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Robustness in the violation of Collins-Linden-Gisin-Masser-Popescu (CGLMP) inequality is inves-
tigated from the dual perspective of noise in measurements as well as in states. To quantify it, we
introduce a quantity called area of nonlocal region which reveals a dimensional advantage. Specif-
ically, we report that with the increase of dimension, the maximally violating states (MVS) show a
greater enhancement in the area of nonlocal region in comparison to the maximally entangled states
(MES) and the scaling of the increment, in this case, grows faster than visibility. Moreover, we ex-
amine the robustness in the sequential violation of CGLMP inequality using weak measurements,
and find that even for higher dimensions, two observers showing a simultaneous violation of the
CGLMP inequality as obtained for two-qubit states persists. We notice that the complementarity
between information gain and disturbance by measurements is manifested by the decrease of the
visibility in the first round and the increase of the same in the second round with dimensions. Fur-
thermore, the amount of white noise that can be added to an MES so that it gives two rounds of the
violation, decreases with the dimension, while the same does not appreciably change for the MVS.

I. INTRODUCTION

The journey from the Einstein-Podolski-Rosen para-
dox [1] to Bell theorem [2] via Bohmian mechanics
[3] is a fascinating story that contributed towards our
present outlook of a physical theory. It asserts that a
satisfactory description of nature cannot assume both
the assumptions of locality and realism simultaneously,
which have recently been supported experimentally by
loophole-free Bell test [4–6]. Apart from the founda-
tional significance, Bell-Clauser-Horne-Shimony-Holt
(CHSH) inequality [7] enables the ground for the
device-independent certification of randomness [8], se-
cure key distribution [9–11], entanglement [12] etc.

Going beyond the much-studied simplest Bell sce-
nario involving two settings of measurements for two
party with two outcomes, denoted by (2− 2− 2), new
insightful and qualitatively different results have been
derived which was otherwise impossible. In particular,
violation of local realism is manifested more sharply
than (2− 2− 2)-case via Greenberger-Horne-Zeilinger
(GHZ) argument [13], which require at least a three-
qubit system. With a suitable choice of binary observ-
ables, it has been shown that maximal violation of Bell
inequality persists for a singlet state of arbitrary spins
[14], turning the old quantum wisdom [15] down. Later,
dimensional advantage in violation of local realism has
been established considering more general choice of ob-
servables [16–18], since dichotomic measurements can
not exploit the higher dimensional system with full
generality. In the bipartite system of arbitrary local di-
mension, with two choices of non-degenerate measure-
ments, named as (2 − 2 − d)-situation, corresponding
Bell inequalities have been derived by Collins-Gisin-
Linden-Massar-Popescu (CGLMP) [19], which is vio-

lated maximally by a nonmaximally entangled state [20]
for the specific choices of observables [16–18]. These
tight higher dimensional Bell inequalities [21] exhibit
enhancement in visibility with the increase of dimen-
sion, thereby showing more robustness against noise
[16, 19]. It is also important to mention here that higher
dimensional bipartite systems also turn out to be useful
in several quantum information processing tasks rang-
ing from quantum key distribution, quantum dense
coding [22], teleportation [23] to computational com-
plexity [24–37].

In another direction, the conventional Bell scenario
has been extended where half of a bipartite system is
possessed by a single observer, called Alice, while the
other half is possessed by a series of observers, named
as Bobs, who can measure sequentially [38]. In this
new scheme of Bell test, it has been shown that no
more than two observers can violate Bell-CHSH in-
equality if the series of observers measure indepen-
dently [38, 39]. Such a sequential scenario has also been
tested experimentally [40, 41] and is further extended
in several situations which include detecting steerable
correlation [42, 43], witnessing entanglement [44, 45],
testing Bell inequalities other than CHSH [46], identi-
fying genuine entanglement [47], preparation contextu-
ality [48]. An interesting twist in this situation is that
with the slight modification to the independent and un-
biased measurement scheme, the unbounded sequence
of observers can be found who can certify non-classical
correlation with the single observer in another side
[38, 49]. Recently, some interesting applications of the
sequential scheme like self testing unsharp measure-
ment [50, 51], reusing teleportation channel [52], gen-
erating randomness [53] have been proposed, thereby
showing its potentiality in quantum technologies. An
interesting observation from the above studies is that
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if one restricts to a particular measurement scheme,
i.e., independent and unbiased measurement by the se-
ries of observers [39], the number of successful detec-
tion of nonclassical correlation depends on the strength
of the underlying correlation, detection and measure-
ment processes in an intricate way which is not well
understood yet. The number is finite and dictated by
the trade-off between the disturbance and information
gain by measurements. For example, it is found that
at most twelve Bobs can witness entanglement with
single Alice [44] while only two can violate CHSH in-
equality [38, 39]. In the sequential measurement, par-
tial information is extracted which is sufficient for the
detection scheme and at the same time, some resid-
ual correlation remains for other rounds which grad-
ually diminishes with a longer sequence of Bobs. It
also reveals that witnessing entanglement possibly dis-
turbs the state less compared to the situation when the
Bell-CHSH test is performed, thereby admitting more
robustness of the former scheme against noise. Sim-
ilarly, measurement-device-independent entanglement
witness [54] turns out to be more suitable in the sequen-
tial situation than that of the standard entanglement
witness [55] as shown through the increased number
of Bobs [45].

In the present work, we first investigate the robust-
ness of CGLMP inequality by going beyond the vis-
ibility measure of ‘nonlocality’ [16, 19]. Specifically,
in addition to white noise in the state, we consider
noisy measurement (which we call as weak/unsharp
measurement) on the maximally entangled state (MES)
as well as on the maximally CGLMP violating states
(MVS). Such a consideration of dual noise leads to a
measure of robustness, dubbed as ‘area of nonlocal re-
gion’ (where nonlocality means the violation of CGLMP
inequality), which scales with dimension more sharply
than the visibility one. Introduction of noise to the mea-
surement enables the possibility of sequential violation
of CGLMP inequality. In particular, we find that the vi-
olation by two Bobs’ persists even with the increase of
dimension, as found in the two-qubit case with CHSH
inequality. In this respect, the pertinent question is how
the robustness of CGLMP reflects in the sequential sce-
nario. It was noticed that in the context of violation of
CGLMP inequality, the visibility decreases with the in-
crease of dimension [16, 19]. However, we observe that
if we demand the violation of CGLMP inequality in two
rounds of a sequential scheme, the required visibility
increases with the dimension for maximally entangled
states while surprisingly, it remains constant for maxi-
mally violating states. It also demonstrates that the se-
quential scenario can reveal a kind of robustness which
is qualitatively different from the visibility and ‘area of
nonlocal region’ obtained for a single round. It is due
to the trade-off present in the disturbance by the weak
measurements and the information gain via measure-
ments in a sequential scheme.

The paper is organised in the following way. In Sec.

II, we briefly discuss the prerequisite of the present
work. In Sec. III, robustness of CGLMP is discussed
with new measure introducing dual noise. For higher
dimensional pure states, CGLMP inequality is used to
certify entanglement sequentially in Sec. IV and similar
study is carried out for noisy mixed states in Sec. V. We
conclude in Sec. VI with a brief discussion.

II. PREREQUISITES: BELL INEQUALITIES IN HIGHER
DIMENSIONS AND SEQUENTIAL MEASUREMENT

SCHEME

Before presenting our results, let us briefly discuss
the CGLMP inequality and sequential scenario of Bell
test.

A. CGLMP inequality

Let Alice and Bob be two observers allowed to per-
form two d outcome measurements. If A1 and A2 are
measurement settings of Alice while B1 and B2 are of
Bob, the CGLMP inequality reads as [19]

Id =
b d

2 c−1

∑
k=0

[ f (k)− f (−k− 1)] ≤ 2, (1)

where

f (k) = P(A1 = B1 + k) + P(B1 = A2 + k + 1) (2)
+ P(A2 = B2 + k) + P(B2 = A1 + k).

The probabilities of the outcomes of Alice’s measure-
ment, Aa and Bob’s measurement, Bb, (a, b = 1, 2) in
f (k) differ by k mod d and can be written as

P(A1 = B1 + k) =
d−1

∑
j=0

P(Aa = j, Bb = j + k mod d).

The strongest violation of CGLMP inequality is ob-
tained for maximally entangled state and a particular
class of non-maximally entangled state if the measure-
ment settings on Alice and Bob are chosen to be

|k〉Aa =
1√
d

d−1

∑
j=0

exp(i
2π

d
j(k + αa))|j〉A, (3)

and

|l〉Bb =
1√
d

d−1

∑
j=0

exp(i
2π

d
j(−l + αa))|j〉B, (4)

with

α1 = 0, α2 = 1/2, β1 = 1/4 and β2 = −1/4 (5)

respectively. Special thing about the above inequality is
that its quantum violation increases with dimension d.



3

In this paper, the issue of robustness in the CGLMP in-
equality is addressed in two ways – one is by studying
the trade-off in noise given in states and in measure-
ments while the other one is by considering the sequen-
tial measurements which we will now briefly describe.

B. Sequential measurement scenario

The sequential measurement scenario considers an
entangled state of two d-dimensional systems shared
in such a way that the half of the system is in posses-
sion with the observer (say, Alice) and the other half
is with several observers (say, n Bobs, referred as Bob1,
Bob2, Bob3, . . ., Bobn). The task of Bob1 is to pass the
system to Bob2 after performing an unsharp measure-
ment on his part. Similarly, Bob2 passes the system to
Bob3 after the measurement and so on. In other words,
several Bobs measure their part sequentially, and hence
the name of sequential measurement scheme. Note that
the measurement of each Bob is independent and all the
measurement settings of each Bob are equally probable.

In order to know the number of Bob sharing nonlo-
cality of a shared entangled state (say, ρ) between Alice
and n Bobs, we have to assume that measurement of Al-
ice and Bobn is sharp (i.e., they perform projection mea-
surements on their parts) while 1, . . . , n − 1 Bobs per-
form unsharp measurements represented by positive-
operator valued measurements (POVMs). If measure-
ment settings at Alice are denoted by {|k〉A〈k|} and the
measurement settings of Bobm is represented by

El
Bm

= λm|l〉B〈l|+
1− λm

d
Id, (6)

where k, l = 0, 1, 2, d − 1, m = 1, 2, 3, 4.....n − 1, λm
(0 < λm ≤ 1) is the sharpness parameter of Bobm and
Id is the d-dimensional identity matrix. The state after
the measurements of (m − 1)th Bob and without any
measurement at Alice’s end transforms as

ρm =
1
d

d−1

∑
l=0

(Id ⊗
√

El
Bm−1

)ρm−1(Id ⊗
√

El
Bm−1

), (7)

where ρm−1 is the state before the unsharp measure-
ment performed by Bobm−1. We will use the post mea-
sured state ρm and POVM in Eqs. (6) and (7) respec-
tively, when we certify nonlocality via CGLMP inequal-
ity in this scenario.

III. ROBUSTNESS IN CGLMP VIOLATION: AREA OF
NONLOCAL REGION

The study of violation of Bell-type inequalities is a
major endeavor in studies of nonlocality. Another im-
portant aspect is the investigation of robustness in the
obtained violation. Typical studies of robustness con-
sist of addition of noise to the state and tracking the

response of violation due to the amount of noise added
to the state. However, for the violation of Bell-type in-
equalities, measurements play as crucial a role as states.
Therefore, robustness analysis should also be carried
out when noise is added to the measurements as well.

We perform a general robustness analysis when both
the state as well as the measurements are simultane-
ously noisy. In particular, we explore the role of dimen-
sion of the bipartite state whose nonlocal characteristics
in terms of violation of CGLMP inequality in Eq. (1)
are under investigation. Before that, we briefly discuss
the scenario when white noise is mixed with the state,
given by

ρ = p|ψ〉〈ψ|+ 1− p
d2 Id2 , (8)

where |ψ〉 is a bipartite pure state with each party of
dimension d, and Id2 is the d ⊗ d maximally mixed
state (white noise). It was observed [19] that when
|ψ〉 is a maximally entangled state in d ⊗ d, given by
|ψd

MES〉 =
1√
d ∑i |ii〉, the robustness to noise which can

be called as visibity, measured as p, increases with the
increase in d. This is in the sense that the maximal white
noise that can be added to |ψd

MES〉 such that the resul-
tant mixed state ρ violates the CGLMP inequality which
increases with dimension d. For a given d, this maxi-
mal amount of white noise is denoted by 1− pmin. In
other words, for |ψd

MES〉, as pmin decreases, 1− pmin in-
creases with d. Such dimensional advantage of robust-
ness is enhanced when instead of a MES, |ψ〉 is chosen
to be the non-maximally entangled state which violates
CGLMP inequality maximally [20]. We call such maxi-
mally violating states as MVS. The exact form of MVS
upto d = 10 can be found in Ref. [56]. The MVS offer a
greater robustness with d in comparison to MES.

On the other hand, the effect operators for the noisy
measurements are described by POVMs given in Eq.
(6). Considering |ψ〉 to be MES and MVS, the amount
by which measurements can be made noisy is denoted
by 1 − λmin, which also increases with increasing d.
We observe an exactly similar dimensional dependence
with noise in the measurements denoted by λ, as ob-
tained in the case of noisy states since adding white
noise to the state or measurements is equivalent. Math-
ematically, for any pure state |ψ〉,

Id(p = 1, λ = x) = Id(p = x, λ = 1). (9)

Things become more interesting and involved when
both the state and measurements suffer from noise si-
multaneously, which we will discuss in the next subsec-
tion.

A. Complimentarity of Robustness

We are now going to study the robustness obtained
from the violation of CGLMP inequality by considering
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FIG. 1. (a) For a fixed d, each point in the curve just crosses the local realist value of 2 i.e., when the value of Id in Eq. (1) is just
above 2 by taking maximally entangled state (MES) in the (1− λ, 1− p)-plane. Different d values are considered. (b) Similar
plot when the shared state is maximally CGLMP violating state (MVS). (c) ANR (ordinate) defined in Eq. (10) vs. d (abscissa)
for MES and MVS.

both the state and the measurements noisy. We again
start with a d-dimensional maximally entangled state,
|ψd

MES〉 as well as MVS, |ψMVS〉. In this general frame-
work, pmin is a function of the noise in the measure-
ments, which we denote as pmin(λ), and naturally λmin
in turn becomes a function of the noise added to the
state, which is referred as λmin(p). For convenience, we
drop the min and functional labels, thereby indicating
1− pmin(λ) and 1− λmin(p) as 1− p and 1− λ respec-
tively. We investigate the dual version of robustness by
tracking the locus of all the points in the (1− λ, 1− p)-
plane that just crosses the local realist value of 2 by con-
sidering MES and MVS, see Figs. 1 (a) and (b). Note
that all noise configurations that fall below the curve
leads to the violation of the CGLMP inequality. Moti-
vated by this observation, we introduce a generalized
robustness as the area under this curve. Mathemati-
cally, the area of nonlocal region (ANR) in the noise
plane can be defined as

ANR =
∫ 1−pmin(λ=1)

0

(
1− λmin(1− p)

)
dp. (10)

We then compute ANR values for both MES and MVS,
and make a comparative analysis of their respective
scalings with d, see Figs. 1 (a), (b), and (c). The ANR
values for the MES and MVS are listed in Table I. Our
findings are listed below:

1. The ANR values for MVS are strictly greater than
those obtained for MES. Furthermore, the gap of
ANR values for the MVS and the MES grows with
d as clearly discernible from Table I and Fig. 1 (a)
- (c).

2. The ANR scales much faster with d for the MVS
in comparison to the MES, see Fig. 1 (c).

3. The gap in the growth between MVS and MES in
case of ANR grows much faster than that of the
visibility.

d ANR
(MES)

ANR
(MVS)

Diff.

3 0.05307 0.05685 7.14%
4 0.05517 0.06207 12.51%
5 0.05644 0.06595 16.85%
6 0.0573 0.06909 23.81%
7 0.05792 0.07171 27.45%
8 0.0584 0.07382 26.40%
9 0.05878 0.07567 28.73%
10 0.05906 0.07733 30.93%

TABLE I. The ANR values for maximally entangled (MES) as
well as maximally violating states (MVS), and their percent-
age differences (labelled as Diff.) from d = 3 to d = 10 are
given in different columns. The difference grows with d since
the ARN for MVS scales much faster with increase in d than
that of MES.

Typically, noise in the system has an adverse effect on
system in the form of lowering the visibility. As shown
in this section, the bane can turn out to be boon in dis-
guise if we look at the situation from a different point
of view. In the context of sequential measurements, the
“white noise" in the measurement actually constitutes
a POVM strategy which allows multiple Bobs to share
nonlocality, thereby manifesting the robustness from a
different perspective, as will be showing in the succeed-
ing section.

IV. SHARING OF NONLOCALITY IN HIGHER
DIMENSION

In the sharing scenario considered in this section, we
deal with the maximally entangled and maximally vi-
olating states shared by Alice and Bob1 in arbitrary di-
mension. We will start our discussion from d = 3 and a
detailed analysis is presented for MES in d = 3 to d = 5.
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We then repeat the investigation for the maximally vio-
lating states.

After substituting d = 3 in Eq. (1), the CGLMP in-
equality reads as

I3 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)

+ P(B2 = A1)− [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)] ≤ 2. (11)

If the shared state is the two-qutrit MES, given by

|ψ3
MES〉 =

1√
3
(|00〉+ |11〉+ |22〉), (12)

by performing POVM at Bob1’s side, and by consider-
ing the measurement settings for CGLMP test given in
Eqs. (3), (4) and (5) for Alice and Bob1, the quantum
expression of CGLMP inequality, I3 (Eq.(11)) for Alice-
Bob1-pair reduces to

I1
3 =

4
9
(3 + 2

√
3)λ1, (13)

where the superscript, "1" represents the number of
rounds in the sequential scenario. Hence, the non-
locality can be demonstrated by showing the viola-
tion of CGLMP inequality between Alice and Bob1 if
λ1 > 2/( 4

9 (3 + 2
√

3)) = 0.69615 while the optimal
quantum value for Alice and Bob1 is 2.87293 obtained
at λ1 = 1. In a similar fashion, we can find the quantum
expressions for Alice-Bob2 and Alice-Bob3-pairs are re-
spectively

I2
3 =

4λ2

81

[
− 2

(√
3 + 3

)
λ1 + 12

√
1− λ1

√
2λ1 + 1

+ 4
√

2λ1 + 1
√

3− 3λ1 + 14,
√

3 + 15
]

, (14)

and

I3
3 =

4λ3

729

[
4(
√

3 + 6)
(

2
√

1− λ2
√

2λ2 + 1− λ2

)
×
√

1− λ1
√

2λ1 + 1− 2λ1
(
7
√

3 + 15−
(√

3 + 6
)

λ2

+ 2(
√

3 + 6)
√

1− λ2
√

2λ2 + 1
)
− 2

(
7
√

3 + 15
)

λ2

+ 4
(

7
√

3 + 15
)
(
√

1− λ1
√

2λ1 + 1

+
√

1− λ2
√

2λ2 + 1 + 75 + 98
√

3)
]

. (15)

Considering the situation of minimum violation of I1
3 by

Alice and Bob1, quantum expression of I2
3 reduces to be

2.40856λ2. In this case, the violation of CGLMP inequal-
ity for Alice and Bob2 is possible if λ2 > 0.830372 while
the optimal quantum value is 2.40856 with λ2 = 1.
Substituting the conditions for λ1 and λ2, we get that
two Bobs surely violate CGLMP inequality. Let us
now check whether the third Bob, Bob3 can also vio-
late CGLMP inequality or not. In this case, the optimal

quantum value of I3
3 turns out to be 1.83798 < 2 by tak-

ing minimum violation condition for Bob2 and Bob3.
Since optimal quantum value of I3

3 is strictly less than
2, we can claim that only two Bobs, Bob1 and Bob2,
can exhibit nonlocality with Alice by using CGLMP in-
equality for d = 3. Notice here that only two Bobs
can violate CHSH inequality with Alice if they initially
share a two-qubit maximally entangled state [38].

Let us now move to d = 4 and d = 5. In this case, Id
in Eq. (1) reduces to

I4 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)(16)
+ P(B2 = A1)− [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)]

+
1
3
(

P(A1 = B1 + 1) + P(B1 = A2 + 2)

+ P(A2 = B2 + 1) + P(B2 = A1 + 1)
− [P(A1 = B1 − 2)P(B1 = A2 − 1)
+ P(A2 = B2 − 2) + P(B2 = A1 − 2)]

)
≤ 2.

By following similar prescription, for maximally en-
tangled state, |ψ4

MES〉 = 1
2 (|00〉 + |11〉 + |22〉 + |33〉),

we find that Bob1 starts sharing nonlocality with Alice
through the violation of CGLMP when λ1 > 0.690551
and max I1

4 = 2.89624 for λ1 = 1. Again, if we re-
strict the situation such that Alice-Bob1 duo just shows
violation, Alice and Bob2 violates CGLMP when λ2 >
0.834603 and in the second round, the maximal quan-
tum value is reduced which is 2.39635 (λ2 = 1). By
taking minimum violation condition of sharpness pa-
rameter for Bob2 and Bob3, the optimal quantum value
of I3

3 , given in Table II, again tuns out to be less than 2.
For d = 5,

I5 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2)(17)
+ P(B2 = A1)− [P(A1 = B1 − 1) + P(B1 = A2)

+ P(A2 = B2 − 1) + P(B2 = A1 − 1)]

+
1
2
(

P(A1 = B1 + 1) + P(B1 = A2 + 2)

+ P(A2 = B2 + 1) + P(B2 = A1 + 1)
− [P(A1 = B1 − 2)P(B1 = A2 − 1)
+ P(A2 = B2 − 2) + P(B2 = A1 − 2)]

)
≤ 2

can be used to obtain violations of CGLMP in a sequen-
tial situation with |ψ5

MES〉 = 1√
5
(|00〉 + |11〉 + |22〉 +

|33〉+ |44〉). The optimal quantum violation of CGLMP
inequality for Bob1, Bob2 and Bob3 are given in Table.
II upto d = 10.

From Table. II, we can see that as dimension in-
creases, there is an increment of optimal quantum value
for Bob1 although the same decreases with the increase
of dimension for Bob2 and Bob3. It also indicates that
the trade-off between the information gain by the mea-
surement and the disturbance created by the measure-
ment plays a crucial role in this enterprise.
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Optimal quantum value of CGLMP inequality
Dimension Bob1 Bob2 Bob3

3 2.8729 2.4086 1.8380
4 2.8962 2.3963 1.7994
5 2.9105 2.3819 1.7650
6 2.9202 2.3699 1.7382
7 2.9272 2.3570 1.7122
8 2.9324 2.3458 1.6910
9 2.9365 2.3360 1.6722
10 2.9398 2.3274 1.6568

TABLE II. Optimal quantum value of Bob1, Bob2 and Bob3 are
obtained using CGLMP inequality for maximally entangled
state for d = 3 to d = 10 dimensions.

Optimal quantum value of CGLMP inequality
Dimension Bob1 Bob2 Bob3

3 2.9150 2.4402 1.8578
4 2.9729 2.4526 1.8307
5 3.0158 2.4564 1.8015
6 3.0495 2.4522 1.7702
7 3.0771 2.4418 1.7342
8 3.1012 2.4324 1.7041
9 3.1215 2.4231 1.6768
10 3.1393 2.4142 1.6517

TABLE III. Ii
d, (i = 1, 2, 3), for Bob1, Bob2 and Bob3 are listed

for maximally violating state (MVS) as the initial state from
d = 3 to d = 10.

Since the CGLMP inequality gives the maximum vi-
olation for non-maximally entangled state, let us exam-
ine if the initial shared state in a sequential scenario is
MVS whether the situation improves or not. The ob-
servation is that although the first round of violation is
more and increases faster with d in comparison to the
MES, the measurements disturb the state to such an ex-
tent that violation for more than two Bobs still remains
an impossibility. Also note that the third round value of
the CGLPM expression decreases on increasing the di-
mension, so the possibility of getting simultaneous vio-
lation for three rounds is unlikely even if d is increased
beyond 10. See Table. III for details. Comparing Ta-
bles II and III, we observe that the gap between the I3

d
values obtained for MVS and MES decreases with the
increase of dimension. It possibly indicates that the un-
sharp measurements disturb the MVS more drastically
than the MES in higher dimensions.

V. ROBUSTNESS IN SEQUENTIAL EXHIBITION OF
NONLOCALITY

In Sec. III A, we analyzed how much noise we could
add to the state as well as measurements so that it con-
tinues to violate the CGLMP inequality. However, the
option of using sequential measurements to obtain vio-
lations for multiple Bobs with a single Alice opens up
a possibility to examine robustness from a new point of
view. In this context, we define robustness as the max-
imal amount of noise that can be added to a state such
that the CGLMP inequality can be violated for multiple
rounds, which we claim to be two, since from the pre-
vious section, we observed that both for the MES and
MVS, the maximum number of Bobs that can violate
the CGLPMP inequality with Alice remains two.

MES MES MVS MVS

MES MES MVSMVS

FIG. 2. Schematic depiction of the dynamics of qmin and pmin
for both MES and MVS with d. pmin denotes the visibility
of the state while qmin is the minimum value of the visibility
above which CGLMP inequality in the second round starts
violating. The superscripts represent the states considered.
The green and red arrows respectively indicate the advan-
tages and disadvantages of robustness with dimensions.

Let us consider the pure state, |ψ〉 admixed with
white noise, given in Eq. (8), having the visibility, q,
as an initial state in the sequential scenario. We now
demand that if two Bobs has to show violation of local
realism with Alice, both I1

d and I2
d have to be greater

than 2. We define qmin to be the minimum value of q
above which both I1

d > 2 and I2
d > 2. We now compute

how the qmin scales with d and compare it with the scal-
ing obtained for pmin as discussed in Sec. III A for both
MES and MVS.

Recall that in CGLMP test, we observed an enhanced
amount of robustness (as defined in terms of persis-
tence of the violation on addition of white noise) on in-
creasing d as indicated by lowered values of pmin. The
maximal amount of white noise that the state can ab-
sorb such that the violation persists is simply given by
1− pmin. For both MES and MVS, pmin decreases with d
[16, 19, 20]. Furthermore, note that, we expectedly find
pmin < qmin < 1.

When robustness is analyzed in the context of sus-
taining dual round violation via the use of sequen-
tial measurements, we observe a qualitatively different
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Dimension qMVS
min qMES

min
3 0.8773 0.8845
4 0.8748 0.8872
5 0.8737 0.8900
6 0.8736 0.8933
7 0.8738 0.8963
8 0.8741 0.8987
9 0.8748 0.9012
10 0.8752 0.9034

TABLE IV. The qmin values for maximally entangled states
(MES) and maximally violating states (MVS) for d = 3 to 10
are reported when we demand violation of CGLMP inequality
by two Bobs sequentially with Alice.

trend. For MES, qmin actually increases with d. This
implies that robustness actually decreases with d when
MES are employed and we demand CGLMP violations
by two Bobs. However, for MVS, qmin values do not
change significantly on increasing d. See Table. IV for
details of the qmin values for both MES and MVS. How-
ever, in both the cases, the gap between qmin and pmin
increases with d. For a pictorial representation of the
situation, see Fig. 2.

The above results explain in part why inspite of an
increase in the first round violation with d, one does
not get higher number of Bobs which sequentially vi-
olates CGLMP inequality i.e., Ik

d > 2 with k > 2 for
higher dimensional systems. Although the amount of
maximal first round violation grows, the disturbance
induced by the measurements are high enough to actu-
ally bring down the violation in the second round with
d which ultimately leads to the third round becoming
non-violating.

VI. DISCUSSION

To achieve quantum supremacy, manipulating and
analysing higher dimensional quantum system is essen-
tial, since, in several quantum information processing
tasks, higher dimensional quantum systems turn out
to be more beneficial than the qubit pairs. CGLMP in-

equality is a family of tight Bell inequalities for bipartite
systems of arbitrary dimension, which is known to ex-
hibit more robustness against noise with increasing di-
mension. Therefore, it is interesting to investigate how
CGLMP inequality responds if noise is present not only
in the state but also in measurement.

We introduced a new measure of robustness which
we referred as ‘area of nonlocal region’ under consider-
ation of dual noises, both in states and measurements.
In particular, this area indicates the region in noise pa-
rameter space where violation of CGLMP can be ob-
served. We found that this region grows more rapidly
with the increase of dimension with respect to the in-
crease in visibility associated solely with states or mea-
surements.

The introduction of noise in measurement facilitates
to invoke of a sequential violation of CGLMP inequal-
ity as it retains some residual correlation after obtaining
violation in the first round. Interestingly, we found that
the violation of CGLMP inequality by two sequential
observers on one side and another observer on the other
end persists with dimension. Moreover, minimum vis-
ibility required to achieve double violation in the se-
quential case increases with the increase of dimension,
thereby exhibiting opposite behavior as compared to
the violation obtained for the shared state without un-
sharp measurement. It indicates that robustness in the
sequential measurement scenario is qualitatively dis-
tinct than that of the typical Bell test since it involves the
disturbance on the state introduced via the measure-
ment. It is interesting to probe further how the double
violation obtained in CGLMP inequality enables appli-
cations in the context of information processing tasks
involving higher dimensional quantum systems.

ACKNOWLEDGEMENT

We acknowledge the support from Interdisciplinary
Cyber Physical Systems (ICPS) program of the Depart-
ment of Science and Technology (DST), India, Grant
No.: DST/ICPS/QuST/Theme- 1/2019/23. This re-
search was supported in part by the INFOSYS schol-
arship for senior students.

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[2] J. S. Bell, Physics 1, 195 (1964).
[3] D. Bohm, Phys. Rev. 85, 166 (1952).
[4] L. K. Shalm et al., Phys. Rev. Lett. 115, 250402 (2015).
[5] B. Hensen et al., Nature 526, 682 (2015).
[6] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N.

Ortegel, M. Rau, and H. Weinfurter Phys. Rev. Lett. 119,
010402 (2017).

[7] J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt,
Phys. Rev. Lett. 23, 15, 880 (1969).

[8] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D.
N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L.
Luo, T. A. Manning, C. Monroe, Nature 464, 1021 (2010).

[9] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[10] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95,

010503 (2005).



8

[11] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and
V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

[12] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[13] D.M. Greenberger, M.A. Horne and A. Zeilinger, Bell’s
theorem and the Conception of the Universe, edited by M.
Kafatos (Kluwer Academic, Dordrecht, 1989).

[14] N. Gisin and A. Peres, Phys. Lett. A 162, 15 (1992).
[15] A. Garg and N. D. Mermin, Phys. Rev. Lett. 49, 901

(1982).
[16] D. Kaszlikowski, P. Gnacinski, M. Żukowski, W. Mik-
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