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In order to understand the resourcefulness of a natural quantum system in quantum commu-
nication tasks, we study the dense coding capacity (DCC) and teleportation fidelity (TF) of Haar
uniformly generated random multipartite states of various ranks. We prove that when a rank-2 two-
qubit state, a Werner state, and a pure state possess the same amount of entanglement, the DCC
of a rank-2 state belongs to the envelope made by pure and Werner states. In a similar way, we
obtain an upper bound via the generalized Greenberger-Horne-Zeilinger state for rank-2 three-qubit
states when the dense coding with two senders and a single receiver is performed and entangle-
ment is measured in the senders:receiver bipartition. The normalized frequency distribution of DCC
for randomly generated two-, three- and four-qubit density matrices with global as well as local
decodings at the receiver’s end are reported. The estimation of mean DCC for two-qubit states is
found to be in good agreement with the numerical simulations. Universally, we observe that the
performance of random states for dense coding as well as teleportation decreases with the increase
of the rank of states which we have shown to be surmounted by the local pre-processing operations
performed on the shared states before starting the protocols, irrespective of the rank of the states.
The local pre-processing employed here is based on positive operator valued measurements along
with classical communication and we show that unlike dense coding with two-qubit random states,
senders’ operations are always helpful to probabilistically enhance the capabilities of implementing
dense coding as well as teleportation.

I. INTRODUCTION

The basic quantum information processing tasks like
dense coding [1, 2] and teleportation [3] demonstrate
the usefulness of quantum entanglement [4] in the field
of quantum information science. In particular, the idea
of dense coding (DC) is to employ prior quantum corre-
lation between the sender and the receiver for enhanc-
ing classical message-carrying capacity while in tele-
portation, unknown state gets transferred to a remote
location without physical transportation with the help
of a shared entangled state and two bits of classical
communication. Performance of dense coding which
is dubbed as the dense coding capacity (DCC) of the
shared channel is quantified by the number of messages
in a unit of bits carried from the sender to the receiver
[5–8]. On the other hand, in teleportation, the relevant
figure of merit is the teleportation fidelity (TF) which
measures the closeness between the state obtained by
the receiver and the target state to be teleported at the
sender’s end [3, 9, 10]. Over the years, spectacular
experiments have been performed to realize both the
protocols by using photons, massive particles, nuclear
magnetic resonance, etc. [11–15].

After their inception, these two protocols have been
generalised in many ways. Going beyond bipartite sce-
nario, dense coding has been extended to a scenario of
multiple senders and multiple receivers, which enlarges
the possibility of encoding-decoding strategies in vari-
ous ways [2, 16–19]. In the case of multiple senders, it
was shown that invoking more general encoding than
unitary, collective encoding is better than the individ-

ual encoding [20] while for multiple receivers situated
at far-apart locations, locally accessible information [21]
plays a crucial role to obtain the DCC when receivers
are allowed to perform local operations and classical
communication (LOCC) for decoding [2, 19]. Simi-
larly, original teleportation protocol which is commonly
known as standard teleportation scheme (STS) also has
been generalised which include telecloning [22], multi-
port teleportation [23–25], teleportation with multiple
sender-receiver pairs [26, 27], counterfactual teleporta-
tion [28], reusing teleportation channel [29].

In a realistic situation, ideal conditions to achieve
perfect DCC and TF are never met due to noises in
the channel and imperfections in the apparatuses. To
circumvent this, Bennett et al. proposed a method of
distillation [30–33] which is a collective pre-processing
scheme involving many copies of shared noisy entan-
gled states and LOCC for obtaining pure maximally en-
tangled state, suitable for perfect DC and teleportation.
The problem with distillation is that it requires a large
number of resources and successfully works only when
singlet fraction is above some threshold value [31]. In
the context of teleportation, this problem has been re-
solved by invoking filtering operation which acts at the
single copy-level and can probabilistically provide an
output having high TF [33]. Surprisingly, it was also
shown that for a certain class of states, a dissipative
channel can activate teleportation power [34]. For two-
qubit states, optimal teleportation protocol is known
together with optimal filter [35]. Very recently, it has
been shown that in higher dimension, filtering can also
be effective for revealing hidden teleportation power of
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shared Werner state [36] and a class of rank-deficient
state used as channel [37]. In obtaining a quantum ad-
vantage in the dense coding protocol, coherent infor-
mation [38] plays the role similar to singlet fraction in
the case of teleportation and up to our knowledge, im-
proving the DCC of a channel via filtering has not been
investigated as yet.

On a different front, randomly generated density ma-
trices [39–47] provide a vital tool for analyzing and
studying the trends of typical states in state space. They
not only arise naturally in the chaotic process [48] but
also can be generated in a systematic manner based
on randomness in the outcome of quantum measure-
ment [46]. Moreover, against the intuition of observ-
ing random behavior, it has been found that random
states show some universal properties – average quan-
tum correlations among randomly generated states in-
crease with the increase of the number of parties [33–
36]. Random states were instrumental in disproving a
long-standing conjecture in quantum information sci-
ence regarding additivity of minimal output entropy
[38] and in showing constructive feedback in presence
of a non-Markovian noisy environment [49].

In the present work, we investigate the patterns of ca-
pabilities obtained from two prominent quantum com-
munication tasks for Haar uniformly generated random
shared channels. In particular, we estimate the distri-
butions of the dense coding capacity of states having
different ranks in three specific scenarios: (1) a sin-
gle sender and a single receiver, (2) two senders and
a single receiver, and (3) two senders and two receivers.
Note that in the first two cases, the decoding is done by
global operations while in the third situation, the en-
coded states can only be decoded via LOCC. We prove
that the DCC of a rank-2 two-qubit state lies in the enve-
lope of the DCC of a pure state and a Werner state when
all of them possess the same amount of entanglement.
We numerically confirm that such upper and lower
bounds hold also for rank-3 and -4 two-qubit states.
On the other hand, we show that when three-qubit
generalized Greenberger-Horne-Zeilinger (gGHZ) [50]
and a rank-2 state have the same amount of entangle-
ment in the senders:receivers bipartition, the DCC of
the gGHZ state is higher than that of the rank-2 three-
qubit state. The mean of the frequency distribution for
DCC is obtained numerically for random states which
are shown to be in good agreement with analytical esti-
mation. In all scenarios of DC and teleportation proto-
cols, we observe that the efficiencies decrease with the
increase of rank for the random states. We apply lo-
cal pre-processing operations in the form of dichotomic
positive operator valued measurements (POVM)s on
the shared state before starting the protocol and re-
port that the performance can be enhanced by such
pre-processing mechanism for random states. Specifi-
cally, by employing three kinds of figures of merit, we
establish that the local pre-processing at the sender’s
or the receiver’s or both the ends can help to proba-

bilistically improve the capacities, as well as the tele-
portation fidelities, especially in higher ranked random
states. One should note here that the pre-processing
operations exploited here cannot be included in the
encoding-decoding strategies (cf. [20]).

The paper is organized in the following way. In Sec.
II, we recapitulate the generation of random states of
different ranks, the dense coding capacity, the telepor-
tation fidelity, and the general dichotomic local POVM
elements for pre-processing. In Sec. III, we provide our
analytical results and numerical observations on dense
coding capacity before pre-processing while the results
obtained after local pre-processing is presented in Sec.
IV. In Sec. V, observations and results on teleportation
fidelity before and after pre-processing are reported. Fi-
nally, we conclude with a summary of results in Sec. VI.

II. DEFINITIONS: DENSE CODING CAPACITY AND
TELEPORTATION CAPABILITY OF MULTIPARTITE

RANDOM STATES

In this section, we briefly describe dense coding ca-
pacity involving an arbitrary number of senders and a
single as well as two receivers and define the telepor-
tation fidelity for two-qubit states. Since we perform
DC and teleportation for randomly generated states, let
us first elucidate the procedure for such simulations
[40]. Haar uniform generation of pure states with ar-
bitrary number of parties having complex coefficients,
xi = ai + ibi, (ai and bis are real numbers), where
real numbers are taken from a Gaussian distribution
with mean 0 and standard deviation unity, denoted by
G(0, 1) is performed. Random mixed states of various
ranks can be obtained from an appropriate multipar-
tite pure state after taking partial traces of suitable sub-
system. For example, two-qubit density matrices with
rank-2, -3, and -4 can be simulated from random tri-
partite pure states chosen in complex Hilbert spaces of
C2⊗C2⊗C2, in C2⊗C2⊗C3 and C2⊗C2⊗C4 respec-
tively [40].

A. Dense Coding Capacity

Consider a multipartite communication channel
formed by multiple senders, S1, S2, · · · , SN and a sin-
gle receiver, R in which classical information transmis-
sion via quantum states occurs. As originally proposed
by Bennett and Weisner [1], it can be shown that if
senders and a receiver apriori share an entangled state,
ρS1S2 ...SN R, more bits of classical information can be en-
coded and sent to the receiver compared to a proto-
col with unentangled states. The maximum classical
information accessible by the receiving party is called
the dense coding capacity [5–8, 16]. We consider two
scenarios depending on the number of senders and re-
ceivers as mentioned earlier.
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1) N-senders and a single receiver (NS-1R). Suppose
N-senders and a single receiver share an (N+1)-party
quantum state, ρS1···SN R. The dense coding capacity in
this case reads as

CNS−1R(ρS1···SN R) = max[log2 dS1 + · · ·+ log2 dSN ,

log2 dS1 + · · ·+ log2 dSN + S(ρR)− S(ρS1···SN R)]
(1)

where, dS1 , · · · , dSN are the dimension of the senders’
subsystems, S1, · · · , SN , respectively. ρR is the reduced
state at the receiver’s end and S(σ) = −tr(σ log2 σ) is
the von-Neumann entropy. The first term represents the
amount of classical information that can be sent only by
using classical protocol while a quantum state is suit-
able for dense coding if S(ρR)− S(ρS1···SN R) > 0. No-
tice that for two-qubits involving a single sender and a
single receiver (1S-1R), it reduces to 1+ S(ρR)− S(ρSR).
2) N-senders and 2-receivers (NS-2R). Let us now con-

sider that there are two receivers, R1 and R2, in the
dense coding protocol which again involve arbitrary
number of senders, S1, S2, · · · , SN , sharing an (N+2)-
party quantum state, ρS1···SN R1R2 . In this situation, al-
though we do not know the exact DCC, the upper
bound is known [16]. Let ’k’ senders, S1, · · · , Sk, send
their parts of the shared state to the first receiver, R1,
while the remaining senders, Sk+1, · · · , SN , send their
states to the second one, R2. The upper bound on the
dense coding capacity is then represented by

CNS−2R(ρS1···SN R1R2) ≤ max[log2 dS1 + · · ·+ log2 dSN ,

log2(dS1) + · · ·+ log2(dSN ) + S(ρR1)

+ S(ρR2)−max(S(ρS1···Sk R1), S(ρSk+1···SN R2))] ≡ UNS−2R

(2)

where ρR1 = trS1···SN R2 ρS1···SN R1R2 and ρR2 =

trS1···SN R1 ρS1···SN R1R2 are the reduced states of the
first and the second receiver respectively. Similarly,
ρS1···Sk R1 = trSk+1···SN R2 ρS1···SN R1R2 and ρSk+1···SN R2 =

trS1···Sk R2 ρS1···SN R1R2 . We will investigate the behavior
of the upper bound for the Haar uniformly generated
four-qubit states where there are two senders and two
receivers.

B. Teleportation Fidelity

In the teleportation protocol, the task is to send an
unknown quantum state to the receiver. If a shared
state is maximally entangled, such a task can be accom-
plished by performing the entangled measurements at
the sender’s side and communicating the outcomes to
the receiver. Let us suppose that the sender, Alice and
the receiver, Bob share an arbitrary bipartite state ρSR.
The teleportation fidelity of ρSR can be expressed as

[9, 10]

F =
d f + 1
d + 1

(3)

where f = max
{φ}
〈φ|ρSR|φ〉 with {φ} being the set of all

maximally entangled two-qudit states and d is the di-
mension of the input state to be teleported. Notice that
Alice and Bob have the freedom to apply any trace-
preserving local quantum operations and classical com-
munication (LQCC) in order to maximize f which is, in
general, hard to perform even numerically.

Given a two-qubit state, ρSR, we can calculate the
optimal teleportation fidelity by using the Horodecki’s
prescription [51], i.e.,

Fmax ≤
1
2
(1 +

1
3

tr
√

C†C) (4)

where the elements of the matrix, C = [Cij], are given by
Cij = tr[ρSR(σi ⊗ σj)], where σ’s are the Pauli spin ma-
trices. Furthermore, if the state ρSR violates the Clauser-
Horne-Shimony-Holt inequality [52, 53], i.e., if it satis-
fies M(ρSR) > 1 [51], where M(ρSR) = (u1 + u2) with
u1 and u2 being the highest two eigenvalues of the ma-
trix C†C, the inequality (4) is replaced by an equality.

C. Preprocessing Operations

We know that the initial DCC or TF of a state can
probabilistically be increased if some or all of the par-
ties apply local pre-processing operations [20, 35, 54,
55]. If the DCC (TF) is initially in the classical region
and after pre-processing, it gives a quantum advan-
tage, we say that the state exhibits hidden DCC (TF).
If the initial state already shows quantum advantage in
dense coding (teleportation), and after preprocessing,
the advantage gets improved with some positive prob-
ability, those states demonstrate enhancements in DCC
(TF). For the present study, we apply the most general
dichotomic POVMs [56–59] as local pre-processing op-
erations.
•General dichotomic POVMs: The general dichotomic
POVMs can be represented as

E±i = λP±i +
1± γi − λi

2
I (5)

where λi is the sharpness parameter, such that 0 ≤
λi ≤ 1, |λi| + |γi| ≤ 1 and E+

i + E−i = 11, with 11 be-
ing the identity operator. P+

i = cos θi
2 |0〉+ eiφi sin θi

2 |1〉
and its orthogonal projector is P−i . Here, i represents
the party which applies the POVM. To find the optimal
POVM, we have to maximize over the set of parameters,
{θi, φi, λi}. If the shared state is two-qubits and both the
parties perform local preprocessing before starting the
protocol, we have to carry out maximization over six
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parameters to evaluate maximal DCC (TF). In a mul- tipartite shared state, ρS1···SN R, considering preprocess-
ing operations performed by first k senders, the output
state after the action of local POVMs is given by

ρS1···SN R
P =

(
√

E±S1
⊗ · · · ⊗

√
E±Sk
⊗ 11Sk+1 ⊗ · · · ⊗ 11R)ρ

S1···SN R(
√

E±†
S1
⊗ · · · ⊗

√
E±†

Sk
⊗ 11Sk+1 ⊗ · · · ⊗ 11R)

tr[(
√

E±S1
⊗ · · · ⊗

√
E±Sk
⊗ 11Sk+1 ⊗ · · · ⊗ 11R)ρS1···SN R(

√
E±†

S1
⊗ · · · ⊗

√
E±†

Sk
⊗ 11Sk+1 ⊗ · · · ⊗ 11R)]

. (6)

Notice that the DCC (TF) of the resulting state is inves-
tigated after maximizing over 3k parameters involved
in k local POVMs.

III. DENSE CODING CAPACITY OF RANDOM STATES
WITHOUT PREPROCESSING

Let us first present the behavior of dense coding ca-
pacity of Haar uniformly generated multipartite states.
In particular, we analyze the frequency distributions in
three scenarios.

Case 1. A single sender - a single receiver (1S-1R) pair
shares two-qubit random states with different ranks.
Case 2. Two senders and a single receiver (2S-1R)
have three-qubit Haar uniformly generated states hav-
ing rank-1, -2, -3, -4, -5 and -6.
Case 3. Haar uniformly simulated four-qubit pure as
well as states having rank -2, - 3 and -4 are initially dis-
tributed among two senders and two receivers (2S-2R)
situated in distant locations.

Before proceeding further, note that quantum advan-
tages are not obtained when the DCC, C, is unity for 1S-
1R, two for both 2S-1R and 2S-2R situations provided
the dimension of each party is restricted to be two. In
cases of 1S-1R and 2S-1R, if the shared state is pure,
the second term in Eq. (1) vanishes and hence DCC
reduces to the von Neumann entropy of the receiver’s
part. Since the entanglement of a pure bipartite state
can uniquely be quantified by the von Neumann en-
tropy of the local density matrix [30], the quantum ad-
vantage can always be achieved for all entangled pure
states. For mixed two-qubit states, we will show below
by proving a theorem that such a connection between
shared entanglement and DCC cannot be established.

In a 2S-1R case, a relation between genuine multipar-
tite entanglement content of the shared pure state and
DCC does not hold [19] and to our knowledge, no such
results are known for mixed three-qubit states which
will also be established for rank-2 three-qubit states.
In this work, we also concentrate on mixed three-qubit
states with rank upto six.

Let us first investigate the behavior of dense coding
capability of random states. Entire calculations and
analysis are based on 5 × 104 Haar uniformly gener-
ated states for each case. In all these scenarios, the

normalized frequency distribution of DCC, given by
FDC = NDC(C(ρ))

NS
, with NDC(C(ρ)) being the number of

states having DCC C(ρ) and NS being the total number
of simulated states, is calculated except in the situation
of two senders and two receivers case where the nor-
malized distribution of the upper bound is analysed, as
depicted in Fig. 1. The observations in the figure are
listed below:

1. Obtaining a quantum advantage in the DC proto-
col decreases with the increase of the rank of the
states. It can be argued that such behavior is seen
because the average entanglement content of the
Haar uniformly generated states decreases with
the rank of the states. However, such a simple
explanation may not hold as we will show below.

2. Percentages of states showing DCC more than the
classical bound are 50.09%, 4.80% and 0.30% for
two-qubit states with rank-2, -3, and 4 respec-
tively. For the 2S-1R DC scheme, it turns out to be
50.31%, 0.08% for rank-2 and rank-3 states while
no states are found to give a quantum advantage
from rank≥4 random states. All pure states are
good for classical information transmission.

3. The upper bound in the 2S-2R case showing quan-
tum superiority is seen for 97.36% of rank-2 four-
qubit states and for all pure random states. For
higher ranks, unlike 2S-1R DC protocol, the above
percentage decreases but remains significant, be-
ing 95.77% and 95.34% for ranks -3 and -4 respec-
tively.

4. The pattern of FDC also changes with rank as well
as with the increase in the number of senders and
receivers. Specifically, we observe that the fraction
of states, showing nonclassical capacity decreases
with the rank of the random states as shown in
Fig. 1 (lower panel (right)), irrespective of the DC
schemes. It can also be captured by computing
the mean and standard deviation (SD) of the dis-
tribution which we will discuss in the succeeding
sections. We will also study how the distribution
changes with the introduction of preprocessing in
terms of POVM by different figures of merits.
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FIG. 1. (Color online) (Upper panel) and (Lower panel (left)). The
normalized frequency distribution, FDC , of Haar uniformly gen-
erated states (vertical axis) against DCC (horizontal axis). Upper
Panel. (Left) A single sender-single receiver (1S-1R) and (Right) sin-
gle sender-two receivers (1S-2R) scenarios. Lower panel (left) two
senders - two receivers (2S-2R). R1, . . . R4 denotes the random states
of rank-1 to rank-4. Lower Panel (right). Fraction of states having
quantum advantage in dense coding vs. the rank of random states
for three DC protocols. Notice that the large fraction of high rank
mixed states have DCC in classical region and the general tendency
to have quantum advantage decreases with the increase in rank. The
rate of decrease of the upper bound for DCC with rank in 2S-2R case
is significantly slower than the rate of DCC for 1S-1R and 2S-1R. All
the axes are dimensionless.

To establish the fact that for mixed bipartite states,
DC and entanglement content is not related, we will
now show that the DCC of random states has a univer-
sal lower bound. In particular, we find that the DCC
capacity of the Werner state, given by

ρW = p|φ+〉〈φ+|+ (1− p)
4

I4 (7)

where |φ+〉 = 1√
2
(|00〉 + |11〉) with 0 ≤ p ≤ 1 and

I4 being the identity matrix in C2 ⊗ C2, gives a lower
bound for all randomly generated two-qubit states of
rank-1 to rank-4 ( see Fig. 2 ). Moreover, we observe
that the DCC of Haar uniformly generated states with
rank-2, -3 and -4 lies between the envelopes obtained
for pure states, and the Werner states. Let us now prove
the lower and upper bounds for rank-2 states.

Theorem 1. The dense coding capacity of the arbitrary
mixed two-qubit state of rank-2 in the 1S-1R case is upper
bounded by the capacity of a pure state and lower bounded by
a two-qubit Werner state when all of them possess the same
amount of entanglement.

Proof. Any two-qubit mixed state of rank-2 can be ex-
pressed as [60]

ρ2
2 = p1|ψ1〉〈ψ1|+ (1− p1)|ψ2〉〈ψ2|, (8)

 1
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R
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R
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R
4
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N

FIG. 2. (Color online) Lower panel. Dense coding capacity
of randomly generated two-qubit states (vertical axis) against
entanglement (horizontal axis) which is quantified by nega-
tivity. Blue line represents the Werner state, ρW while the
orange line represents the two-qubit pure state. Upper panel.
The maximal cost of average DCC, defined later in Eq. (28)
of random two-qubit states of different rank after two-sided
POVMs is plotted with respect to negativity of the given ini-
tial state. We notice that the lower bound still holds after local
POVMs applied by both the parties. The vertical axis is in bits
while the horizontal axis is in ebits.

where 0 < p1 < 1, |ψ1〉 = |0η1〉 + |1η2〉 , |ψ2〉 =

|0η⊥1 〉+ |1η⊥2 〉, |η1〉 = cos θ1
2 |0〉+ sin θ1

2 |1〉 and |η2〉 =
cos θ2

2 |0〉 + sin θ2
2 |1〉 with |η⊥1 〉 and |η⊥2 〉 being orthog-

onal states to |η1〉 and |η2〉 respectively, and 0 ≤ θi ≤
π, i = 1, 2. The entanglement here is quantified by the
negativity [61–63] which is defined as the sum of the
modulus of negative eigenvalues of the partially trans-
posed state. In this case, negativity of ρ2

2 in Eq. (8) reads
as

N1
2 = |1

4
[√

x− 2(1− p1)
]
| (9)

N2
2 = |1

4
[√

x− 2p1
]
|, (10)

where x = 2 + 4p1(p1 + 1) + 2(2p1 − 1) cos(θ1 − θ2).
Note that for a fixed p1, θi (i = 1, 2), N(ρ2

2) =

max{0, N1
2, N2

2}.
Let us first show the upper bound. The similar line of

proof leads to the lower bound. An arbitrary two-qubit
pure state written in a Schmidt decomposition reads as

|ψ〉 = cos
θ

2
|0S0R〉+ sin

θ

2
|1S1R〉 (11)

where |0S(R)〉 and |1S(R)〉 are the eigenvectors of the re-
duced density matrices corresponding to the sender (re-



6

ceiver) and the eigenvalues of the local density matrix
are cos2 θ

2 and sin2 θ
2 . The negativity of the pure state is

the square root of the determinant of its reduced den-
sity matrix, i.e. sin θ/2. Equating entanglements of
rank-2 and pure state, we obtain

θ = sin−1(2N). (12)

On the other hand, the DCC of ρ2
2 can be written as

C(ρ2
2) = 1 + H({1

2
(1− f1(p1)),

1
2
(1 + f1(p1))})

− H({p1, 1− p1}), (13)

where H({pi}) = −∑i pi log2(pi) is the Shannon
entropy of the probability distribution {pi}, and
f1(p1) = 1

2 (1 − 2p1) cos( θ1−θ2
2 ) while C(|ψ〉) = 1 +

H({cos2(θ/2), sin2(θ/2)}). Due to Eq. (12), C(|ψ〉)
turns out to be a function of p1, θ1, and θ2 which
can help to prove the statement of the theorem, i.e., by
showing inequality given by

H({1
2
(1− f1(p1)),

1
2
(1 + f1(p1))})− H({p1, 1− p1})

−H({cos2 θ

2
, sin2 θ

2
}) < 0 (14)

We substitute the value of θ in terms of p1, θ1, and θ2
using Eq. (12), and numerically find that the inequality
in (14) holds true for all values of the above parameters.

In a similar fashion, we find that the negativity of the
Werner state, ρW , is (1−3p)

4 . If entanglements of ρ2
2 and

ρW are equal, we get

p =
1− 4N

3
. (15)

The DCC of ρW reads 1+ 1+ H({ 1+3p
4 , 1−p

4 , 1−p
4 , 1−p

4 }),
since the local entropy of the reduced system of the
Werner state is unity. By using Eq. (15), we again nu-
merically establish that DCC of any rank-2 state is al-
ways higher than that of the Werner state when both of
them possess the same amount of entanglement for all
values of p1, θ1 and θ2.

Notice that although the proof is presented for real
parameters, we observe that if |ηi〉, i = 1, 2 also have
complex coefficients, the proof holds.

Remark 1. Numerically, we find that both the bounds
remain true for all two-qubit states with rank-3 and -4.

Remark 2. Our numerical observations show that even
after pre-processing, our theorem holds (see the upper
panel in Fig. 2). It implies that when the receiver or
both sender-receiver pair apply the local POVMs to ac-
tivate the dense coding capability of shared states, the
DCC of a random two-qubit state is still lower bounded
by that of the Werner state having the same value of
initial entanglement. However, the upper bound does
not hold any more under local POVMs.

 2

 2.2

 2.4

 2.6

 2.8

 3

 0  0.2  0.4N

R1

R2

R3

R4

R5

R6

gGHZ

FIG. 3. (Color online) Dense coding capacity of Haar uni-
formly generated three-qubit states (vertical axis) vs. nega-
tivity (horizontal axis) in the bipartition of senders and the
receiver. Blue line represents the generalized GHZ state,
|φgGHZ〉. Subscripts, i (i = 1, . . . 6) of Ri denote the rank of
the three-qubit states. The vertical axis is in bits while the
horizontal axis is in ebits.

Theorem 2. When negativities in the bipartition of senders
and receivers of a three-qubit rank-2 state and the generalized
GHZ state are equal, the dense coding capacity of the latter
is always higher than that of the former.

Proof. Any three-qubit rank-2 state, shared between
S1S2R can be written as [60]

ρ2
3 = p2|ψ3〉〈ψ3|+ (1− p2)|ψ4〉〈ψ4|, (16)

where 0 < p2 < 1, and |ψ3〉 = |0η3〉 + |1η4〉 ,
|ψ4〉 = |0η⊥3 〉+ |1η⊥4 〉, |η3〉 = |0η′3〉+ |1η′4〉 and |η4〉 =
|0η′′3 〉 + |1η′′4 〉, with |η′3〉 = cos θ3

2 |0〉 + sin θ3
2 |1〉, |η′4〉 =

cos θ4
2 |0〉+ sin θ4

2 |1〉, |η′′3 〉 = cos θ′3
2 |0〉+ sin θ′3

2 |1〉, |η′′4 〉 =
cos θ′4

2 |0〉 + sin θ′4
2 |1〉 with |η⊥3 〉 and |η⊥4 〉 being orthog-

onal states to |η3〉 and |η4〉 respectively. Here 0 ≤ θi,
θ′i ≤ π, i = 3, 4. The entanglement in terms of negativ-
ity [61] of rank-2 state in the S1S2 : R bipartition is

(N2
3)

1 =
1
8

[√
12− 24p2 + 16p2

2 − (1− 2p2)y− 4p2

]
,

if p2 < 0.5 (17)

(N2
3)

2 =
1
8

[√
4− 8p2 + 16p2

2 + (1− 2p2)y + 4p2 − 4
]

,

if p2 > 0.5 (18)

where y = cos(θ3 − θ′3) + cos(θ3 − θ′4) + cos(θ′3 − θ′4) +
cos(θ3 − θ4) + cos(θ′3 − θ4) + cos(θ′4 − θ4) and hence
N(ρ2

3) = max{0, (N2
3)

1, (N2
3)

2} quantifies the negativ-
ity of ρ2

3. For the three-qubit generalized GHZ (gGHZ)
state,

|φgGHZ〉 = cos(θg/2)|0S10S20R〉+ eiφg sin(θg/2)|1S11S21R〉
(19)
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where 0 < θg < π
2 and 0 ≤ φg ≤ π, we have

N(|φgGHZ〉) =
√

1−cos 2θ

2
√

2
. When the entanglements of

both the three-qubit rank-2 and the gGHZ states coin-
cide, we find

θg =
cos−1(1− 8N2

3)

2
(20)

On the other hand,

C(ρ2
3) = 2 + H({1

2
(1− f2(p2)),

1
2
(1 + f2(p2))})

− H({p2, 1− p2}) (21)

where f2(p2) = 1
2
√

2

√
(1− 2p2)2(2 + y) while

C(|φgGHZ〉) = 2 + H({cos2(θg/2), sin2(θg/2)}).
Mathematically, the statement of the theorem requires
the following inequality to hold

H({1
2
(1− f2(p2)),

1
2
(1 + f2(p2))})− H({p2, 1− p2})

−H({cos2(θg/2), sin2(θg/2)}) < 0. (22)

We substitute the value of θg in terms of p2, θ3, θ4, θ′3 and
θ′4 using the relation, given in Eq. (20) and we numer-
ically find that for all values of the above parameters,
the inequality (22) holds true.

Remark 1. Like in two-qubit states, we also observe
that the DCC of other mixed states of rank≥3 are also
upper bounded by the DCC of the gGHZ state as shown
in Fig. 3.

Remark 2. Our numerical results show that after pre-
processing, some of the rank-2 states have higher DCC
than that of the gGHZ state when both of them pos-
sess the same amount of initial entanglement. Hence,
our theorem does not hold when the senders and the
receiver apply local POVMs.

A. Analytical expression for mean DCC

Let us now derive the analytical expression of the
mean dense coding capacity of Haar-uniformly gener-
ated two-qubit states of different ranks in the 1S-1R sce-
nario. These analytical expressions match significantly
well with our numerical results as obtained from nu-
merical data in Fig. 1. From Eq. (1), the mean DCC for
random two-qubit states can be rewritten as

〈C1S−1R(ρSR)〉 = 1 + 〈S(ρR)− S(ρSR)〉. (23)

The mean entropy of a subsystem of dimension M,
which is obtained through partial tracing from a pure
state of dimension MK, can be expressed as [39]

〈SM〉 ≈ log2 M− M
2K

. (24)

TABLE I. Comparison between analytical ( in Eq. (25)) and numerical values of 〈CSR〉.
Rank Analytical Numerical

N = 2 N = dim/2 N = 100

2 0.481 0.735 1 1

3 0.15 0.489 0.667 0.711

4 0 0.366 0.5 0.536

For arbitrary two-qubit states, ρSR, M = 4. Depending
upon the rank of the system, K can take value 1 . . . 4 for
states with rank-1, . . . 4 respectively. In order to calcu-
late 〈S(ρR)〉 for the reduced state, we use the principle
of purification of mixed states [64] according to which
a mixed state is obtained from a higher dimensional
pure state after tracing out appropriate subsystems of a
pure state. If we assume that a N + 2- dimensional pure
state leads to a single qubit state, the average entropy
was found to be [65]

〈S(ρ)〉 =
log2 e
4N−1

(2N − 1)!
(N − 2)!(N − 1)!

N−2

∑
s=0

(
N − 2

s

)
(−1)s

(s + 2)(2s + 3)

s+1

∑
t=0

1
2t + 1

(25)

Let us take N =
dimension of initial pure state

2 .
The results for different ranks are enumerated below.

1. Pure states. In this case, 〈S(ρSR)〉 = 0 and
〈S(ρR)〉 = 0.5 which gives 〈CSR

1 〉 = 1.5 The sub-
script in CSR

1 denotes the rank of the state.

2. Rank-2 states. 〈S(ρSR)〉 = 1 and 〈S(ρR)〉 is calcu-
lated using N = 4 in the formula (25) giving the
value 0.735. Hence 〈CSR

2 〉 = 0.735.

3. Rank-3 states. By using Eqs. (24) and (25) with
N = 6, we get 〈S(ρSR)〉 = 4

3 and 〈S(ρR)〉 = 0.822
which leads to the mean DCC as 〈CSR

3 〉 = 0.489.

4. Rank-4 states. In this case, 〈CSR
4 〉 = 0.366 since

〈S(ρSR)〉 = 3
2 and 〈S(ρR)〉 = 0.866 which is ob-

tained by using N = 8.

Remark 1. The average of DCC obtained in the case
of two-qubit states having rank-2, -3, -4 is below unity
which implies that most of the states do not give
quantum advantage in the dense coding protocol and
hence average DCC decreases with the rank (cf. [49]).

Remark 2. Notice that the mean obtained by analysing
the frequency distributions of DCC in Fig. 1 is much
higher than the one reported above as also shown in
Table I. We find that if we increase the dimension of
the composite system, N, the analytical results match
pretty well with the numerics. In fact with N = 100, the
analytical and numerical results are in good agreement
(see Table I).
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IV. EFFECTS OF LOCAL PRE-PROCESSING ON THE
DENSE CODING CAPACITY OF HAAR UNIFORMLY

GENERATED STATES

The dense coding capacity, given in Eqs. (1) and (2),
are obtained by optimizing over the unitary encoding
performed by the sender(s) and the decoding by the
receiver(s). However, it is expected that before starting
the DC protocol, if one includes preprocessing on the
shared states between the sender(s) and the receiver(s),
the capacity can, in general, be enhanced with a certain
probability. Since we deal with random states, and
our aim is to find out the effects of preprocessing on
random states, we illustrate by analyzing the situation
where some of the senders and receivers or all of them
apply the local dichotomic POVMs ( in Eq. (5) ) to
activate the hidden DCC (to enhance DCC) when a
particular choice of outcomes occur. To that end, we try
to derive analytical conditions, which when satisfied,
ensure that the state can exhibit enhanced DCC after
pre-processing by POVMs. Let us define the following
figures of merit to monitor the action of pre-processing
operations on DCC.

Optimal increase in dense coding capacity (via POVM).
After maximizing over all the parameters involved in
local POVM, we concentrate on the DCC of the result-
ing state which is obtained when a specific measure-
ment outcome clicks. The maximization is performed
when POVM is performed by the sender(s) or the re-
ceiver(s) or both. We define the optimal increase in
DCC due to the action of POVM by all the parties as

ODCC = max
{Eoi

i }
C

 (⊗
√

Eoi
i )ρ(⊗

√
E

o†
i

i )

tr
[
(⊗
√

Eoi
i )ρ(⊗

√
E

o†
i

i )

]
 , (26)

where the numerator denotes the output state,

tr
[
(⊗
√

Eoi
i )ρ(⊗

√
E

o†
i

i )

]
is the probability of obtaining

the outcome to normalize the state, and{oi} represents
the particular outcome that gives the maximal DCC. In
case, some of the parties perform POVMs, we apply
the identity operator on the rest as mentioned in Eq.
(6). Although it may occur that several sets maximize
the capacity, in a realistic situation, POVM is set to the
optimal direction so that one of the possible choices of
outcomes can occur. The enhancement can be measured
by evaluating ODCC − C(ρ), with C(ρ) being the DCC
of the original state before application of POVM.

Average cost of optimum dense coding capacity. Let us
suppose that an outcome, oi, of a particular POVM
gives the maximal enhancement in the capacity of dense
coding. The average cost of optimum dense coding ca-
pacity is then defined as

A1
DCC = ∑

{oi}
poi C(ρoi ), (27)

where poi is the probability of occurrence of a particular
outcome of POVM, oi and C(ρoi ) represents the DCC of
the normalized state after the action of POVM for that
particular outcome, oi. Note that the DCC for other
outcome choices is calculated with the same choices of
parameters in POVM which leads to the maximum in-
crease in DCC calculated in Eq. (26).

Maximal cost of average dense coding capacity. After
performing local POVMs by the sender(s) and the re-
ceiver(s), if we are interested to know the maximum
enhancement that can occur in the dense coding pro-
tocol on average, we can evaluate the quantity, given
by

A2
DCC = max

{λi ,θi ,φi}

[
∑
oi

poi C(ρoi )

]
, (28)

where the maximization is performed over the set of
parameters in POVM as given in Eq. (5), poi is the prob-
ability of occurrence of a particular outcome and ρoi is
the normalized state after the action of pre-processing
for that particular outcome. Notice that in the case of
average cost of optimum dense coding capacity, we per-
form maximization to identify a single outcome that
gives maximum DCC after POVM while in this case,
maximization is performed to optimize the entire quan-
tity which is written in the box parenthesis.

Based on the above three quantities, we now analyze
the consequence of pre-processing acted by different
combinations of the sender(s) and the receiver(s) men-
tioned before on the dense coding. Similar quantities
will also be considered for teleportation where capaci-
ties will be replaced by fidelities.

1. Random two-qubit states after POVM: A single sender and a
single receiver scenario

In this scenario, a sender, S, and a receiver, R, share
a two-qubit random state, ρSR having different ranks.
When the shared state is pure, we know that whenever
the state is entangled, it is dense codable and hence the
hidden DCC cannot be revealed after POVM although
POVM can enhance the dense coding capability of the
shared pure state. On the other hand, if the shared state
is a two-qubit mixed state, we find that the mean DCC
is below unity, as shown in Sec. III A, thereby implying
that most of the Haar uniformly generated states do
not show a quantum advantage in DC. For these states,
either the sender or the receiver or both of them ap-
ply the pre-processing operations to extract the hidden
DCC. We now present the exact conditions (in terms of
eigenvalues of the shared state and reduced state be-
fore and after preprocessing) which have to be satis-
fied by the rank-2 mixed states for extracting the hid-
den DCC. It is important to mention here that when the
pre-processing is completely positive trace preserving
(CPTP) map which can be included in the encoding-
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decoding process, it was shown that DCC can be en-
hanced by applying CPTP operations neither by the
sender nor by the receiver [20].

Rank-2 state in 1S-1R scenario. Let the shared state,
ρSR, be a rank-2 state. We denote its eigenvalues by
x1 and x2, with x1 + x2 = 1 and x2 − x1 = k0 while
the reduced state at the receiver’s side, ρR = trS(ρ

SR),
have eigenvalues x′1 and x′2 whose sum is still unity and
difference is taken as x′2 − x′1 = k′0. Obviously, since
all the eigenvalues are positive, both k0, k′0 < 1. The
DCC (before pre-processing) expression can then easily
be written in terms of the sum and difference of the
eigenvalues of the density matrices as

C(ρSR) = 1
−((1− k′0) log2(1− k′0) + (1 + k′0) log2(1 + k′0))
+((1− k0) log2(1− k0) + (1 + k0) log2(1 + k0)).(29)

After pre-processing has been applied, the resulting
state is ρSR

p with eigenvalues summing to unity and
having k as their difference. Similarly, for the reduced
state after pre-processing (ρR

p ), the sum of eigenvalues
is unity, but their difference is k′ and 0 ≤ k, k′ ≤ 1. In
a similar spirit as above, we can write the dense coding
capacity after pre-processing in terms of k and k′ as

C(ρSR
p ) = 1 + S(ρR

p )− S(ρSR
p ) = 1

−((1− k′) log2(1− k′) + (1 + k′) log2(1 + k′))
+((1− k) log2(1− k) + (1 + k) log2(1 + k)). (30)

It is straightforward to show that each entropy term,
S(ρR), S(ρR

p ), S(ρSR), and S(ρSR
p ), in both C(ρSR)

and C(ρSR
p ), reaches their individual maximum val-

ues when k0, k′0, k, k′ are all vanishing. The DCC af-
ter pre-processing should possess two properties – the
DCC after pre-processing is in the quantum region, i.e.,
C(ρSR

p ) > 1; and the DCC after pre-processing is greater
than that of before, i.e., C(ρSR

p ) > C(ρSR). We derive
conditions for both these traits and argue whether both
are necessary for a given rank or if we can work with
either of them.

Condition for non-classical DCC after pre-processing.
This condition demands that S(ρR

p )− S(ρSR
p ) > 0. Since

both these terms increase when their differences, i.e.,
k, k′ approach to zero, and since after pre-processing
we find numerically that the differences decrease i.e.
k < k0 and k′ < k′0, we propose the following:

Proposition 1. The dense coding capacity after pre-
processing is non-classical i.e. S(ρR

p )− S(ρSR
p ) > 0, when

k′ is smaller than k, i.e. k′ < k.

The above condition follows from Eq. (30) and guar-
antees that C(ρSR

p ) > 1 although it does not ensure en-
hancement after pre-processing. States which satisfy it
after pre-processing, will surely have non-classical DCC

and vice-versa. We see that this condition involves two
eigenvalues and it may seem that it holds only for rank-
2 states. However, our numerical analysis suggests that
some rank-3 and -4 states after optimal POVMs are re-
duced to states with rank-2, and hence this condition is
true for such two-qubit mixed states as well.

Condition for enhancing DCC after pre-processing. This
condition demands that S(ρR

p ) − S(ρSR
p ) > S(ρR) −

S(ρSR) which in turn depends on the changes occurred
in the difference of eigenvalues before and after the pre-
processing. In particular, we observe the following after
POVM:

Proposition 2. The dense coding capacity of rank-2
two-qubit states after pre-processing is greater than that of
the state without pre-processing, if (k′0 − k′) > (k0 − k).

As noticed, when the difference between eigenvalues
of the states vanishes, the individual entropies are max-
imized Therefore, we can get enhancement after pre-
processing, if the rate in which k′ in ρR

p goes closer to
zero after changing from k′0 to k′ is higher than k in ρSR

p

which changes from k0 to k, then the increase in S(ρR
p )

(from S(ρR)) is greater than the increase in S(ρSR
p (from

S(ρSR)), thereby implying C(ρSR
p ) > C(ρSR). We ob-

serve that among randomly generated two-qubit rank-2
states, 80.04% states to satisfy the above condition, al-
though there are states, showing the advantage of pre-
processing which do not satisfy the above criteria.
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FIG. 4. (Color online) Upper Panel. Mean optimal increase
in dense coding capacity, ODCC, (ordinate) in 1S-1R, 2S-1R
and 2S-2R scenarios with varying rank of the shared state
(abscissa). Lower Panel. Average probability of obtaining op-
timal increase in DCC, pODCC

, in 1S-1R, 2S-1R, and 2S-2R DC
protocol with ranks. All the axes are dimensionless.
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TABLE II. Average optimal increase in DCC (Two-qubits). ODCC denotes the optimal
increase in DCC on average. "Both" and "Receiver" indicate that POVM is performed both
by the sender, as well as the receiver, and the receiver only. “Before” represents the mean
DCC for a given rank without local POVM.

Before Receiver Both

ODCC ODCC

Rank-1 1.48 1.8 1.97

Rank-2 1.07 1.11 1.25

Rank-3 1.0043 1.01 1.034

Rank-4 1.00026 1.002 1.01

Let us now move to the scenario where two-
qubit Haar uniformly generated states undergo pre-
processing and we first address the issue of activation
of hidden DCC, with the increase of ranks and with the
number of parties doing POVM.

1. Effects of rank. As depicted in Fig. 1, the DCC
of most of the mixed random states lies just
above the classical limit if they have non-classical
DCC and the percentage of states that have non-
classical DCC decreases sharply with increasing
rank.

First of all, we notice that if POVMs are per-
formed by the sender, no increment in DCC is
observed for two-qubit states (cf. [20]).

Secondly, after POVM, the optimal increase in DCC
shows a rise on average (see Fig. 4), albeit with
a finite probability. In Table II and Fig. 4,

we illustrate ODCC = ∑ ODCC(ρ
SR)

NS
and pODCC

=

∑ pODCC
(ρSR)

NS
, where NS is the total number of

states simulated and pODCC (ρ
SR) is the probabil-

ity of obtaining the outcome of the POVM which
leads to the state having maximum increase in
DCC. The increment and corresponding probabil-
ity are complimentary to each other i.e. more in-
crement occurs with lesser probability as it is visi-
ble from the upper and lower panels of Fig. 4. It is
true that since most of the rank-4 and above ran-
domly generated states without pre-processing
are not advantageous for quantum DC, after pre-
processing, the increase is also very low on aver-
age.

To analyse the average cost of optimum dense
coding capacity and maximal cost of average
DCC, we evaluate the mean and the standard de-
viation (SD) of these quantities for randomly gen-
erated two-qubit states. We observe that although
POVMs by the receiver or both by the sender
and the receiver do not help to increase the mean
and the SD of these quantities for pure states, the
pre-processing indeed enhances the capability of
showing quantum advantages in the dense cod-
ing protocol in states with rank-2 and above as
shown in the left columns of the upper panel in
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FIG. 5. (Color online) Upper Panel. The mean and standard devia-
tion (shown as error bars) of average cost of optimum dense coding

capacity, A
1
DCC , for randomly generated states against the rank of the

state in 1S-1R, 2S-1R. Lower Panel. Same quantity is plotted for two
senders -two receivers. All the axes are dimensionless.

Figs. 5 and 6 as well as in Table III. When both
the parties apply local POVMs, we observe that
SD of A1

DCC decreases with rank also although
the SD obtained from the frequency distribution
of DCC before pre-processing is lower than that
of quantities after POVM.
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average DCC, A
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DCC , against ranks. All the other specifications are
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TABLE III. Mean of average cost of optimum dense coding capacity, A
1
DCC

and maximal cost of average dense coding capacity, A
2
DCC for two-qubit

random states. The label of the column, “Receiver” and “Both” indicate
respectively the quantities after POVMs are applied by the receiver and after
both the parties perform POVMs.

Before Receiver Both

A
1
DCC A

2
DCC A

1
DCC A

2
DCC

Rank-1 1.48 1.373 1.48 1.39 1.48

Rank-2 1.07 1.07 1.21 1.11 1.22

Rank-3 1.0043 1.01 1.15 1.03 1.21

Rank-4 1.00026 1 1.02 1.013 1.2

TABLE IV. Percentage of non-classical dense coding capacity for three-qubit states with
rank-1 to rank-6 before and after POVMs. All the notations are the same as in Table III.
Again “Before” denotes the percentage of states, giving a quantum advantage in the 2S-1R
DC protocol without pre-processing.

Before Senders Receiver Both

A1
DCC A2

DCC A1
DCC A2

DCC A1
DCC A2

DCC

Rank-1 100% 95.55% 99.96% 98% 99.99% 87.82% 99.83%
Rank-2 50.31% 86.72% 92.35% 92.28% 91.25% 45.83% 96.05%
Rank-3 0.08% 77.33% 79.64% 77.47% 78.45% 36.26% 87.36%
Rank-4 0% 58.1% 75.26% 38.91% 50.26% 30.6% 86.84%
Rank-5 0% 49.07% 73.96% 10.21% 48.85% 25.32% 85.28%
Rank-6 0% 39.78% 71.23% 7.26% 45.21% 18.96% 82.44%

2. Effect of number of party doing pre-processing: As
mentioned before, in the two-qubit scenario, no
POVMs by the sender enhances the DCC while
the receiver’s POVM help. However, when both
parties apply POVMs, the enhancement is more
pronounced than the case when only the receiver
acts which can be confirmed by all the figures
of merits considered here to measure the perfor-
mance of DC in this case.

2. Local POVMs by two senders are more effective than a single
receiver

Three-qubit Haar uniformly generated states with
rank-1 to rank- 6 shared between two senders, S1 and
S2 and a single receiver R are considered. All three-
qubit pure random states show a quantum advantage
in DC since the random states are typically genuinely
multiparty entangled and hence S(ρR) is positive for
all of them. With the increase of rank, states show-
ing non-classical DCC decreases and we do not find a
single randomly generated state having rank≥4 which
has C2S−1R(ρS1S2R) > 2 as shown in Table IV. Unlike
two-qubit states, we observe that local POVMs applied
by the senders can also help to enhance DCC proba-
bilistically (see Fig. 4). Figs. 5 and 6 depict the en-
hancement on average by considering A

1
DCC and A

2
DCC

due to the application of local POVMs before start-
ing the protocol. In stark contrast with the two-qubit
case, we observe that if senders can apply local POVMs,
the maximal cost of average dense coding capacity gets

TABLE V. A
i
DCC, i = 1, 2 are listed for four-qubit states performing a DC protocol with

two senders and two receivers.
Before Senders Receivers Both

A1
DCC A2

DCC A1
DCC A2

DCC A1
DCC A2

DCC

Rank-1 2.4 2.16 2.757 2.1 2.412 2.45 2.792

Rank-2 2.16 2.15 2.646 2.07 2.182 2.41 2.747

Rank-3 2.1 2.12 2.586 2.032 2.115 2.35 2.63

Rank-4 2.06 2.1 2.487 2.021 2.074 2.27 2.58

more increased compared to the situation when only re-
ceiver performs POVM. Moreover, our results demon-
strate that to obtain a quantum advantage in a multi-
partite DC scheme for random density matrices, pre-
processing is essential.

3. Effects of POVM on the upper bound of DCC with 2S-2R case

Since two senders- two receivers DC scenario, only
upper bound is known, we will now see whether upper
bound can be enhanced by using pre-processing on the
shared states. It is interesting to note here that there
are states for which the upper bound on DCC by LOCC
can be saturated. All the four-qubit pure states which
are, in general, genuinely multipartite entangled states
show C2S−2R(ρS1S2R1R2) ≤ U2S−2R(> 2). Interestingly,
we observe that A

i
DCC, i = 1, 2 increases after apply-

ing optimal POVMs by both the parties even for pure
states which is not true for DC protocol involving a sin-
gle receiver. As seen from Figs. 4, 5 and 6 and Table
V, for rank-2 to rank-4 four-qubit Haar uniformly gen-
erated states, the upper bound can again be improved
substantially if the parties perform local POVM. Like
DC with 2S− 1R scenario, senders can increase the up-
per bound more by acting POVMs compared to the case
when receivers apply local POVMs which is prominent
for A

2
DCC.

V. TELEPORTATION FIDELITY FOR RANDOM STATES

Let us now move to another quantum communication
protocol, in particular, quantum teleportation. Let us
first analyze the frequency distribution of the teleporta-
tion fidelity for random two-qubit states with different
ranks in Fig. 7. It was realized from different studies
that higher the entanglement, higher is the TF of the
two-qubit states and all pure two-qubit states are good
for quantum teleportation as well as they violate Bell
inequality. It was found [10] that TF and violation of
Bell inequality [52, 53] are connected. We observe that
non classical TF for random states decreases with the
increase of the ranks of the states. For example, we find
that 48.2% rank-4 states have TF in the classical range
while in rank-2 and rank-3, the percentages turn out to
be 10.14% and 20.91% respectively.
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FIG. 7. (Color online) Normalized frequency distribution of
TF, as defined in case of DC, for Haar uniformly generated
two-qubit states (vertical axis) against non-classical TF (hori-
zontal axis). All the axes are dimensionless.

Let us now show that with increasing rank, the rel-
ative number of states that possess local hidden vari-
able model but gives non-classical fidelity increases.
For example, 90% rank-2 states have F > 2/3 out of
which 67.9% are local while for rank-3 and -4, 93% and
98% are local among 73% and 51.8% states which show
quantum advantage in teleportation respectively. En-
tire calculations and analysis are based on 106 Haar
uniformly generated states for each case. We demon-
strate the action of local pre-processing operations in
revealing the hidden TF of such states. In this regard,
we later present the exact POVM operations that either
one party or both the party has to apply on the shared
pure random state to achieve optimum TF.

A. Effect of local pre-processing on teleportation fidelity

Like the DC protocol, either the sender or the receiver
or both the parties apply the local dichotomic POVMs
(in Eq. (5)) to activate the teleportation fidelity with a
non vanishing probability. We show that pre-processing
sometimes allows us to enhance TF well beyond the
classical limit (we call it as hidden TF) or to increase
the TF beyond the initial fidelity which we refer it as
enhanced TF. Note that if the post-processed state has
TF below 2/3, we discard the state and follow the best
classical protocol. As considered in the dense coding
protocol, we define three quantities to monitor the ac-
tion of pre-processing operations on TF. Specifically, we
evaluate the optimal increase in TF, denoted by OTF,
average cost of optimum TF, A1

TF and maximal cost of
average TF, A2

TF which are respectively defined as in
Eqs. (26), (27) and (28) by replacing C by F.

TABLE VI. Mean of the average cost of optimum TF and maximal cost of
average TF after applying POVMs. “Before" again represents TF of random
states on average for a given rank, without the action of local POVM.

Before Sender Receiver Both

A
1
TF A

2
TF A

1
TF A

2
TF A

1
TF A

2
TF

Rank 2 0.747 0.761 0.78 0.758 0.77 0.769 0.77

Rank 3 0.702 0.723 0.72 0.719 0.73 0.73 0.73

Rank 4 0.675 0.702 0.7 0.701 0.7 0.708 0.71

We now consider the action of pre-processing when
the shared state is a random pure two-qubit state.
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FIG. 8. (Color online) (Left) The optimum increment in teleportation
fidelity on average, denoted by OTF , vs. ranks of two-qubit states.
(Right) pOTF

against ranks. Plots clearly show the trade off between
the increment in TF and the success probability. All the axes are
dimensionless.
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FIG. 9. (Color online) Left plot represents mean of average

cost of optimum TF, A
1
TF while right one is for A

2
TF vs. ranks.

SD are shown as error bars. All the axes are dimensionless.

• TF after POVM on arbitrary two-qubit density matrices.
The effectiveness of local pre-processing operations in
enhancing the TF of two-qubit random states is stud-
ied. In the two-qubit scenario, the optimal TF achiev-
able from a shared two-qubit state is already known
[34, 35]. Here, we compare the optimal fidelity already
known with the POVMs considered in this paper.
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TABLE VII. Percentage of states showing non classical teleportation fidelity
before and after the actions of POVM. All other specifications are the same
as in Table VI.

Before Sender Receiver Both

A
1
TF A

2
TF A

1
TF A

2
TF A

1
TF A

2
TF

Rank 2 89.96% 95.99% 99.5% 94.88% 99.45% 87.68% 99.65%
Rank 3 79.09% 87.51% 99.26% 79.3% 99.17% 86.03% 99.58%
Rank 4 52.04% 82.62% 99% 78.87% 89.95% 83.51% 99.48%

1. Efficacy of POVMs increases with ranks. For a fixed
rank, the number of states showing teleportation
fidelity more than the classical bound increases
probabilistically if the sender or the receiver or
both perform local dichotomic POVMs (see Table
VII). If one increases the rank, such increment is
dramatic as quantified by OTF, especially after the
action of POVM by both the parties, as shown in
Fig. 8. Unlike DC protocol with two-qubits, the
sender can also help to increase the TF by apply-
ing local POVM.

2. We observe that the mean values of Ai
TF, i = 1, 2

do not change so much after the action of POVMs
which is different than the one observed in case
of the DC protocol (comparing Table VI and Fig.
9 with Table III and Fig. 5).

3. In general, we observe that TF can be enhanced
maximally when both the parties perform an op-
timal POVM although the probability of obtain-
ing such outcome on average is less in this case
compared to the one when the sender or the re-
ceiver performs POVM. On contrary, we find that
for rank-2 random states, the average cost of op-
timum TF is more when pre-processing is on the
sender’s side only than on both sides. This is pos-
sibly due to the fact that during averaging, TF
corresponding to some of the outcomes is very
small and for both-sided POVMs, a number of
such outcomes are more compared to the single-
sided ones.

VI. CONCLUSION

It is hard to emphasize the role of dense coding and
teleportation protocols to build a new arena of research
dealing with quantum technologies. In laboratories,
perfect dense coding capacity (DCC) and teleportation
fidelity cannot be achieved due to the presence of differ-
ent decohering factors and imperfections. Therefore, it
is of utmost importance to devise a technique to restore
quantum advantage as much as possible from low-
performing states. It is usually done via pre-processing
of channels which include distillation and filtering pro-
cesses. By using these techniques, specific protocols are
known for a specific class of states or for two-qubits.

In this work, we characterized TF for random two-
qubit states and DCC for random two-, three- and four-
qubits before any pre-processing. We then showed
that substantial activation and enhancement in capac-
ities, as well as fidelities, can happen after apply-
ing local pre-processing by the sender(s) and the re-
ceiver(s). For rank-2 two-qubit and three-qubit states,
we analytically found that DCC of rank-2 states hav-
ing the same amount of entanglement with pure two-
qubit states and three-qubit generalized Greenberger-
Horne-Zeilinger state is lower than that of the pure
states, thereby establishing the fact that DCC and en-
tanglement content of the shared states are not inter-
connected. We also proved that Werner state provides a
lower bound on the DCC of rank-2 two-qubit states pro-
vided they possess the same amount of entanglement.
Both upper and lower bounds obtained turned out to be
true for any two- and three-qubit density matrices. Nu-
merical simulations also showed that the lower bound
holds for rank-2 states after local pre-processing. We
defined three distinct figures of merit to access the ad-
vantage of local pre-processing. We found that the frac-
tion of states exhibiting quantum advantage in DC and
teleportation decreases with the increase of rank which
can be overcome by means of local pre-processing op-
erations before beginning the protocols. In the case
of teleportation, it is interesting to see that for rank-3
and rank-4 states, 93% and 98% of states showing non-
classical TF does not violate Clauser-Horne-Shimony-
Holt Bell inequality [53].
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APPENDIX: STATE DEPENDENT PRE-PROCESSING BY
PURE STATES

In the case of pure two-qubit states, we know that
all the states are dense codable as well as can give non
classical teleportation fidelity. Any pure two-qubit state
can be written in the Schmidt form [66] as

ρSR = cos(θ/2)|00〉+ sin(θ/2)|11〉 (31)

where |0〉 and |1〉 are the orthonormal basis. Let us
consider two situations, when the sender (the receiver)
performs pre-processing and when both of them per-
form pre-processing.

https://github.com/titaschanda/QIClib
https://titaschanda.github.io/QIClib
https://titaschanda.github.io/QIClib
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1. Pre-processing by sender (receiver) Let us suppose
the sender S ( the receiver R) performs the follow-
ing pre-processing operations on its part of the
qubit [55].

P+
S =

(
tan(θ) 0

0 1

)
; P−S =

(√
1− tan2(θ) 0

0 0.

)
(32)

If S gets the outcome ’+’, the resultant state be-
comes a maximally entangled state whose dense
coding capacity is 2 and the TF is unity. Note that

following the notations in Eq. (6),
√

E+
S = P+

S
and the normalized state after the action of pre-
processing is given by Eq.(6). The success proba-
bility is tr[(P+

S ⊗ 11R).ρSR.(P+†

S ⊗ 11R)].

2. Both sender and receiver do pre-processing. When
both the sender and the receiver apply the follow-
ing operations on their part of the qubit:

P+
S =

(√
tan(θ) 0

0 1

)
; P−S =

(√
1− tan(θ) 0

0 0

)
P+

R =

(√
tan(θ) 0

0 1

)
; P−R =

(√
1− tan(θ) 0

0 0.

)
(33)

and if they get the outcome ’++’, the output state
is maximally entangled, giving maximal DCC and

TF. As in Eq. (6),
√

E+
S = P+

S ,
√

E+
R = P+

R
and the normalized state after the action of pre-
processing is given by Eq.(6). The success prob-
ability is tr[(P+

S ⊗ P+
R ).ρSR.(P+†

S ⊗ P+†

R )]. We find
that the probability of success in both situations
is equals to 2(sin θ)2. We find that although the
above pre-processing leads to a higher ODCC and
OTF, compared to the state-independent method
described in the paper, the average cost of opti-
mum dense coding capacity, as well as the maxi-
mal cost of average DC (TF), turn out to be higher
in the state-independent POVMs (see Figs. 5 and
6).
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