since Bob’s state is then pure. To find the
von Neumann entropy at Bob’s end, Bob can perform a tomography of his part of the
shared state, for which we need to assume that there existed several copies of the shared
state, and Alice applied the transformation , separately, on all copies if it did rain
at time ty. The tomography was performed by Bob at ¢y + d/2c. The value of the von
Neumann entropy of Bob’s state indicates whether it rained or not at Alice’s location.
We therefore find that the assumption of the possibility of distinguishing between [t,z)
and [1.5) leads to the signaling, i.e., superluminal transfer of classical information.

To reiterate, we have assumed (a) that a certain machine exists which can distinguish
between two superpositions of the same state, and (b) that the machine is linear on
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a certain superposition. The conjunction of these two assumptions implies signaling.
Assuming that no-signaling is a physical constraint that we wish to adhere to, (a) or (b)
or both are wrong. It is true that the machine assumed in (a) is not unitary. Indeed, no
unitary machine can distinguish between two different superpositions of the same state.
Our argument is that a future non-quantum theory that may allow non-unitary operations,
will still have to keep different superpositions of the same state as non-distinguishable, if
it is linear on a particular superposition and if we want to adhere to no-signaling.

Suppose now that Alice is able to apply a transformation that only probabilistically
(i.e., sometimes) provides her with the possibility of distinguishing between the two su-
perpositions |¢,s) and [¢,s). If that probability is p, then the transformation (4)) needs
to be replaced by one that implements

[Vap)al0)a, — Cap (\/ﬁI%@MAl +/1 - p|Ya,3>AA1> = Copltas),

[Vr5)al0)a, — Cys <\/E|E—YJ>AA1 ++4/1 _p|Y75>AA1> = Cy5lths),
(7)

where the projector onto the span of ’Eaﬁ> and Wv5> is orthogonal to that onto the span of
Xagp) and [X,s). Cap and &, are arbitrary nonzero complex numbers. The relative phases
on the right-hand-sides of (7)) have been absorbed in the definitions of [Y,5) and [X.s)-
Note that the relevant states, [1),4) and [, ), can be obtained with probability p, assumed
to be non-zero, when a measurement, comprising of two projectors, viz. the projector onto
the span of @aﬁ) and Ww;) and that onto the orthogonal complement of that span, is
performed. The transformation ([7)) followed by the measurement is similar to the “unitary-
reduction” machines that are used in probabilistic cloning of quantum states [19] and tasks
like probabilistic teleportation, dense coding, and masking of quantum information [20].
A difference of our “probabilistic” scheme with the unitary-reduction methods is that
instead of a deterministic unitary evolution followed by a measurement, a deterministic
non-unitary evolution (|7]) followed by a measurement is considered here. Such probabilistic
machines are different from probabilistic processes where different deterministic processes
are applied probabilistically onto an input, e.g. in twirling operations (see e.g. [21]). For
the transformation to offer a probabilistic protocol of distinguishing between [1),4)
and [1,5), one must have |(¢),5]t).5)| strictly less than unity. In that case, the modulus of
the inner product of the normalized portions in the right-hand-sides of the transformation
can be bounded above strictly by unity:

|(Waglts)] < pl(Paplthns)] + (1= P (RaslXos)|
< Pl{Yapltose) + (1 —p) < 1.

The first inequality follows from the fact that |a + b| < |a| + |b| for complex numbers a
and b. The second one follows by using [(X,s/X.,s)| < 1. The third (strict) inequality
follows from the fact that as [(1h,4]th5)| < 1, and that p # 0. Even this possibility of
distinguishing between the states [1),3) and |1.5) with some probability leads to signaling.
To see this, apply the transformation to the state |®)4p5]0)4, to find that although



it is a product state, in the AA; : B partition, before application of the transformation,
it becomes entangled after. Again, a linearity for the superposition in is assumed,
although linearity for other superpositions may not hold. The post-transformation state
is given by
1 /.~ .

75 (@sltas) anl0)s + Ealthshan s ) (®)
which is entangled by virtue of the fact that |(1Za5\1275>\ < 1, which in turn follows from
the assumption that the states |¢,5) and |1),5) are probabilistically distinguishable.

3 Conclusion

It is postulated in quantum mechanics that different preparation procedures of the same
pure state cannot be discriminated. Assuming that a physical situation is always repre-
sented by a quantum state, it is shown that the existence of a machine that can discrim-
inate between two preparation procedures of the state leads to signaling.

Note added: We note here that the results of Ref. [22] and of this manuscript were
obtained in parallel and in knowledge of all authors of the two manuscripts. Although
the results reported in the two manuscripts are similar, they use different proofs for
obtaining them. Specifically, the proof in [22] uses an initially entangled state shared
between two parties, and tries to prove that different preparation procedures of same
pure state leads to signaling. Whereas in the current manuscript, we use a state that
is initially unentangled (product). Additionally, and, we feel, importantly, the machine,
in the current manuscript, that distinguishes between two preparation procedures of the
same pure state uses an operation which is beyond quantum mechanics, and that leads
to the distinguishing. The motivation here is to ask whether distinguishing different
superpositions of the same pure quantum state through a non-quantum process leads to
signaling, just like it is already known that distinguishing different mixtures of the same
mixed quantum state through a non-quantum process leads to signaling. The motivation is
also to investigate whether tweaking quantum operations even slightly leads to violation of
a physical principle like no-signaling, which is independent of quantum theory. Therefore,
although the final results claimed in two manuscripts are similar, the perspectives are
different. There is a probabilistic version of the distinguishing procedure that we consider
in the current manuscript, which is absent in [22].
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