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Quantum spin models with variable-range interactions can exhibit certain quantum characteris-
tics that a short-ranged model cannot possess. By considering the quantum XYZ model whose in-
teraction strength between different sites varies either exponentially or polynomially, we report the
creation of long-range entanglement in dynamics both in the absence and presence of system-bath
interactions. Specifically, during closed dynamics, we determine a parameter regime from which the
system should start its evolution so that the resulting state after quench can produce a high time-
averaged entanglement having low fluctuations. Both in the exponential and power-law decays, it
occurs when the magnetic field is weak and the interactions in the z-direction are nonvanishing.
When part of the system interacts with the bath repeatedly or is attached to a collection of harmonic
oscillators along with dephasing noise in the z-direction, we observe that long-range entanglement
of the subparts which are not attached with the environment remains constant with time in the
beginning of the evolution, known as freezing of entanglement, thereby demonstrating a method to
protect long-range entanglement. We find that the frozen entanglement content in any length and
the time up to which freezing occurs called the freezing terminal to follow a complementary relation
for all ranges of interactions. However, we find that for a fixed range of entanglement, there exists a
critical value of interaction length which leads to the maximum freezing terminal.

I. INTRODUCTION

In the path of advancement in second-generation
quantum technologies, quantum entanglement is
shown to be indispensable [1] in tasks ranging from
quantum communication with and without security
[2–5] to measurement-based quantum computation [6–
10]. Over the last two decades, by using the con-
cepts from quantum information science [11, 12], sev-
eral interesting questions in many-body physics are ad-
dressed which include scaling of entanglement at quan-
tum critical points [13–15], developing methods for
finding the ground state of a Hamiltonian [16], detect-
ing non-equilibrium phenomena like dynamical quan-
tum phase transition [17–19], to name a few. On the
other hand, remarkable progress in the field of atomic,
molecular and optical systems, including trapped ions
[20], photonic systems [21], cold atoms in optical lattices
[22, 23] and superconducting circuits [24, 25], give rise
to the possibility of realizing and manipulating quan-
tum many-body systems in a controlled manner, and
hence can generate entangled state in physically real-
izable systems with high fidelity in laboratories. More-
over, entanglement in dynamical states of quantum spin
models which are created by suitably tunning the in-
teraction strengths between the subsystems and other
relevant parameters turn out to be useful resouces in
measurement-based quantum computation [26], quan-
tum state transfer [27], quantum thermal machines like
quantum refrigerators [28], quantum batteries [29].

Recent experiments in ion traps [30–32] and other
physical systems also demand to probe the physical
properties of interacting quantum spin systems with
variable range interactions [33–37]. At the same time,
long-range quantum spin systems can exhibit a rich
phase diagram which cannot be seen in short-range
models. Specifically, it was found that Heisenberg long-

range models with power-law decay possess a contin-
uous symmetry breaking phase along with ferromag-
netic, XY and antiferromagnetic ones. Therefore, it is
interesting to find out whether the model can provide
an interesting platform for generating entanglement,
thereby making this model lucrative for quantum tech-
nologies. Till date, all the investigations of quantum
information theoretic quantities in these models have
been carried out to explore the static properties [38–40].

In this manuscript, we go beyond it and scruti-
nize quantum correlations of the evolved state when
the initial state is the canonical equilibrium state of
the anisotropic quantum XYZ model in presence of
a uniform magnetic field in the z-direction with vari-
able range interactions following a power-law and
exponential-law decays. For evolution, the quenching
is performed by switching-off the magnetic field. We
identify the parameter-regimes which are admissible to
tune, so that high time-averaged entanglement, quanti-
fied by logarithmic negativity [41, 42] is produced with
low fluctuations which we measure via the standard
deviation of entanglement. In particular, we find that
in presence of a weak magnetic field, the XYZ model
leads to the high amount of nearest neighbor as well
long-range entanglement production on average com-
pared to that of the XY model although the regimes giv-
ing high averaged entanglement also pay a cost of high
fluctuations. Moreover, we report that the advantage of
the long-range model is eradicated with the increase in
strength of interactions for the power-law decay.

During implementations of quantum protocols, the
most common hindrances occur due to the errors in
manipulation of the system or due to the system-
environment interactions, inescapable in all practical
purposes. On one hand, to protect the system from
errors, error-correcting codes [43–45] have been devel-
oped, while several mechanisms have been proposed
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which can assure the slow rate of decay of quantum
properties in open systems. The prominent ones in the
later direction include decoherence-free subspace [46–
49], dynamical decoupling [50–52]. Recently, it was also
shown that for a suitable choice of systems and for a
certain kinds of noise models, quantum correlations in
the form of entanglement as well as quantum discord
[53, 54] can remain constant for a certain period of time
at the beginning of the evolution – a counter-intuitive
phenomenon is known as freezing of quantum correla-
tions [55–59]. All the above studies are either restricted
to the specific spin system having short-range interac-
tions or a specific form of a state as the initial state of
the system. In this respect, it is also important to stress
here that the entanglement flow under these decoher-
ence models can be understood from the Lieb-Robinson
(LR) bound [60] which are well understood in the short-
range model (for variable-range LR bound, see [61, 62]
for exponential decay and [63, 64] for power-law decay).

We propose here a decoherence-free set-up – a system
consists of a few spin-1/2 particles, described by the
XYZ Hamiltonian having variable-range interactions in
presence of a magnetic and a part of the system is af-
fected by noise. The environment is modeled either by
the collection of thermal states interacting individually
with the subparts of the systems for a certain small pe-
riod of time repeatedly [65–70] or by local bosonic baths
and the local dephasing noise [71, 72] in the z as well
as in the x directions. We observe that in all these sit-
uations, both short-range and long-range entanglement
shared between subparts of the entire system can be
frozen during a certain period of time, referred to as
a freezing terminal. It is maximum when the modu-
lus of zz-interactions is weak and the magnetic field
is strong or vice versa. We report that to obtain the
maximum freezing terminal, there exists a critical range
of interactions above which it starts decreasing. More-
over, we report that freezing terminal and the amount
of frozen entanglement follow a complementary rela-
tion and long-range frozen entanglement is enhanced
in presence of variable-range interactions.

This paper is represented as follows. In Sec. II, we
describe the static properties of the variable-range XYZ
model including phases, the way we quench the sys-
tem to study the evolved state and time-averaged bi-
partite entanglement and standard deviation. The time-
averaged entanglement and its fluctuations under uni-
tary evolution are presented in Sec. III. In Sec. IV, by
considering the interaction of system with surround-
ings via repetitive interaction and bosonic bath, we dis-
cuss the freezing phenomena of long-range entangle-
ment over time, along with complementarity relations.
Finally, we conclude in Sec. V.

II. MODEL AND METHODOLOGY

First we briefly discuss the static properties of the
quantum spin model which include the phase diagram
and the fall-off properties of the interaction strength be-
tween the subsystems. We then describe the quenching
method that we use here to investigate the evolution of
the said model. We finally introduce quantities based
on bipartite entanglement measure, namely logarithmic
negativity [41, 42] for studying the dynamics of entan-
glement.

Spin models: Statics vs. Dynamics

The Hamiltonian describing the anisotropic quantum
XYZ Heisenberg spin model consisting of N spin- 1

2
particles with variable-range interactions having open
boundary conditions reads as

H =
N

∑
i<j

Jij

[1 + γ

4
σx

i σx
j +

1− γ

4
σ

y
i σ

y
j

]
+

∆′ij
4

σz
i σz

j

+
N

∑
i=1

h
2

σz
i , (1)

where σk, k = x, y, z is the Pauli spin matrices, Jij and
∆′ij are respectively the coupling constants along the
x − y plane and in the z-direction, γ is the anisotropy
parameter, and h the strength of the magnetic field in
the transverse direction. We consider all possible in-
teractions between the spins, so that i runs from 1 to
N − 1 and j runs from i + 1 to N. As we are interested
to probe the physics of variable-range scenario, we con-
sider two qualitatively different fall-off of the interac-
tion strength between spin i and j, namely, exponen-
tial decay with Jij ∼ α

−(|i−j|−1)
e and power-law decay

where Jij ∼ |i − j|−αp with fall-off rates of the interac-
tion strengths for the exponential and power-law de-
cays respectively being αe(p). Hence, coupling in the x -

y plane can be rewritten as
Jij
J = α

−(|i−j|−1)
e or |i− j|−αp ,

where J is a constant and of a ferromagnetic-type, i.e.,

J < 0. Similarly,
∆ij
∆ = α

−(|i−j|−1)
e or |i− j|−αp , where ∆

can be both positive as well as negative, i.e., both fer-
romagnetic and antiferromagnetic in nature. The rea-
son behind considering open boundary is that in the
study of open quantum dynamics, we want to mini-
mize the effect of environment on the properties of the
system. To make the parameters dimensionless, we fix
h/|J| = λ, and ∆′/|J| = ∆.

By varying αp, the rich phase diagram of the above
model has been studied when γ = 0 [34]. By using
bosonization and density matrix renormalization group
techniques [13], it was found that the model posses
phases like continuous symmetry breaking (CSB) [36,
37], XY, ferromagnetic and antiferromagnetic in the
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plane of ∆ and 1
α . Specifically, when ∆ < 0, by varying

αp, one obtains a transition from CSB to XY while for
antiferromagnetic coupling in the z-direction, CSB to
antiferromagnetic transition occurs. Our aim in this pa-
per is to initially prepare the system in a specific phase,
and by quenching the magnetic field, the generation of
entanglement in the evolution is studied, thereby iden-
tifying the possible parameters which are beneficial for
entanglement-production. Moreover, we vary the coor-
dination number of the model, defined as |i − j| ≤ Z ,
so that the effects of Z on entanglement creation can be
understood.

Dynamics of isolated system. Let us now move to the
evolution of the system. The initial state is taken to
be the canonical equilibrium state of the Hamiltonian,
denoted by ρβ(t = 0). For an inverse temperature β =

1
KBT , with KB being the Boltzman constant and T being
the absolute temperature, the initial N-party state reads
as

ρβ(t = 0) =
e−βH(λ 6=0,γ,J,∆,αp(e))

tr( e−βH)
. (2)

We then quench the system by switching off the mag-
netic field, i.e., h = 0, so that the time-evolved state ob-
tained via unitary dynamics is given by ρ(t) = Uρβ(t =
0)U† with U = e−itH(λ=0,γ,J,∆,αp(e)) and λ = a, t ≤ 0,;
λ = 0, t > 0. To make parameters independent of di-
mension, we call β/|J| and t/|J| as β and t respective;y.

Since the model cannot be solved analytically, we re-
sort to numerical diagonalization technique. Moreover,
to investigate entanglement, we require all the correla-
tions and magnetizations of any two-party density ma-
trices of the evolved state. Since we will also later deal
with open system dynamics of the model, we stick to
a moderate size of the system, i.e., N = 8. In order
to mitigate the boundary errors, we start evaluating en-
tanglement between the two neighboring spins at the
centre of the chain, i.e., (4, 5)-pair whose density ma-
trix is denoted by ρ45 and then to study the behavior of
entanglement length, we calculate entanglement in the
(4, 5 + r)-pair, with r = 1, 2, 3.

Time-averaged entanglement and its standard deviation

A notable bipartite entanglement measure for two
spin-1/2 particles is logarithmic negativity (LN), L,
[41, 42], which is a function of negativity, N = ∑i |ei|,
with ei being the negative eigenvalues of the partial
transposed state with respect to any of the party. LN for
a bipartite state, ρ is then given by L(ρ) = log2[2N + 1].
To find out the behavior of bipartite entanglement be-
tween a pair, (i, j), we construct the density matrix of
dimension 2N × 2N obtained from the Hamiltonian of
N spins, trace out all the parties except i and j and
investigate the properties of L(ρ(i,j)(t)) as a function
of other system-parameters. For notational simplicity,

round parenthesis and comma for marking the pair will
be omitted when both are numbers.

Typically, we observe that bipartite entanglement of
any pair starting from a nonvanishing value collapses
and revives with time. For some h value, we some-
times do not get any nonvanishing entanglement at
large time. To identify the parameters of the Hamil-
tonian which can lead to high entanglement on average
during the dynamics, we study two moments of entan-
glement, mean and standard deviation of entanglement
in dynamics, which quantify the entanglement that can
be produced on average as well as the fluctuations of
entanglement with time. The average entanglement cre-
ated during the evolution, namely the time-averaged
entanglement between any pair, can be defined as

Lavg =
1
n ∑

k
L(ρ(tk)), (3)

where tk is the each instance of time in which entan-
glement is calculated from the evolved state, ρ, and n
is the total duration of the dynamics, i.e., n =

t f−tin
ts

,
with t f , tin and ts respectively being the final, initial,
and the incremental time. Typically, we perform aver-
aging from the initial time till t f = 200 and ts = 0.01, so
that n = 20000. In order to observe the entanglement-
fluctuations over time, we use standard deviation, given
by

Lσ =

√
∑k(L(tk)−Lavg)

n

2

. (4)

In case of nearest neighbor spin model, entanglement
is present only in the nearest neighbor (NN) pair and
next-nearest neighbor (NNN) pair while in the variable-
range interacting model in Eq. (1), we will show that
long-range entanglement is present, not only its initial
thermal state, but also in the time-evolved state.

III. CLOSED DYNAMICS OF AVERAGE LONG-RANGE
ENTANGLEMENT AND THEIR FLUCTUATIONS

In this part, we will study the time-averaged entan-
glement between different pair produced in evolution.
Both Lavg and Lσ are functions of λ, ∆, αe(p), β and
Z . In the entire analysis, we keep temperature to be
large enough so that the thermal fluctuations in the sys-
tem is minimized. Unless mentioned otherwise, we fix
β = 200. Below, we first discuss the situation when the
interaction strength follows the exponential decay and
then we move to the case of power-law decay.

A. Entanglement dynamics with exponential-decay

Let us first deal with the scenario when each spin in-
teracts with its neighboring spins having exponentially
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FIG. 1. (Top panel) Nearest neighbor time-averaged entangle-
ment, Lavg(ρ45) (ordinate) against a (abscissa). (Bottom panel)
The dispersion, Lσ is against a. The initial state is chosen to
be the canonical equilibrium state of the Hamiltonian (with
open boundary condition), given in Eq. (1) with power-law
decay, αe = 2. Here N = 8, γ = 0.8 and β/|J| = 200. The
number next to Z represents the range of interactions, i.e., ”2”
corresponds to the NNN interacting Hamiltonian while ”7” is
the long-range Hamiltonian. Left panels are for Z = 2 while
the right ones are with Z = 7. The ordinates are in ebits and
abscissae are dimensionless.
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FIG. 2. (Left panel) Time-averaged entanglement, Lavg(ρ47)
(on top) and Lσ(ρ47) (bottom) against a with αe = 2. All the
configurations are same as in Fig. 1.

decaying interaction strengths, it is fixed to αe = 2 so
that the interaction drops as

Jij ∼ 2−(|i−j|−1) (5)

In this setting, we investigate the behavior of entan-
glement by varying the initial strength of the magnetic
field, a. Our aim is to find out the effects of ∆ and Z on
the creation of entanglement in this situation.

1. Effect of ∆ on NN entanglement. According to the
trends of entanglement, there can be three regions

that may play an important role here, namely
∆ = 0 representing the XY model, ∆ > 0, i.e.,
the antiferromagnetic zz-interaction, and ∆ < 0.
Moreover, the behavior of NN entanglement of
(4, 5)-pair is also drastically different when the
initial magnetic field is small i.e., when a < 1 and
when a > 1. We find that for low values a, the
dynamical state typically posses a high amount of
entanglement on average in time with ∆ 6= 0 com-
pared to the XY model as depicted in Fig. 1. For
high antiferromagnetic interaction in the z direc-
tion, time-averaged entanglement between near-
est neighbor pairs reaches their maximum value
when a ≈ 1 and increases with the increase of ∆
while it becomes vanishingly small in presence of
high amount of magnetic field, thereby showing
some-kind of advantage for moderate to low lo-
cal magnetic field. On the other hand, patterns
of time-averaged NN entanglement in presence of
ferromagnetic coupling, i.e., ∆ < 0, are qualita-
tively different. In particular, almost independent
of the strength of the external magnetic field, Lavg
is reasonably high with ∆ < 0. From this analysis,
it is tempting to predict that to create high amount
of NN entanglement on average, we should fix
∆ ≤ 0.8 for any range of interactions.

Before identifying such a parameter space, let us
first look at the fluctuations of entanglement in
time. Interestingly, we observe that there exists a
nice trade off between Lavg and Lσ. Specifically,
the region in the a, ∆-plane which leads to a high
amount of time-averaged entanglement, also has
high fluctuations with time as shown in Fig. ??.
Especially when −0.8 ≤ ∆ < −1, Lσ is quite high
after a > 1. Such a trend in Lσ can also been
seen moderate to high values of initial magnetic
field, a, irrespective of the variable-range interac-
tions and for all values of ∆. Therefore, we can
conclude that to obtain high NN entanglement in
dynamics of this model, we have to choose low
a and high nonvanishing zz-interactions and any
range of interactions. It implies that although ∆
can give some advantage in production of entan-
glement in dynamics, Z does not play a role in
the nearest-neighbor case.

2. Long-range entanglement vs. ∆ and a. The above
analysis leads to an immediate question whether
to create long-range entanglement, Z plays any
role along with ∆ and a. Suppose we want to
concentrate on entanglement between pairs which
is beyond NN o and NNN, i.e. r > 1. Let us
consider the entanglement in the (4, 7)-pair of the
time-evolved state. As in the previous case, the
initial low magnetic field is optimal for achieving
high time-averaged entanglement. In this case,
the presence of ∆ turns out to be related with Z .
For small values of Z , XY model produces a max-
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imum amount of entanglement in the (4, 7)-pair
while when the interactions are long ranged, the
maximum amount of Lavg can be found in pres-
ence of ferromagnetic moderate ∆-coupling. For
creating long-range entanglement, non-negative
∆ turns out to be disadvantageous. Just like in
NN case, the fluctuations are high for the system
parameters which manages to create high time-
averaged entanglement.
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FIG. 3. (Left panel) Time-averaged entanglement Lavg(ρ45)
(top) and Lσ(ρ45) (bottom) against a with different values of
Z . Here αe = 2 and ∆ = 0.8. Right panel is same as the left
one with ∆ = −1. All other configurations are same as in Fig.
1.

3. Role of coordination number on entanglement gener-
ation. As observed in the previous situations,
the value of Z has a significant impact on the
entanglement values. Starting from the nearest
neighbor entanglement, we look for the two-party
density matrices, ρ(4,5+r), (r = 1, 2, 3) of the time
evolved state. For such investigation, we fix the
zz-interaction strength in a such a way that pro-
duces moderate amount of time-averaged entan-
glement, i.e., we fix ∆ = 0.8. After time aver-
aging, we see that ρ45 posses a large amount of
entanglement when the system is nearest neigh-
bor, i.e., when Z = 1 and a is small. The picture
changes as Z increases. Specifically, for Z ≥ 2,
Lavg has higher value compared to Z = 1 in
presence of moderate amount of magnetic field.
Clearly, variable-range interaction is beneficial to
create time-averaged entanglement between, say
(4, 7)-pair. With the increase of Z , Lavg increases
for any values of initial magnetic field, a.

B. Power law decay with different strengths

Following the same prescription as in the previous
one, namely, exponential decay of interaction strengths,
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FIG. 4. Time-averaged NN entanglement and its standard de-
viation for power-law decay. Left panel is for αp = 1 while
the right one is for αp = 5. We see that the information about
Z is erased with the increase of αp. All other configurations
are same as in Fig. 1

we now analyse the effect of external magnetic field on
time-averaged entanglement between the subsystems,
when the spin-spin interaction follows the power-law
decay. Along with Z , ∆, and different pairs of spin in
this scenario, we also have different strengths of inter-
action due to αp. We start presenting our results with
varying αp which was absent in the previous case.

1. Effect of αp on short and long-range entanglement.
Let us first consider the entanglement after aver-
aging over time of the evolution for nearest neigh-
bor (in Fig . 4). Like exponential decay case,
if the initial state is prepared with low values of
λ = a, time-averaged entanglement is higher than
the case with high initial magnetic field for all val-
ues αp as shown in Figs. 4 and 5. Moreover, we
observe that for a fixed amount ∆ and a, if we
keep on increasing the value of αp, the numeri-
cal value of Lavg of (4, 5)-pair is also increasing
compared to lower value of αp. Most strikingly,
it is readily observed that higher value of αp di-
minishes the effect of variable interactions on NN
entanglement, i.e., the effect of Z is essentially
wiped out with the increase of αp, and we get dif-
ferent averaged entanglement for different values
of ∆ with the variation of a for any values of Z
(see right panel of Fig. 4).

On the other hand, long-range time-averaged en-
tanglement shows a drastic change with αp both
in the qualitative and quantitative sense, as de-
picted in Fig. 5. First, the numerical value of Lavg
decreases a significant amount with the increase
of αp. Note that as one expects, long-range en-
tanglement content is typically less than the NN
ones. If we concentrate on Fig . 5, it is an im-
mediate observation that the higher value of αp
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FIG. 5. (Top panel) Variation of time-averaged entanglement
for ρ47 and (bottom panel) the respective fluctuations in en-
tanglement with a. All other configurations are same as in
Figs. 4.

is actually helping to generate higher value of
long-range time-averaged entanglement for high
a, which is a basic qualitative difference from
nearest neighbor scenario. However, the dimin-
ishing effect of Z due to the increment of αp is
still present in the long-range scenario.

2. Role of zz interaction strengths. As we observed,
the effects of variable-range interactions wash out
with the increase of αp. For high αp, we clearly
see that Lavg(ρ45) increases with the increase of
∆, both in the ferromagnetic and antiferromag-
netic regimes, especially when the initial magnetic
field is of moderate strength, i.e., when a < 1.
On the other hand, for small αp, the impact of
∆ for various values of Z is prominent and he
behavior of time-averaged entanglement is quali-
tatively similar to the one described in the expo-
nential case. For any Z , we find that moderate
amount of ferromagnetic as well as antiferromag-
netic interactions in the z-directions can generate
high amount of NN time-averaged entanglement
for a < 1 although the fluctuations of entangle-
ment with time also increases with a and increase
of ∆. However, high content of average entan-
glement in the time-evolved state, ρ47 is obtained
only when ∆ vanishes when the interactions is re-
stricted to NN as well as NNN while presence of
Delta gives benefit when we starts evolution with
the system of long-range XYZ model with a mod-
erate amount of magnetic field.

3. Consequences of variable-range interactions on
entanglement-dynamics. As argued before, the
beneficiary role of variable-range of interactions
is only visible when the strength of the decay
is small. Universal feature observed in this
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FIG. 6. Lavg(ρ45) vs. a for different values of Z . Here
∆ = 0.8. All other parameters and conditions are same as in
Figs. 4.

scenario is that in presence of high magnetic field,
entanglement content in the nearest neighbor
pair with different Z values is almost constant
and is very low while when the initial strength of
the magnetic field is small to moderate, Lavg(ρ45)
is maximum for the Hamiltonian having nearest
neighbor interactions. The picture is completely
opposite when we consider long-range entangle-
ment, i.e., entanglement in ρ47(t). Specifically, no
entanglement is generated with the XYZ model
having NN interactions and NN as well as NNN
interactions. On the other hand, with long-range
interactions of power-law decay can produce a
high amount entanglement on average in the
(4, 7)-pair and the amount of entanglement in
this pair decreases with Z and with the increase
of a, almost monotonically as shown in Fig. 6.

FIG. 7. Schematic depiction of protecting spins from envi-
ronment. Suppose there are eight interacting spins, following
the Hamiltonian having variable-range of interactions, given
in Eq. (1) with Z = 3. Among them, three spins from the left
are affected by the external noisy environments, denoted by
Ei, i = 1, 2, 3 while the rest of the spins is not. We show that
in this scenario, entanglement between pairs having different
range can keep their initial value for a certain period of time.
Therefore, the set-up of five spins which are not attached to
the bath forms a decoherence-free subspace by prohibiting the
effect of decoherence for a certain period of time.
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IV. PRESERVATION OF ENTANGLEMENT IN
PRESENCE OF NOISY ENVIRONMENT:

DECOHERENCE-FREE SUBSYSTEMS

Preparing an isolated system is an ideal situation.
Typically, the system prepared in a certain state starts
interacting with environment, the quantum properties
slowly decay, and the precious resource of entangle-
ment vanishes with time. The question that is perti-
nent at this point —is there a way to preserve quan-
tum properties of the system or part of the system even
in presence of system-environment interaction? Over
the last few years, such questions are addressed and
for certain scenarios, protection mechanisms of bipar-
tite, especially nearest neighbor entanglement are de-
veloped. Here we will propose a method which can
keep entanglement as it is for a certain period of time
(see schematic Fig. 7 for the depiction).

Let us consider a situation, involving N interacting
spins and among them, only k spins are affected by the
environmental noise. For a nearest-neighbor Hamilto-
nian, it was shown [59] that the entanglement of the re-
maining N− k spins can remain constant over a certain
amount of time since via LR bound, the noise to reach
all the spins takes some time. In case of spin model with
variable-range interactions, such a scenario is more in-
volved and we can show that not only short-range en-
tanglement, long-range entanglement can also freeze
with a certain period of time. For illustrative purposes,
three spins of a total eight spins are chosen to be in con-
tact with baths in a Markovian regime [71, 73] and the
rest five spins can be shown to act as a decoherence-free
subspace, where decay of entanglement is slow. Anal-
ysis below considers the first three spins are attached
to the bath and therefore, the patterns of entanglement
in ρ(4,4+r), (r = 1, 2, 3, 4) are under study. Notice that
if we consider ρ4,4−r, , r = 1, 2, the entanglement shows
collapse and revival for a certain periods of time.

Freezing of entanglement

Before moving further, let us define the freezing of En-
tanglement [59]. Suppose LN of a pair of spins (i, j) at t
is given as L(ρ(i,j)(t)), and its initial value at the begin-
ning of the evolution can be referred as L(ρ(i,j)(t = 0)).
An entanglement between (i, j)-pair is said to be frozen
if

|L(ρ(i,j)(t = 0))−L(ρ(i,j)(t))| < δ, (6)

i.e., the derivative of the difference with respect to time
vanishes. The duration of time, after which the en-
tanglement starts changing with time is denoted by τf
and can be called the freezing terminal. In other words,
t > τf , the derivative in the difference between entan-
glement values at two neighboring instance of time is
nonvanishing. Precisely, entanglement values do not

show any decay until τf upto the numerical accuracy
of δ. In our calculations, we take δ = 10−5. The en-
tanglement content of ρ(i,j) when the freezing occurs,
i.e., the entanglement value at τf can be called frozen
entanglement and is denoted by L f .

Before moving to the freezing terminal and frozen
entanglement values, let us first discuss how the dy-
namics of entanglement is effected by the system pa-
rameters, ∆, λ for a fixed γ, the long-range interaction
measured by Z , and αp for the power-law decay. In all
these situations, the general trade-off that entanglement
of any pairs show is that entanglement initially freezes
for a certain period of time and then decay, as depicted
in Figs. 8 and 10 . However, unlike Hamiltonian with
nearest neighbor case [59], the decay is not smooth, hav-
ing lots of jiggling with time. Surprisingly, for a specific
values of ∆, λ-pair, we observe that L4,4+r (r = 1, 23, 4)
can show a non-monotonicity with respect to time. In
particular, there is a certain time period at which the
value L at t > 0 is more than that of t = 0 or the
frozen value of entanglement. It is counter-intuitive in
the sense, that it is usually assumed that entanglement
should reduce with time under the influence of envi-
ronment. The overall trends of entanglement remains
same for both repetitive interaction and bosonic baths.
Only stark difference that we observe is that when only
bosonic absorption bath is active, after the initial freez-
ing, entanglement pair collapses but it again revives
with a certain period of time (see Fig. 9) for compar-
ison between entanglement dynamics with repetitive
and bosonic environments). Let us now present the de-
pendence of the parameters on all these observations.

Dependence of dynamics on the strength of the decay in
interactions. As we have reported in case of closed dy-
namics, high fall-off rate removes the the Z dependence
from L even in the open systems. However, after freez-
ing, the fidget behavior of entanglement gets smoother
with the increase of αp, thereby exhibiting much sharp
decay towards collapse of entanglement (comparing left
and middle Figs. 8 and 10). Moreover, when we con-
sider long-range interacting Hamiltonian, we expect to
generate long-range entanglement which turns out to
be false for high αp. To illustrate other characteristics in
dynamics, we again fix αp for presenting further obser-
vations.

Role of (∆, λ,Z) in freezing. For a fixed anisotropy,
the interplay of ∆, λ-pair dictate the dynamics of the en-
tanglement between any two-qubits irrespective of the
bath considered in this paper. It is interesting to point
out here that there exists a surface in which bipartite
entanglement vanishes in this model and it divides the
plane into two regions having different entanglement
patterns [40]. Keeping this in mind as well as the ob-
servation in unitary dynamics in the preceding section,
we choose λ to be weak as well as strong which can
manifest the the difference between the nearest neigh-
bor model and the one having variable-range interac-
tions. In particular, for a nearest neighbor model, in
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FIG. 8. (From left to right) L(ρ45) (ordinate) against t (abscissa). The initial state is prepared in the thermal state of the XYZ
model with varying interaction strengths, Z in presence of strong uniform magnetic field, λ = 2.4. β = 20. Different lines
correspond to different values of ∆ with power-law decay αp = 1, αp = 5 and the exponential decay having αe = 2. Dashed
lines are for Z = 2 and solid lines are for Z = 7. The system consists of eight spins and the first three spins interact with bath
according to repetitive interactions. Here N = 8, and γ = 0.8. Although we have seen the change of β upto a very small value
and γ do not qualitatively alter the results. Entanglement is in ebits while time is dimensionless.
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FIG. 9. NN entanglement (vertical axis) vs. time (horizon-
tal axis) for bosonic channel along with local dephasing in
the z-direction. All the configurations are same as in Fig. 8.
Left plot is for powerlaw decay with αp = 1 while the right
one is for the exponential-decay case. Here s = 0.5. Unlike
repetitive interactions, entanglement is showing revival with
time after the collapse. Entanglement is in ebits while time is
dimensionless.

presence of strong magnetic field, high delta leads to
high amount of nearest neighbor entanglement while
for weak λ, |∆| matters to obtain a good content of
nearest neighbor entanglement. Such a universal sce-
nario cannot be captured in the variable-range Hamil-
tonian since the interplay between Z , ∆ and λ is more
sophisticated. In particular, ferromagnetic and the anti-
ferromagnetic interactions in the z-direction behave dif-
ferently for the long-range model, in presence of weak
or strong magnetic field. For example, we observe that
for Z 6= 1, with high λ values, say, λ = 2.4, ∆ = 0.2 is

giving higher value of frozen entanglement while when
λ = 0.4, ∆ = −1 can produce maximum frozen entan-
glement in any arbitrary pair, ρ4r. Moreover, among
all the situations, ferromagnetic long-range interacting
XYZ model having low magnetic field turns out to
be the most beneficial in overcoming the decoherence
effects in the sense of generating high entanglement.
Such observations possibly suggest that in the creation
of long-range entanglement, the ratio between |∆| and
λ in the long-range model plays a role, i.e., when ∆
is high, λ should be low and vice-versa. The trends
of frozen entanglement content and freezing terminal
with the increase of Z becomes clearer in the respective
discussions below.

A. Impact of variable-range interactions on freezing
terminal: Complementarity between terminal and frozen

value

Independent of baths, in the decoherence-free sce-
nario, entanglement in ρ4,4+r always show freezing pro-
vided the initial Hamiltonian is long-range. First obser-
vation in this case is that for a fixed Z , τf obtained for
ρ45 is smaller than ρ46 and so on, i.e., we find that

τf (ρ45) < τf (ρ46) < τf (ρ47) < . . . . (7)

It can possibly be argued that the effects of decoherence
can reach the sites closer to the bath faster than that
of the further. As we will show now, such a simple
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FIG. 10. L(ρ47) with t. All the configurations are same as in Fig. 8.
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FIG. 11. (Upper panel) Freezing terminal (vertical axis) vs.
Z (horizontal axis) while frozen entanglement, L f (y-axis)
with Z (x-axis) (in Lower panel). Left column is for (∆, λ) =
(0.2, 2.4) while the right one is for the pair (∆ = −1, λ = 0.4).
The system is same as in Fig. 8 when the variable-range in-
teractions decay exponentially. Different symbols correspond
to different pairs of density matrices, (4, 4 + r). It is clear
that τf decreases with Z while the opposite picture emerges
for frozen entanglement content. The maximum value of τf
is obtained for a minimum Z required to make the entan-
glement of the corresponding density matrices nonvanishing.
On the other hand, except nearest neighbor frozen entangle-
ment value, L f increases and saturates with Z . All the axes
are dimensionless in the upper panel while the vertical axis
in the lower panel is in ebits.

argumentation of information flow cannot explain all
the results.

Secondly, we find that τf for ρ45 does not change at
all with the increase of Z although for long-range case,
it slowly decreases with Z and saturates to a certain
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FIG. 12. Freezing terminal and frozen entanglement with Z
for Coulomb law. All the configurations are same as in Fig.
11.

value. It demonstrates that the value of Z which is
enough to generate the long-range entanglement leads
to the maximum freezing terminal. After that value, in-
creasing Z has an adverse effect on freezing terminal.
It implies that increasing interactions possibly induces
more system-bath interaction, thereby making the deco-
herence effects prominent. Specifically, since Z = 2 is
sufficient to generate entanglement in ρ46 while we re-
quire higher than NNN interactions, i.e., Z > 3, to have
nonvanishing entanglement in ρ47 and ρ48, the maxi-
mum freezing terminal is obtained for Z = 2 in case
of ρ46 and Z = 3 in case of ρ47 and ρ48, thereby pin-
pointing a critical value of Z leading to highest freez-
ing terminal. For illustration and motivated from the
previous findings, we choose ∆, λ-pair as (−1, 0.4) and
(0.2, 2.4) as shown in the upper panels of Figs. 11 and
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12. Such a detrimental effect of Z in a freezing termi-
nal can be compensated from the frozen entanglement
value as will be shown now.

Complementary relation between L f and τf . We find that
the frozen entanglement value and freezing terminal
obeys a complementary value for a fixed (i, j)-pair. We
propose that for a given ρij,

L f + τf ≤ c, (8)

where c depends on the values of i and j. From our
analysis, we find that it never goes beyond 0.35 which
is obtained for the nearest neighbor case. Note that un-
der unitary dynamics, the model can at most generate
nearest neighbor entanglement around this value. At
this point, it is reasonable to conjecture that c cannot go
beyond the average entanglement that can be created in
the system under different quenches without decoher-
ence, i.e., c ≤ Lavg(ρ(i,j)).

The existence of such a relation guarantees that the
frozen entanglement content, L f , increases with Z al-
though nearest neighbor entanglement decreases with
Z as depicted in the lower panels of Figs. 11 and
12. To hold complementarity, we find an opposite hi-
erarchy among frozen value of entanglement than the
one obtained for τf , in Eq. (7), i.e. for a fixed Z ,
. . . < L f (ρ48) < L f (ρ47) < L f (ρ46) < L f (ρ45). The de-
pendence of the complementary relation for long-range
entanglement on Z turns out to be highly nontrivial.
Specifically, it has an optimal Z value when it reaches
the maxima, thereby reflecting the dependence of τf on
Z as discussed before.

V. CONCLUSION

Quantum spin models with variable-range interac-
tions can exhibit certain characteristics like continuous
symmetry breaking phase which cannot, in principle,
be seen by the corresponding short-range models and
hence it is quite plausible that quantum technologies
can be designed by exploiting them. On the other hand,
entanglement generated via dynamical systems of the
quantum spin models is beneficial for several quan-
tum information protocols. However, the systems with
variable-range interactions are, in general, intractable
analytically which makes the study of these models
from the perspective of quantum information to be lim-
ited.

In this work, we studied the patterns of entanglement
produced in the evolved state of the anisotropic quan-
tum XYZ model with a uniform magnetic field by vary-
ing interactions according to the exponential as well as
the power-law decays. The quenching for dynamics is
performed by tuning the magnetic field. We found that
the maximum amount of short-range as well long-range
time-averaged entanglement can be created in the pres-
ence of both ferromagnetic as well as antiferromagnetic
couplings in the z-direction with a moderate amount of

power-law and exponential interactions. Moreover, we
showed that the high content of bipartite entanglement
in dynamics can be established at the cost of high fluc-
tuations.

When the part of the thermal state of the same model
came to contact with environments which are modeled
by the repetitive interactions and bosonic bath along
with dephasing channels, the bipartite entanglement of
the rest of the part remains constant at the beginning
of the evolution before decaying to vanish. We identi-
fied the regions in the parameter space which can be
tuned to obtain the maximum time when entanglement
remains constant. We also reported that frozen entan-
glement value and the freezing time follow a comple-
mentary relation. Although all the observations remain
qualitatively the same for both the baths, we found that
for the bosonic baths in presence of dephasing noise
in the z-direction, along with the freezing of entangle-
ment, entanglement also shows a revival after the col-
lapse which is not seen in the repetitive case. The inves-
tigations carried out in this paper indicate that the XYZ
model with varying interaction strength which can be
realized by using currently available technology is the
potential candidate for building quantum devices even
in presence of the noisy environment.
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APPENDIX

In this paper, the entire analysis has been car-
ried out under this Markovian approximation where
the evolution of the system is governed by the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) mas-
ter equation [71, 73], given by

dρS
dt

= − i
h̄
[HS, ρS] +D (ρS) , (9)

where HS represents the system’s Hamiltonian and D
is the dissipative part dictated by the choice of the en-
vironment. In our case, it is fixed by the local repetitive
baths and bosnoic environment.

https://github.com/titaschanda/QIClib
https://titaschanda.github.io/QIClib
https://titaschanda.github.io/QIClib
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A. Local repetitive baths

Consider a bath consists of collection of baths, Ei,
(i = 1, 2, . . . , n) which are not interacting with each
other and whose Hamiltonian is given by HEi = Bσz

i .
Each of those spins are interacting locally with spins σi
of the system for a certain short-period of time. The
total evolution time can be divided into small time-
intervals, 0, δt, 2δt . . .. The system interacts with the en-
vironment during (0, δt), with the interacting Hamilto-
nian, given by [65–70]

Hint(δt) = ∑
i

√
k/δt

(
σx

i ⊗ σx
E + σ

y
i ⊗ σ

y
E

)
, (10)

where k has the dimension of (energy)2 × (time) and i
is the index of spin in the system. After δt, the system-
environment pair becomes entangled and we reset the
environment to the initial thermal state and system’s
part is obtained by tracing out environment form the
entangled state. The final Hamiltonian of the system-
environment i can be represented as

H = HS ⊗ IE + IS ⊗ HE + Hint(δt) (11)

In our work, the three spins of the system are interact-
ing with the bath, which leads to the D(ρS) of the form

D (ρS) =
2k
h̄2

3

∑
i=1

1

∑
l=0

pl

[
2ηl+1

i ρSηl
i −
{

ηl
i η

l+1
i , ρS

}]
(12)

where pl = Z−1
E exp

[
(−1)l βEB

]
, ZE =

tr [exp (−βEHE)] and ηα
di
= (σx

di
+ i(−1)ασ

y
di
)/2.

The initial state is considered to be the thermal state
of the XYZ model, given in Eq. (1) with βS = 20
and then following the evolution in Eq. (9), at each
time interval, we trace out all the parties except 4
and k (k = 5, . . . , 8), and calculate LN of ρ(4,k). Since
Eq. (9) is a differential equation, we use fourth order
Runge-Kutta method to solve the equation, whose
numerical errors accumulate in the fifth power of time
increment. We use δ = 0.01 so that error is of the order
10−5.

B. Bosonic environment

Let us consider another decoherence model where
the system is permanently connected to the local ther-
mal baths of harmonic oscillators for a particular in-
terval of time [71, 72, 74]. The particular sub-systems

are also connected to local bosonic reservoirs which act
as absorption channels, thereby helping to accumulate
energy from the environment to the system. We also
apply local bosonic reserioirs after a certain interval of
time to extract energy from it, that means, those acts
as a dissipation channel. In all through the process, a
local dephasing noise which is either in the x direction
or in the z direction is acting on the selected parties of
the system. Suppose a single qubit is exposed to the
dephasing noise, then the total Hamiltonian reads

H = ω0σz + ∑
i

a†
i ai + ∑

i
σnoise(giai + g∗i a†

i ), (13)

where ai and a†
i are the annihilation and creation opera-

tors for the mode i of the harmonic oscillators. ω0 is the
energy spacing in the qubit, gi is the coupling constant
between reservoir and qubit while ωi is the frequency
for each mode. Here σnoise is either σx or σz depend-
ing on the direction of applied dephasing channel. By
putting all these into the GKSL master equation, the re-
sulting form of the noise in the dynamical part looks
like

D(ρβ
N) = γdeph(t)(σnoiseρ

β
Nσnoise − ρ

β
N), (14)

where γ(t) is the time-dependent dephasing rate which
can be calculated from the spectral density of the re-
servior. As we consider the initial state of the system
as the thermal state (with large value of β), and the re-
servior is characterized by the Ohmic spectral density
K(ω) [? ], given by

K(ω) =
ωs

ωs−1
c

exp(− ω

ωc
), (15)

with ω and ωc being respectively the frequency and the
cut-off frequency of the reservoir and s is the Ohmicity
parameter, the time-dependent dephasing rate,

γdeph(t, s) = (1 + (ωct)2)−
s
2 Γ(s) sin[s tan−1(ωct)], (16)

where Γ(s) is the Euler-gamma function. s is the
ohimicity parameter. Since the environments are inde-
pendently acting on the chosen parties, the effect of lo-
cal environments acting on, say, three spins of the sys-
tems can be achieved by summing up three of them.
Hence, the dynamical part in this situation reduces to

Dd(ρ
β
N) =

d

∑
i=1
Ddi

(ρ
β
N). (17)
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