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Different ensembles of the same density matrix are indistinguishable within the modern Kol-
mogorov probability measure theory of quantum random phenomena. We find that changing the
framework from the Kolmogorov one to a frequentist-inspired theory of quantum random phenom-
ena – à la von Mises – would lift the indistinguishability, and potentially cost us the no-signaling
principle (i.e., lead to superluminal communication). We believe that this adds to the recent works
on the search for a suitable representation of the state of a quantum system. While erstwhile ar-
guments for potential modifications in the representation of the quantum state were restricted to
possible variations in the formalism of the quantum theory, we indicate a possible fallout of altering
the underlying theory of random processes.

I. INTRODUCTION

Born’s statistical interpretation of the state vector in
quantum mechanics (QM) and hence the density ma-
trix description is based on Kolmogorov’s modern ax-
iomatic, probability-measure theoretic approach to ran-
dom phenomena [1–5]. We refer to this as Kolmogorov
QM (KQM) [6–10]. The circularity in Kolmogorov’s a
priori assumption of a constant value for the probability
of a single random event and its subsequent justification
via the strong law of large numbers (LLN), is well known
[3, 11]. It is to be noted that the convergence shown by
the strong LLN is in terms of probability but not point-
wise [3, 11]. This circularity might be a consequence
of Gödel’s incompleteness theorem [12, 13]. The parallel
and earlier approach by von Mises employs a limiting rel-
ative frequency definition of probability, which assumes
existence of the limit [14–16], while it (the limit) does not
exist in a strict mathematical sense [3, 4, 11]. Here we
take an approach to quantum random phenomena which
is inspired by the frequentist one, but different. We re-
fer to it as frequentist-inspired QM (FQM). Conceptu-
ally, FQM is same as pathwise or model-free approach to
stochastic processes in mathematical finance, wherein a
probability measure is not assumed a priori [17–21]. We
then show that such a frequentist-inspired approach leads
to violation of the no-signaling principle [7, 22–24] (i.e.,
leads to superluminal communication), by distinguishing
between two different ensemble preparation procedures,
which are indistinguishable in KQM, while still remaining
within the Hilbert space formalism of quantum mechan-
ics.

This work is organized as follows. In Sec. II, we intro-
duce the FQM and show that two ensembles described by
the same density matrix can be distinguished via content-
dependent relative fluctuations. In Sec. III we show how,
for practical purposes, one can use KQM along with FQM
in a consistent way. In Sec. IV, we discuss the possibility
of signaling within FQM. In Sec. V, we discuss about the

likely connection between Boltzmann’s H-theorem and
FQM. In Sec. VI, we briefly discuss about perfect anti-
correlation of singlet even within FQM, and the case of
finite number of trials. And we conclude in Sec. VII.

II. A FREQUENTIST-INSPIRED APPROACH
TO QUANTUM RANDOM PHENOMENA

Consider a random variable X which is the outcome
of projectively measuring |0〉〈0| on |+〉 where |±〉 =

(|0〉±|1〉)/
√

2, and |0〉 (|1〉) is the eigenstate of the Pauli-z
observable, σz, with eigenvalue +1 (−1). X has the sam-
ple space {+1, 0}. Assume that the measurement can be
repeated indefinitely, under exactly the same conditions,
on identical copies of |+〉, independently. KQM assumes,
a priori, a constant value for the probability of a single
random event X = +1, based on the subjective notion
of “equally likely” events, which is P (X = +1) = 1/2
(Born’s statistical interpretation of |+〉 [6]) [1–5]. How-
ever, note that the randomness may not be in the state
|+〉. Indeed, it is possible to write down hidden vari-
able theories of a single quantum spin-1/2 system that
can predict, with certainty, the results of all measure-
ments on it [25]. (Such hidden variables have never been
observed in experiments.) Therefore, it may not be cor-
rect to characterize the random variable X (i.e., assume
that P (X = +1) = 1/2) based solely on |+〉 (which
may be equivalent to choosing it to be independent of
something that causes randomness in measurement out-
comes). According to de Finetti, constant objective prob-
ability does not exist [20, 26]. Hence it may be worth-
while to keep the assumptions to the minimum possible
(Ockham’s razor [27]), and derive or obtain the rest of the
structure or components experimentally (at least, at the
conceptual level). In FQM, we suppose that the objective
limit-supremum of relative frequency (LRF) of the event
X = +1, denoted as F (X = +1) (this plays the role of
P (X = +1)), is obtained a posteriori via experiment as
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follows. Let Xi be the outcome of the ith trial of X. Then
the number of +1 outcomes in N independent trials of

X is given by N+1(X,N) =
∑N
i=1Xi. An operationally

motivated definition of LRF of the event X = +1 is

F (X = +1) = lim sup
N→∞

N+1(X,N)

N

≡ lim
N→∞

(
sup
M≥N

N+1(X,M)

M

)
:=

1

2
+ κ(X = +1) (1)

[28–33], where κ(X = +1) is a random variable which
takes values in [−ε, δ] (ε > 0, δ > 0), depending on the
outcomes in a given experiment. Note that in Eq. (1),
1/2 cannot be preferred over 1/2+c, |c| > 0, due to funda-
mental indeterminacy. Only relative fluctuation matters.
(See Appendix A for details.) κ(X = +1) represents
an intrinsic or fundamental fluctuation in F (X = +1).
κ(X = +1) is a consequence of Knightian type of ‘true’
uncertainty [19, 20, 34, 35]. It is important to note that
this fluctuation in F (X = +1) is due to an intrinsic ran-
dom nature of outcomes of the trials, and not due to vary-
ing conditions from one experiment to another, includ-
ing imperfections in preparing a quantum state which are
unavoidable in the real world. Similarly, we also define
F (X = 0) = 1/2 + κ(X = 0). Further, we define the
limit-infimum of relative frequency of the event X = +1
as follows: F ′(X = +1) = 1/2 + κ′(X = +1). Note that
as F (X = +1) and F (X = 0) are independent, they need
not sum to unity, unlike in F ′(X = +1)+F (X = 0) = 1.
However for N <∞, as there is no need of supremum and
infimum, we have FN (X = +1) + FN (X = 0) = 1 where
lim supN→∞ FN (.) = F (.), and lim infN→∞ FN (.) =
F ′(.). Note that F (X = +1) is a random variable,
whereas P (X = +1) is a constant. It is important
to note that limN→∞N+1(X,N)/N cannot always con-
verge pointwise (in event space) [29] to 1/2, unlike,
say, limN→∞ 1/N = 0 and limN→∞N+1(X,N)/N2 ≤
limN→∞ 1/N = 0 [3, 36]. This is because N+1(X,N) is
a random variable. The fundamental fluctuation in LRF
can be considered as a resource within the frequentist-
inspired theory of quantum random phenomena, in par-
ticular, as we show now, for distinguishing between two
different ensemble preparation procedures of the same
density matrix. This cannot be obtained within KQM
due to a priori assuming constant values for the corre-
sponding probabilities.

A. Distinguishing between two different ensemble
preparation procedures for the same density matrix

Consider the two following preparation procedures.
Procedure A: In a trial of X, if the outcome is +1 (0),
then Alice prepares a qubit in the state |0〉 (|1〉). She
repeats the preceding step M times independently. She
gives this bunch – call it EA – of M qubits to Bob.
Procedure B: This is the same as procedure A, except
that |0〉 (|1〉) is replaced by |+〉 (|−〉). Again, Alice hands

over this bunch – call it EB – of M qubits to Bob.
Bob is aware of the two preparation procedures but un-
aware of the outcomes of trials of X. Further, Bob is
allowed to choose the number M as large as he decides,
carry out any unitary operation on the states, and mea-
sure any observable. The question is whether Bob can
distinguish between the procedures A and B. The an-
swer, within standard KQM, is in the negative, as the
density matrix corresponding to both the procedures is
the same, viz., ( 1

2 |0〉〈0| +
1
2 |1〉〈1|)

⊗M. We now consider
the solution within FQM.

Instead of representing the states of the bunches, EA
and EB, in terms of density matrices, one may choose to
represent them path by path as

|ψA
j 〉 =

M⊗
i=1

|Xi ⊕ 1〉,

|ψB
j 〉 =

M⊗
i=1

|Zi〉, (2)

where ⊕ is addition modulo 2, Zi = +(−) if Xi = +1(0),
and j ∈ {1, 2, ..., 2M} [37]. Particles in a bunch are non-
interacting. Also, as particles in a bunch are distinguish-
able, Bob can ignore symmetrizing or anti-symmetrizing
the total wave function representing the state of EA/B
[9, 38].

The state |ψA(B)
j 〉 has all the information which Bob

has about the given EA(B). It may be noted that

|〈ψA
j |ψB

k 〉| = 1
2M/2 6= 1,∀j, k. See [39, 40] in this respect.

It may also be interesting to consider Refs. [44–46] and
references therein, where “superactivation of nonlocality”
is considered within KQM.

Bob applies

Rx(XΘ) = exp(−iXΘσx/2) (3)

to each of the qubits, where XΘ is a random variable
which outputs θi with LRF F (XΘ = θi) = 1/2+κ(XΘ =
θi), i = 1, 2. Then he measures σz on the qubit state.

Suppose, unknown to Bob, the bunch that he obtained
was created by procedure A. Now, Rx(XΘ = θn)|0〉 =
|θn,−π/2〉, and Rx(XΘ = θn)|1〉 = −i|π − θn, π/2〉, for
n = 1, 2, where |θ, φ〉 = cos θ2 |0〉+eiφ sin θ

2 |1〉 in the usual

Bloch sphere representation. Let Xθ be the outcome of
measuring σz on |θ, φ〉. Then,

F (Xθ = +1) = cos2(θ/2) + κ(Xθ = +1), (4)

which is the modified Born’s statistical interpretation of
|θ, φ〉. Note that here we have assumed that the fluctu-
ation term i.e., κ(.) will depend on content/state i.e, θ.
See Appendix B for its justification. And F (Xθ = −1) =
sin2(θ/2) + κ(Xθ = −1), θ 6= 0, π. Define sample mean
as

S(A,M) =
1

M

M∑
i=1

Xθ
i , (5)
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where A = {X,XΘ, Xθ1 , Xθ2 , Xπ−θ1 , Xπ−θ2}, Xθ
i ∈

{Xθ1
i , X

θ2
i , X

π−θ1
i , Xπ−θ2

i }. Let M = 1. Then

F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N
.

(6)

The LRF, as defined in Eq. (1) or Eq. (6), is the
only experimental or operational way to characterize
or gain information about a given random variable.
Hence, any function we define should be expressible
in terms of LRFs. The sample mean, as defined in
Eq. (5) is one such function, as it can be rewritten as
lim supN→∞ S(A, N) = 2F (S(A,M = 1) = +1) − 1. It
is the average of Bob’s final σz measurement outcomes.
(See Appendix C for details.)

We first consider the situation where θ2 = θ1. In this
case, N+1(S(A,M = 1), N) = N+1(Xθ1

1 , N+1(X1, N)) +

N+1(Xπ−θ1
1 , N0(X1, N)), where N0(X1, N) = N −

N+1(X1, N). We have

lim sup
N→∞

N+1(Xθ1
1 , N+1(X1, N))

N+1(X1, N)

N+1(X1, N)

N

≤ lim sup
N→∞

N+1(Xθ1
1 , N+1(X1, N))

N+1(X1, N)
lim sup
N→∞

N+1(X1, N)

N

= (cos2 θ1

2
+ κ(Xθ1

1 = +1,+1(X1)))(
1

2
+ κ(X1 = +1)), (7)

for N+1(X1, N → ∞) > 0 [31, 47]. In Eq. (6),
using lim supN→∞(xN + yN ) ≤ lim supN→∞ xN +
lim supN→∞ yN where {xN}, {yN} are sequences of real
numbers [28], and then substituting ineq. (7) and a sim-

ilar result for lim supN→∞N+1(Xπ−θ1
1 , N0(X1, N))/N ,

we get

F (S(A,M = 1) = +1) ≤ 1

2

+κ(X1 = +1)
(

cos2(θ1/2) + κ(Xθ1
1 = +1,+1(X1))

)
+κ(X1 = 0)

(
sin2(θ1/2) + κ(Xπ−θ1

1 = +1, 0(X1))
)

+
1

2

(
κ(Xθ1

1 = +1,+1(X1)) + κ(Xπ−θ1
1 = +1, 0(X1))

)
.(8)

(See Appendix D for details.) And F (S(A,M = 1) =
−1) will have a similar expression.

We note here that if we modify the KQM initial density
matrix into ρA = (1/2+κ(X = +1))|0〉〈0|+(1/2+κ(X =
0))|1〉〈1|, then one can easily verify that Rx(XΘ =
θ1)ρARx(XΘ = θ1)† along with the usual KQM Born
rule for the subsequent σz-measurement do not repro-
duce the required result consistent with ineq. (8).

Next suppose that the bunch of M states that Bob
obtained from Alice was prepared by procedure B. As
before, Bob is oblivious of this choice of Alice. We have

Rx(XΘ = θn)|±〉 = e∓iθn/2|±〉, n = 1, 2. Therefore,

S(B,M) =
1

M

M∑
i=1

X
π/2
i , (9)

where B = {Xπ/2}. Then

F (S(B,M = 1) = +1)

= lim sup
N→∞

N+1(S(B,M = 1), N)

N

=
1

2
+ κ(X1 = +1)

=
1

2
+ κ(XΘ

1 = θ1), (10)

since Xπ/2, X, and XΘ differ only in the value assigned
to their outcomes. And F (S(B,M = 1) = −1) = 1/2 +
κ(X1 = 0).

For θ1 = 0, π/2, ineq. (8) reduces to F (S(A,M =
1) = +1) = 1/2 + κ(X1 = +1), because

N+1(Xθ1=0
1 , N+1(X1, N)) = N+1(X1, N). (See Ap-

pendix E for details.) However, in general the fluctu-
ation of F (S(A,M = 1) = +1) (ineq. (8)) relative to
that of F (S(B,M = 1) = +1) (Eq. (10)) is different.
This is because, fluctuation of κ(Y = y, Z) depends on
both random variables Y and Z. And the expressions
(8) and (10) are different functions of κ(...)’s and it is
impossible to reduce ineq. (8) into Eq. (10). (Also see
Fig. 1.) This is a necessary and sufficient condition for
the discrimination. (See Appendix G for further justi-
fication.) Assuming that there are no further physical
restrictions on the observability of the fluctuations, we
have therefore shown that our frequentist-inspired ap-
proach distinguishes equal density matrices.

Further it is important to note that as relative fluc-
tuation (which do not require quantitatively precise pre-
diction) is sufficient for discriminating between the two
preparation procedures, it is not really necessary to use
KQM (which gives quantitatively precise prediction) even
in the later stages of the calculations as done in Appendix
K. Hence the discrimination between the two preparation
procedures is predicted completely within FQM.

III. USING KQM ALONG WITH FQM IN A
CONSISTENT WAY

If we use only FQM (KQM) then we obtain funda-
mentally correct (incorrect) but quantitatively imprecise
(precise) predictions. KQM’s prediction is fundamen-
tally incorrect due to the unjustifiable nature of a pri-
ori assumed probability measure. FQM’s prediction is
quantitatively imprecise due to the fundamental fluctua-
tion associated with κ(...)’s. Hence, we should use KQM
along with FQM, but in a consistent way, to make physi-
cally correct as well as quantitatively precise predictions.
In fact, FQM or the “pathwise” approach is already be-
ing used (without it being stressed) in quantum telepor-
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tation [48, 49], approximate quantum cloning [50], the
Bennett-Brassard 1984 quantum cryptography protocol
[51], [49], discriminating between linearly independent
[43] and dependent [52] state vectors. In [48], [50], [51],
and [43, 52], the authors consider the unknown states
(|ψ〉) to be teleported, cloned, cryptographed, and dis-
criminated, respectively, within a path by path approach,
and without assuming a priori a probability measure for
Y , where a single copy of |ψ〉 has been prepared accord-
ing to the outcome of a trial of a random variable Y .
However they assume a priori a probability measure for
other random variables. We note here that in pathwise
approach of mathematical finance [18], probability mea-
sure is also brought in at a later stage of the analysis to
study the interplay between all paths of a given stochas-
tic process. We note that the two notions, viz., assuming
a priori a probability measure p|ψ(y)〉 for Y and path
by path consideration of |ψ〉’s, cannot exist simultane-
ously. If we assume a priori a probability measure then
we are forced to consider the average mathematical state,∫
|ψ〉 dp|ψ〉|ψ〉〈ψ|, instead of the actual physical states, |ψ〉

(see [53] in this regard).

IV. SIGNALING

The distinguishing protocol discussed above can be
used to provide instantaneous transfer of information be-
tween two separated locations. See [22, 54–56] in this
respect. Let Alice and Bob share M singlets |S0〉 =

(|01〉 − |10〉)/
√

2, and be space-like separated. If Alice
measures σz(σx) on her qubits, then on Bob’s side EA(B)

is produced. As Bob can distinguish (at least in princi-
ple) between EA and EB, he can know Alice’s measure-
ment choice superluminally. Note that we are not using
nonlinear evolution to achieve signaling, like in [52, 56].

V. CONNECTION TO H-THEOREM

The Boltzmann entropy of a non-equilibrium physical
system, increases with time, as per the H-theorem. How-
ever, the Gibbs-von Neumann entropy of the same sys-
tem, is constant in time (consequence of Liouville’s theo-
rem). The two definitions of entropy agree in equilibrium
systems [57]. The Boltzmann entropy is defined within
an approach where we consider the actual state of the
given physical system (i.e., path by path approach [17–
21]) without assuming, a priori, a probability measure.
Whereas, the Gibbs-von Neumann entropy is based on
the density matrix approach wherein we assume, a pri-
ori, a probability measure to obtain the average state
of the system under consideration. The proof of the
H-theorem depends on the definition of Boltzmann en-
tropy, and crucially uses the hypothesis of “molecular
chaos” or “past-hypothesis” or “typicality” [57–59], along
with the Hamiltonian dynamics, while the constancy of
the Gibbs-von Neumann entropy uses the Hamiltonian

(S(A,M 1) 1)F    with 

(S(A,M 1) 1)F   

1

1 1 1(X 1,0(X )) 0.13, (X 0) 0.13
  

      

with 

1 2 / 4   

1(S(B,M 1) 1) 1/ 2 (X 1)F       

1(X 1)   

0.1

1

1 1 1(X 1,0(X )) 0.13, (X 0) 0.13
  

    

FIG. 1. Comparing the frequentist predictions for two prepa-
ration procedures A and B. We consider here the θ1 = θ2

case. We wish to compare F (S(A,M = 1) = +1) with
F (S(B,M = 1) = +1). We set θ1 = θ2 = π/4. We have four
independent random variables viz., κ(X1 = +1), κ(X1 = 0),

κ(Xθ1
1 = +1,+1(X1)), and κ(Xπ−θ1

1 = +1, 0(X1)). We
present a “front view” i.e., looking along the normal to the
(κ(X1 = +1), F (S(A/B,M = 1) = +1))-plane. Hence,
plot for F (S(B,M = 1) = +1) is the simple black straight
line. However the bounds of F (S(A,M = 1) = +1) are
surfaces in the corresponding five-dimensional space. For
given values of κ(Xπ−θ1

1 = +1, 0(X1)) and κ(X1 = 0),
the same are surfaces in the corresponding three-dimensional
space. κ(Xπ−θ1

1 = +1, 0(X1)) and κ(X1 = 0) can take
both positive and negative values. Consider, first, an ex-
emplary situation where κ(Xπ−θ1

1 = +1, 0(X1)) = −0.13
and κ(X1 = 0) = −0.13. This leads to the blue surface
at the bottom for the bound of F (S(A,M = 1) = +1) in

ineq. (8). F (S(A,M = 1) = +1|κ(Xπ−θ1
1 = +1, 0(X1)) =

−0.13, κ(X1 = 0) = −0.13) can only be below the blue sur-
face, and so must be different from F (S(B,M = 1) = +1).
The green surface, that is at the top for most of the considered
region on the (κ(X1 = +1), κ(Xθ1

1 = +1,+1(X1)))-plane, is
the plot for the bound of F (S(A,M = 1) = +1) in ineq. (8)

with κ(Xπ−θ1
1 = +1, 0(X1)) = 0.13 and κ(X1 = 0) = 0.13.

This time, F (S(A,M = 1) = +1|κ(Xπ−θ1
1 = +1, 0(X1)) =

0.13, κ(X1 = 0) = 0.13) can only be below the green sur-
face, and again there are regions where it is different from
F (S(B,M = 1) = +1). Hence in procedure A, there are
points corresponding to LRF which are above, as well as
below that corresponding to end points of the line segment
F (S(B,M = 1) = +1) = 1/2 + κ(X1 = +1). The fluctu-
ation of LRF, around 1/2, will therefore be different in the
two procedures. For ease of plotting, we have taken |κ(· · · )|’s
to be large. All quantities are dimensionless. Note that the
surfaces in the above figure gives only the upper bounds. To
know the corresponding lower bounds, we need to evaluate
limit infimum. (See Appendix F for details.)

dynamics only. It seems that the additional assump-
tion akin to molecular chaos cannot be employed within
the density matrix formalism of state description. See
[57, 60] in this regard. Assuming that to be true, this
implies that averaging via a probability measure to ob-
tain a density matrix, used in the Gibbs-von Neumann
entropy, erases some information relevant to the dynam-
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ics of non-equilibrium systems.

VI. FURTHER ASPECTS

Consider S(σAz σ
B
z ,M) = (1/M)

∑M
i=1 σ

A
ziσ
B
zi where the

random variable σ
A(B)
zi is the outcome of Alice (Bob)

measuring σz on her (his) ith qubit in the state α|01〉 +
β|10〉, |α|2 + |β|2 = 1. Then in FQM, one can easily
show that limN→∞ S(σAz σ

B
z , N) = −1. (See Appendix H

for details.) Hence, even though one may feel that the
randomness of κ(· · · ) terms will get canceled by an ex-
tra randomness in the anti-correlation of the singlet and
prevent signaling, such a thing does not happen, simply
because such an extra randomness does not exist. Fur-
ther, one may also feel that the randomness of κ(· · · )
terms will get constrained by constraining the extra ran-
domness in the anti-correlation of the singlet. This also
does not happen for the same reason.

For 1 � N < ∞, we obtain expressions which are
same as the expressions (8), (10), but with κ(· · · )’s re-
placed by the corresponding κN (· · · )’s (which represent
fluctuation corresponding to 1 � N < ∞ such that
lim supN→∞ κN (· · · ) = κ(· · · )), inequalities replaced by
equalities, κN (X = +1) + κN (X = 0) = 0 and with sim-
ilar constraint for other κN (· · · ) terms. This is because,
when we take the limitN →∞, it turns out that the limit
may not exist. Hence we have to consider limit supremum
or limit infimum which always exists, and they give rise
to inequalities. (See Appendix I for details.) Hence Bob
can distinguish even when 1� N <∞.

The case when θ1 6= θ2 and the concept of using KQM
in the later stages of calculations for practical purposes
are considered in the Appendix J and Appendix K re-
spectively.

Note that if we set κ(· · · )’s to 0 in expressions (8),
(10), we obtain the numerical values corresponding to
the predictions of KQM. In this sense, KQM can be seen
as a special case of FQM.

VII. CONCLUSION

In summary, we found that a frequentist-inspired the-
ory of quantum random phenomena leads to distinguish-
ing between different ensembles of the same density ma-
trix, which in turn leads to signaling (i.e., superlumi-
nal communication). This may be seen in the light of
previous comments about the possible incompleteness of
the density matrix representation, within modern Kol-
mogorov probability measure theory of quantum random
phenomena, of a situation (state) of a physical system
in Refs. [37–39, 61–64]. To our knowledge, preceding
discussions on possible modifications of the density ma-
trix representation confined themselves to revisions of the
description of the state within the Hilbert space formal-
ism of quantum mechanics. We showed that remaining
within the Hilbert space formalism but looking out for

possible implications of variations of the underlying the-
ory of random processes may cost us the no-signaling
principle.
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Appendix A: In F (X = +1), 1/2 cannot be preferred
over 1/2 + c

In Eq. (1), choosing 1/2 is motivated/guided by the
following factors: Experimental observation (i.e., sta-
bilization of relative frequency [2] somewhere around
1/2), symmetry i.e., |+〉 is an equal superposition of
the two eigenvectors of the observable being measured
(i.e., |0〉〈0|), and convenience i.e, 1/2 is the square of the
Fourier coefficient or amplitude in |+〉. However from
foundational point of view, these are not compelling and
sufficient reasons to prefer 1/2 over 1/2+c, |c| > 0. (Note
that if we choose 1/2 + c then we will not recover KQM
from FQM by setting κ(., .) terms to zero. But that is
okay because any way in KQM a priori probability 1/2
is not justifiable physically. Then there is no compelling
reason for not to choose 1/2 + c (instead of 1/2) as a pri-
ori probability.) The fact that F (X = +1) cannot always
converge pointwise to 1/2 proves that even F (X = +1)
has intrinsic fluctuation. Further even if we repeat in-
finitely many times the experiment involving N → ∞
number of trials of X, still F (X = +1) may not al-
ways fluctuate symmetrically about 1/2. This is more
appealing in case of F (Xθ 6=π/2 = +1) where Xθ is de-
fined in the text preceding Eq. (4). This is due to funda-
mental uncertainty/indeterminacy arising due to intrin-
sic randomness in measurement outcomes. If F (X = +1)
would always fluctuate symmetrically about 1/2 then
that would contradict the very meaning, nature, and def-
inition of random phenomena. What really matters and
one can talk of is the relative fluctuation i.e., fluctuation
of F (Xθ=π/2 = +1) will be different compared to that
of F (Xθ 6=π/2 = +1). This is unlike in KQM wherein one
can talk of absolute fluctuation due to the presence of
quantitatively precise probability measure.
Of course we can absorb c into κ(X = +1). But here
we are trying to argue that F (X = +1) may not always
fluctuate symmetrically about 1/2. And hence there is
no compelling reason to prefer 1/2 over 1/2 + c.
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Appendix B: Justification of the assumption that
κ(Xθ = +1) depends on θ

The fact that F (Xθ = +1) cannot always converge
pointwise to cos2(θ/2) proves the existence of fluctuation
term i.e., κ(.), but it does not say if κ(.) depends on θ or
not. Hence in Eq. (4) we have implicitly assumed that
κ(.) will depend on θ. This can be justified as follows.
KQM predicts that variance (which is a measure of fluc-

tuation), Var(Xθ) = 〈Xθ2〉 − 〈Xθ〉2 = sin2 θ. This has
been tested experimentally to a good extent. Hence from
this we can deduce that fluctuation will be maximum for
θ = π/2 and fluctuation gradually decreases as θ either
decreases to 0 or increases to π. Hence it is an experi-
mental fact that fluctuation will depend on content/state
i.e., θ. This justifies the assumption that fluctuation of
F (Xθ = +1) (and hence κ(Xθ = +1)) will depend on θ.

Appendix C: Physical meaning and significance of
sample mean

Consider sample means S(A,M), S(B,M) as defined
in Eqs. (5, 9) respectively. They are the average
of final (i.e., after applying Rx(XΘ)) σz measurement
(carried out by Bob) outcomes Xθ

i ’s. In procedure A,

Xθ
i ∈ {X

θ1
i , X

θ2
i , X

π−θ1
i , Xπ−θ2

i }. Whereas in procedure

B, Xθ
i ∈ {X

π/2
i } (because in procedure B, with respect

to σz measurement outcomes, the states |+〉 and |−〉 are
equivalent). For the sake of ease, let us consider S(B,M)
(because in procedure B, the set to which Xθ

i belongs to,
has only one element). We have defined

S(B,M) =
1

M

M∑
i=1

X
π/2
i .

⇒ S(B,M = 1) = X
π/2
1 . Hence we can rewrite

S(B, N) =
1

N
(N+1(S(B,M = 1), N)

−N−1(S(B,M = 1), N))

=
1

N
(2N+1(S(B,M = 1), N)−N)

(∵ N+1(S(B,M = 1), N) +N−1(S(B,M = 1), N) = N)

= 2FN (S(B,M = 1) = +1)− 1 = 2FN (X
π/2
1 = +1)− 1.

Similarly one can obtain S(A, N) = 2FN (S(A,M = 1) =
+1) − 1. Sample means are used to study the relative
fluctuation in the two procedures A and B.

Appendix D: Evaluating

lim supN→∞
N+1(X

π−θ1
1 ,N0(X1,N))

N

If {aN} and {bN} are sequences of non-negative num-
bers, then

lim inf
N→∞

aN lim inf
N→∞

bN ≤ lim inf
N→∞

(aNbN )

≤ lim inf
N→∞

aN lim sup
N→∞

bN

≤ lim sup
N→∞

(aNbN ) ≤ lim sup
N→∞

aN lim sup
N→∞

bN ,

and lim inf
N→∞

aN + lim inf
N→∞

bN ≤ lim inf
N→∞

(aN + bN )

≤ lim inf
N→∞

aN + lim sup
N→∞

bN

≤ lim sup
N→∞

(aN + bN ) ≤ lim sup
N→∞

aN + lim sup
N→∞

bN

(D1)

[28, 31, 47]. Then using ineq. (D1) we obtain,

lim sup
N→∞

N+1(Xπ−θ1
1 , N0(X1, N))

N

≤ (sin2 θ1

2
+ κ(Xπ−θ1

1 = +1, 0(X1)))(
1

2
+ κ(X1 = 0)).

Appendix E: Case where θ1 = θ2 = 0, π/2

For θ1 = θ2 = 0, N+1(Xθ1=0
1 , N+1(X1, N)) =

N+1(X1, N), and N+1(Xπ−θ1=π
1 , N0(X1, N)) = 0.

⇒ F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N

= lim sup
N→∞

N+1(X1, N)

N
= 1/2 + κ(X1 = +1).

Alternatively, for N < ∞ with θ1 = θ2 = 0, we
have κN (Xθ1=0

1 = +1,+1(X1)) = 0, κN (Xπ−θ1=π
1 =

+1, 0(X1)) = 0. Then from ineq. (8) we obtain
FN (S(A,M = 1) = +1) = 1/2 + κN (X1 = +1).
⇒ lim supN→∞ FN (S(A,M = 1) = +1) = 1/2 + κ(X1 =
+1).

For θ1 = θ2 = π/2,

N+1(S(A,M = 1), N) = N+1(X
θ1=π/2
1 , N+1(X1, N))

+N+1(X
π−θ1=π/2
1 , N0(X1, N))

= N+1(X
π/2
1 , N+1(X1, N) +N0(X1, N))

= N+1(X
π/2
1 , N). (E1)

⇒ F (S(A,M = 1) = +1) = lim sup
N→∞

N+1(S(A,M = 1), N)

N

= lim sup
N→∞

N+1(X
π/2
1 , N)

N

= 1/2 + κ(X
π/2
1 = +1) = 1/2 + κ(X1 = +1).
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Appendix F: limit infimum

If we define

F ′(S(A,M = 1) = +1) = lim inf
N→∞

N+1(S(A,M = 1), N)

N
(F1)

then using ineq. (D1), we obtain for the case θ1 = θ2 in
Eq. (3),

F ′(S(A,M = 1) = +1) ≥ 1

2

+κ′(X1 = +1)
(

cos2(θ1/2) + κ′(Xθ1
1 = +1,+1(X1))

)
+κ′(X1 = 0)

(
sin2(θ1/2) + κ′(Xπ−θ1

1 = +1, 0(X1))
)

+
1

2

(
κ′(Xθ1

1 = +1,+1(X1)) + κ′(Xπ−θ1
1 = +1, 0(X1))

)
where κ′(· · · )’s correspond to limit infimum.

Appendix G: On the observability of content
dependent fluctuation

The fact that limiting relative frequency cannot always
converge pointwise to a given constant value (real num-
ber) proves the existence of fluctuation term κ(.) and
hence content dependent fluctuation (i.e., fluctuation of
F (S(A,M = 1) = +1) depends on θ1, θ2) (see Appendix
B). However it should be noted that observing content de-
pendent fluctuation may not be as difficult as observing
violation of the requirement for pointwise convergence
e.g., observing the violation of |N+1(X1, N)/N−1/2| < ε
where ε > 0, N < ∞, usually becomes difficult if we
choose N sufficiently large (this is justified by the sta-
bilization of relative frequency which is an experimen-
tal fact [2]). This is because, former requires observing
relative fluctuation only, which do not depend only on
rare events unlike the latter which depends only on rare
events.

Appendix H: Perfect anti-correlation of singlet in
FQM

We can rewrite limN→∞ S(σAz σ
B
z , N), defined in Sec.

VI as follows:

lim
N→∞

S(σAz σ
B
z , N) = lim

N→∞

N+1(S(σAz σ
B
z ,M = 1), N)−N−1(S(σAz σ

B
z ,M = 1), N)

N
.

We have

N+1(S(σAz σ
B
z ,M = 1), N)

= N+1+1(S(σAz σ
B
z ,M = 1), N)

+N−1−1(S(σAz σ
B
z ,M = 1), N) = 0 + 0.

N−1(S(σAz σ
B
z ,M = 1), N)

= N+1−1(S(σAz σ
B
z ,M = 1), N)

+N−1+1(S(σAz σ
B
z ,M = 1), N)

= N+1(σAz , N) +N−1(σAz , N) = N.

⇒ lim
N→∞

S(σAz σ
B
z , N)

= − lim
N→∞

N+1(σAz , N) +N−1(σAz , N)

N
= −1.

Appendix I: The case when 1� N <∞

Consider the case when 1� N <∞. Define

FN (X = +1) =
N+1(X,N)

N
:=

1

2
+ κN (X = +1)(I1)

where κN (X = +1) is a random variable which takes val-
ues in [−εN , δN ] (εN > 0, δN > 0). Then the expression
corresponding to ineq. (7) will be the following,

N+1(Xθ1
1 , N+1(X1, N))

N+1(X1, N)

N+1(X1, N)

N

= (cos2(θ1/2) + κN (Xθ1
1 = +1,+1(X1)))

×(1/2 + κN (X1 = +1)), (I2)

for N+1(X1, N) > 0. This shows that, in all the results
derived in the main text, we just have to replace κ(· · · )’s
with the corresponding κN (· · · )’s, and inequalities be-
come equalities. Of course the constraint that the terms
in the denominators should be greater than zero should
be satisfied (like N+1(X1, N) > 0 in Eq. (I2)). Fur-
ther note that lim supN→∞ FN (X = +1) = F (X = +1)
and hence lim supN→∞ κN (X = +1) = κ(X = +1) as
required. Similarly we obtain lim supN→∞ κN (· · · ) =
κ(· · · ).
Further note that when N is very small (say e.g., 1 ≤
N ≤ 10), then both FN (S(A,M = 1) = +1) and
FN (S(B,M = 1) = +1) will easily saturate i.e., will eas-
ily take maximum and minimum possible values which
are 1 and 0 respectively. Hence Bob cannot distinguish.
Fig. 1 is helpful in understanding this point.

Appendix J: Case where θ2 6= θ1 in Eq. (3)

Let M = 1. Let Nx1xΘ
1

((X1, X
Θ
1 ), N) be the number of

X1 = x1 and XΘ
1 = xΘ

1 outcomes in N independent trials
each of X1 and XΘ

1 . Then we have the following iden-
tity Nx1xΘ

1
((X1, X

Θ
1 ), N) = Nx1

(X1, NxΘ
1

(XΘ
1 , N)) (∵

events are independent) where NxΘ
1

(XΘ
1 , N) is the num-
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ber of xΘ
1 outcomes in N independent trials of XΘ

1 , x1 =
+1, 0;xΘ

1 = θ1, θ2; and Nθ1(XΘ
1 , N) +Nθ2(XΘ

1 , N) = N .
Further we have

N+1(S(A,M = 1), N) = N+1(Xθ1
1 , N+1θ1((X1, X

Θ
1 ), N))

+N+1(Xθ2
1 , N+1θ2((X1, X

Θ
1 ), N))

+N+1(Xπ−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

+N+1(Xπ−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

where N+1θ1((X1, X
Θ
1 ), N) + N+1θ2((X1, X

Θ
1 ), N) +

N0θ1((X1, X
Θ
1 ), N) +N0θ2((X1, X

Θ
1 ), N) = N . Then us-

ing ineq. (D1) we obtain

lim sup
N→∞

N+1(Xθ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N

= lim sup
N→∞

N+1(Xθ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N+1θ1((X1, XΘ
1 ), N)

×N+1θ1((X1, X
Θ
1 ), N)

N

= lim sup
N→∞

N+1(Xθ1
1 , N+1(X1, Nθ1(XΘ

1 , N)))

N+1(X1, Nθ1(XΘ
1 , N))

×N+1(X1, Nθ1(XΘ
1 , N))

Nθ1(XΘ
1 , N)

Nθ1(XΘ
1 , N)

N

≤ lim sup
N→∞

N+1(Xθ1
1 , N+1(X1, Nθ1(XΘ

1 , N)))

N+1(X1, Nθ1(XΘ
1 , N))

× lim sup
N→∞

N+1(X1, Nθ1(XΘ
1 , N))

Nθ1(XΘ
1 , N)

lim sup
N→∞

Nθ1(XΘ
1 , N)

N
,

for N+1(X1, Nθ1(XΘ
1 , N → ∞)) > 0, Nθ1(XΘ

1 , N →
∞) > 0. Substituting θ1 = 0, θ2 = π in the above ex-
pression, we obtain

lim sup
N→∞

N+1(Xθ1
1 , N+1θ1((X1, X

Θ
1 ), N))

N

≤ (1/2 + κ(X1 = +1, θ1(XΘ
1 )))(1/2 + κ(XΘ

1 = θ1))

(∵ N+1(Xθ1=0
1 , N+1(X1, Nθ1(XΘ

1 , N))) =
N+1(X1, Nθ1(XΘ

1 , N))). Similarly we obtain

lim sup
N→∞

N+1(Xθ2
1 , N+1θ2((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(Xθ2
1 , N+1(X1, Nθ2(XΘ

1 , N)))

N+1(X1, Nθ2(XΘ
1 , N))

× lim sup
N→∞

N+1(X1, Nθ2(XΘ
1 , N))

Nθ2(XΘ
1 , N)

lim sup
N→∞

Nθ2(XΘ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we
obtain

lim sup
N→∞

N+1(Xθ2
1 , N+1θ2((X1, X

Θ
1 ), N))

N
= 0

(∵ N+1(Xθ2=π
1 , N+1(X1, Nθ2(XΘ

1 , N))) = 0). Similarly

lim sup
N→∞

N+1(Xπ−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(Xπ−θ1
1 , N0(X1, Nθ1(XΘ

1 , N)))

N0(X1, Nθ1(XΘ
1 , N))

× lim sup
N→∞

N0(X1, Nθ1(XΘ
1 , N))

Nθ1(XΘ
1 , N)

lim sup
N→∞

Nθ1(XΘ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we
obtain

lim sup
N→∞

N+1(Xπ−θ1
1 , N0θ1((X1, X

Θ
1 ), N))

N
= 0

(∵ N+1(Xπ−θ1=π
1 , N0(X1, Nθ1(XΘ

1 , N))) = 0). Similarly

lim sup
N→∞

N+1(Xπ−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

N

≤ lim sup
N→∞

N+1(Xπ−θ2
1 , N0(X1, Nθ2(XΘ

1 , N)))

N0(X1, Nθ2(XΘ
1 , N))

× lim sup
N→∞

N0(X1, Nθ2(XΘ
1 , N))

Nθ2(XΘ
1 , N)

lim sup
N→∞

Nθ2(XΘ
1 , N)

N
.

Substituting θ1 = 0, θ2 = π in the above expression, we
obtain

lim sup
N→∞

N+1(Xπ−θ2
1 , N0θ2((X1, X

Θ
1 ), N))

N

≤ (1/2 + κ(X1 = 0, θ2(XΘ
1 )))(1/2 + κ(XΘ

1 = θ2))

(∵ N+1(Xπ−θ2=0
1 , N0(X1, Nθ2(XΘ

1 , N))) =
N0(X1, Nθ2(XΘ

1 , N))). Substituting the above expres-
sions into Eq. (6), we obtain for the case θ1 = 0, θ2 = π,
the following expression

F (S(A,M = 1) = +1) ≤ 1

2
+
κ(XΘ

1 = θ1) + κ(XΘ
1 = θ2)

2

+
(
κ(X1 = +1, θ1(XΘ

1 )) + κ(X1 = 0, θ2(XΘ
1 ))
)
/2

+κ(XΘ
1 = θ1)κ(X1 = +1, θ1(XΘ

1 ))

+κ(XΘ
1 = θ2)κ(X1 = 0, θ2(XΘ

1 )). (J1)

Further, we can rewrite,

lim sup
N→∞

S(A, N) = lim sup
N→∞

N+1(S(A,M = 1), N)− (N −N+1(S(A,M = 1), N))

N
= 2F (S(A,M = 1) = +1)− 1

= κ(XΘ
1 = θ1) + κ(XΘ

1 = θ2)

+κ(X1 = +1, θ1(XΘ
1 )) + κ(X1 = 0, θ2(XΘ

1 ))

+2κ(XΘ
1 = θ1)κ(X1 = +1, θ1(XΘ

1 ))

+2κ(XΘ
1 = θ2)κ(X1 = 0, θ2(XΘ

1 )) (J2)

where we used Eq. (6) and expression (J1). Similarly we



9

can rewrite,

lim sup
N→∞

S(B, N) = lim sup
N→∞

N+1(S(B,M = 1), N)− (N −N+1(S(B,M = 1), N))

N

= 2κ(X1 = +1) = 2κ(XΘ
1 = θ1) (J3)

where we used Eq. (10).

Appendix K: Associating normal distribution with
the fluctuation of κN (...) terms for practical purposes

Here we quantify (for practical purposes) using KQM,
the content dependent fluctuation in S(A, N), and the
fluctuation of S(B, N).

1. S(A, N) ≈ κM1(X1 = +1) + κM2(X1 = 0) + 4κN (XΘ
1 =

θ1)κN (X1 = +1) for N � 1, θ1 = 0, θ2 = π

In the case θ1 = 0, θ2 = π in Eq. (3), for N � 1, we
can make following approximations:

N+1(X1, Nθ1(XΘ
1 , N))

Nθ1(XΘ
1 , N)

=
1

2
+ κN (X1 = +1, θ1(XΘ

1 ))

≈ N+1(X1,M1)

M1
=

1

2
+ κM1

(X1 = +1), (K1)

N0(X1, Nθ2(XΘ
1 , N))

Nθ2(XΘ
1 , N)

=
1

2
+ κN (X1 = 0, θ2(XΘ

1 ))

≈ N0(X1,M2)

M2
=

1

2
+ κM2(X1 = 0) (K2)

where M1 = N/2,M2 = N/2 (for convenience we have
assumed N to be even). It is important to note that
M1 number of trials of X1 are independent and different
from M2 number of trials of X1. This is represented by
denoting each of the N/2 number of trials in Eqs. (K1,
K2) using different symbols i.e., M1 and M2. Further

N+1(X1,M1)

M1
− N0(X1,M2)

M2
= 2

N+1(X1, N)

N
− 1

⇒ κM1(X1 = +1)− κM2(X1 = 0) = 2κN (X1 = +1).

And κN (XΘ
1 = θ1) = −κN (XΘ

1 = θ2). Substituting these
into the finite N expression corresponding to expression
(J2), we obtain

S(A, N) ≈ κM1
(X1 = +1) + κM2

(X1 = 0)

+4κN (XΘ
1 = θ1)κN (X1 = +1). (K3)

2. Plotting the density of FN (S(A/B,M = 1) = +1)

To experimentally study the fluctuation of
FN (S(A/B,M = 1) = +1), we should re-
peat the experiment n times and plot the den-

sity of FN (S(A/B,M = 1) = +1) versus
FN (S(A/B,M = 1) = +1) where density of
FN (S(A/B,M = 1) = +1) is nothing but the ratio of
number of times we get FN (S(A/B,M = 1) = +1) = y
in n repetitions and (n × δFN (S(A/B,M = 1) = +1))
where y ∈ [0, 1] and δFN (S(A/B,M = 1) = +1)(= 1/N)
is the step size. For example, consider the simplest case
of plotting the density of

FN (S(B,M = 1) = +1)

= N+1(S(B,M = 1), N)/N = N+1(X
π/2
1 , N)/N

= 1/2 + κN (X
π/2
1 = +1).(K4)

N+1(X
π/2
1 , N) takes value y′ ∈ {0, 1, 2, ..., N} and

hence FN (S(B,M = 1) = +1) takes value y ∈
{0, 1/N, 2/N, ..., 1}. Hence FN (S(B,M = 1) = +1)
tends to become a continuous random variable in the
limit N → ∞. Now we repeat n times the experiment

involving N trials of X
π/2
1 . Then we calculate the ratio

of number of times we get FN (S(B,M = 1) = +1) = y
in n repetitions and (n × (1/N)). Then we plot this ra-
tio versus y. For N � 1, we will obtain this plot to
be approximately a Gaussian centered around 1/2 (this
we know from actual experiment) (KQM predicts that
Gaussian will have mean 1/2 and variance 1/(4N)). This
is how we can experimentally study the fluctuation of
FN (S(B,M = 1) = +1), and hence the fluctuation of

κN (X
π/2
1 = +1). Similarly, we can experimentally study

the fluctuation of FN (S(A,M = 1) = +1). FQM pre-
dicts that the fluctuation of FN (S(A,M = 1) = +1) will
be different from that of FN (S(B,M = 1) = +1).

Now we can safely (i.e., without loss of any fundamen-
tal content-dependent fluctuations) bring in KQM for
practical purposes and quantify the fluctuation of κN (...)
terms as follows. It is an experimental fact that if we plot
the density of FN (X = +1) versus FN (X = +1), we ob-
tain approximately a Gaussian function centered approx-
imately around 1/2. Hence it is reasonable for practical
purposes to associate a normal probability density func-
tion with the fluctuation of κN (...) terms, i.e.,

f(κN (X1 = x1)) ≈ 1√
2πVar(X1)/N

exp(
−κN (X1 = x1)2

2Var(X1)/N
),

(K5)

where f(Z) is the probability density function of the ran-
dom variable Z, and Var(X1) = 〈X2

1 〉 − 〈X1〉2 = 1/4 is
the variance of X1. Note that we can associate mean
zero with every κ(...) term. This is because, according to
KQM,

〈FN (X = +1)〉 = 〈X〉 = 1/2⇒ 〈κN (X = +1)〉 = 0,

Var(FN (X = +1)) =
Var(X)

N
=

1

4N
= Var(κN (X = +1)),

〈FN (X = +1)〉 = 〈FN (XΘ = θ1)〉,
Var(FN (X = +1)) = Var(FN (XΘ = θ1)).(K6)
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Further, it is important to note that from a foundational
perspective, fluctuation of κN (X1 = +1) do not vanish
even in the limit N →∞, contrary to the approximation
in (K5), which becomes a “delta function”. This is due
to no pointwise convergence of LRF, always to 1/2. Note
that for notational convenience, we are using the same
symbol for the random variables κN (...)’s and also the
values they take. Its meaning should be understood from
the context of usage. To associate an approximate proba-
bility density function with 4κN (X1 = +1)κN (XΘ

1 = θ1)
in expression (K3), we proceed as follows:

f(ζ = 4κN (X1 = +1)κN (XΘ
1 = θ1))

≈
∫ ∞
−∞

dκN (XΘ
1 = θ1) f(ζ|κN (XΘ

1 = θ1))f(κN (XΘ
1 = θ1)),

(K7)

where f(ζ, κN (XΘ
1 = θ1)) = f(ζ|κN (XΘ

1 =
θ1))f(κN (XΘ

1 = θ1)). Note that ζ depends on κN (XΘ
1 =

θ1) and hence f(ζ|κN (XΘ
1 = θ1)) 6= f(ζ).

Theorem-1 [4]: If X is a normally distributed random
variable with mean µ and variance σ2, then Y = aX + b
is also a normally distributed random variable with mean
aµ+ b and variance a2σ2 where a, b are constants.
Using approximations (K5) and (K7), and theorem-1, we
obtain

f(ζ = 4κN (X1 = +1)κN (XΘ
1 = θ1))

≈
∫ ∞
−∞

dκN (XΘ
1 = θ1)√

2πVar(X1)/N
exp(

−κN (XΘ
1 = θ1)2

2Var(X1)/N
)

√
N

32πκN (XΘ
1 = θ1)2Var(X1)

exp(
−Nζ2

32κN (XΘ
1 = θ1)2Var(X1)

),(K8)

where Var(X1) = 1/4, and where we have used the
fact that κN (X1 = +1) and κN (XΘ

1 = θ1) are inde-
pendent random variables and that the same variance
(= 1/(4N)) must be associated with each of them (be-
cause X1 and XΘ

1 differ only in the value assigned to
their outcomes. See Eqs. (K6) in this regard). If
κN (X1 = +1) and κN (XΘ

1 = θ1) were not independent,
then for a given value of κN (XΘ

1 = θ1), the probability
distribution which we can associate with κN (X1 = +1)
will depend on the given value of κN (XΘ

1 = θ1) as well.
There is no analytical solution to the integral (K8) (see
[65] in this regard, and for further details regarding ap-

proximate and numerical solutions to the integral), and
in particular the distribution is not normal. Further
η = κM1(X1 = +1) + κM2(X1 = 0) is normally dis-
tributed with mean 0 and variance 1/N [4]. And η, ζ are
not independent. Hence S(A, N) cannot be normally dis-
tributed. We also have S(B, N) = 2κN (X1 = +1) (Eq.
(J3)). But

f(2κN (X1 = +1))

≈ 1√
8πVar(X1)/N

exp(
−κN (X1 = +1)2

8Var(X1)/N
). (K9)

Hence the fluctuations of sample means around 0 are dif-
ferent in the two preparation procedures A and B.
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