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Characterizing multipartite quantum correlations beyond two parties is of utmost importance
for building cutting edge quantum technologies, although the comprehensive picture is still miss-
ing. Here we investigate quantum correlations (QCs) present in a multipartite system by exploring
connections between monogamy score (MS), localizable quantum correlations (LQC), and genuine
multipartite entanglement (GME) content of the state. We find that the frequency distribution of
GME for Dicke states with higher excitations resembles that of random states. We show that there is
a critical value of GME beyond which all states become monogamous and it is investigated by con-
sidering different powers of MS which provide various layers of monogamy relations. Interestingly,
such a relation between LQC and MS as well as GME does not hold. States having a very low GME
(low monogamy score, both positive and negative) can localize a high amount of QCs in two parties.
We also provide an upper bound to the sum of bipartite QC measures including LQC for random
states and establish a gap between the actual upper bound and the algebraic maximum.

I. INTRODUCTION

Correlations play one of the fundamental roles in
providing insight about the laws describing nature at
various scales. The features possessed by these corre-
lations depend on the theory under which they have
been analyzed – some characteristics are common to all
the theories while others are exclusive to a particular
one. Correlations in the quantum domain, commonly
referred to as quantum correlations (QCs) possess many
such unique characteristics that are qualitatively differ-
ent from classical correlations (CCs). From entangle-
ment to nonlocality [1, 2], these special properties con-
stitute and in turn help to understand the intricacies
of quantum mechanics. Importantly, these specialities
of QCs are responsible for fueling tasks like quantum
teleportation [3], quantum dense coding [4], genuine
randomness certification [5], quantum computation [6],
etc. which are impossible via the sole use of CCs.

Rapid developments in realizing quantum technolo-
gies demand complete characterization of multisite en-
tangled states. A concrete way to assess quantum-
ness and to study the distribution of QCs in a mul-
tipartite state is typically hard. In this direction, two
effective methods have been developed – one deals
with the constraints on the shareability of correlations
among the various parties of a multiparty state known
as monogamy of QCs [7, 8] which is absent for CCs (cf.
[9]) and other one is measurement-based, referred to as
entanglement of assistance or localizable entanglement
(LE) [10–12]. In the usual setting of monogamy rela-
tion, different bipartite QCs in a multipartite state are
considered where for fixed two-party reduced states,
the other (spectator) parties play a passive role and are
merely forgotten (traced out). On the other hand, the
latter concept of LE emerges from endorsing an active
status to these spectator parties where they perform
local projective measurements to enhance the bipartite

QCs. Both the quantities can capture different perspec-
tives of multipartite states, depending on the choice
of bipartite QC measures which are well-studied and
quantified [1]. Therefore, apart from their fundamen-
tal importance, they also possess some utilitarian ap-
plications like distinguishing classes of quantum states
[13], in quantum cryptography [14–16] and characteriz-
ing phases in many-body systems [8, 11, 12, 17–22] (see
also [8, 23–51]).

Nevertheless, once a correlation is uniquely ascribed
as quantum, it becomes natural to seek the relationship
between other exclusive QCs. Associating nonlocality
with entanglement is perhaps one of the best examples
of such intersectional investigation [2, 52–55]. In this
work, we establish a connection between monogamy,
localizable QCs and genuine multipartite entanglement
with varying numbers of parties (for schematic rep-
resentation, see Fig. 1). The genuine entanglement
content of a multipartite pure state can be defined as
the minimum geometric distance of a genuinely entan-
gled state from non-genuine ones, known as general-
ized geometric measure (GGM) [56, 57] (cf. [58]). In the
case of monogamy and localizable QCs, different QC
measures with a definite power [7, 30, 31, 39, 42, 43]
are investigated to obtain different landscapes of QCs.
Note that QCs with some powers in monogamy- and
measurement-based measures are also valid QC mea-
sures.

In this respect, we introduce two quantities, the crit-
ical GGM, and the critical exponent, beyond which
all states satisfy the monogamy inequality. We pro-
ceed to show that the critical GGM shows a univer-
sal diminishing character with the number of parties
for all quantum correlation measures, thereby provid-
ing a sufficient criteria in terms of GGM in states sat-
isfying monogamy inequality. The different QC mea-
sures that we employ for our investigation involve mea-
sures from both the entanglement-separability [1, 7]
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FIG. 1. Schematic representation of interplay between dif-
ferent multipartite quantum correlations, thereby providing
classifications among multipartite quantum correlation mea-
sures – genuine multipartite entanglement, monogamy- and
measurement-based quantum correlations are related. Anal-
ysis shows that features of multipartite QCs are more promi-
nently present in monogamy-based measures compared to
the measurement-based ones, considered in this paper.

and information-theoretic [59] paradigms – negativity
[60–64] and concurrence [65, 66] being measures of the
former category, while quantum discord [67–70] is our
choice of the measure of QC from the latter category.
Moreover, for states with less number of qubits and
a fixed amount of GGM, the critical exponent can as-
sume very high values but as the number of qubits
grows, it saturates to its lower limits, thereby show-
ing the increase of quantumness in randomly simulated
states with number of parties. We prove that for a fixed
amount of genuine multipartite entanglement (GME)
content of an arbitrary three-qubit state and the gener-
alized Greenberger-Horne-Zeilinger (gGHZ) state [71],
the monogamy score of entanglement for the former is
always lower than that of the gGHZ state. Such an up-
per bound obtained from the gGHZ state does not hold
for states having more than three-qubits. We also show
that Dicke states with higher excitations behave more
like the random states while the Dicke states with a sin-
gle or low excitations are not. A usual way of analyzing
monogamy is to look at the sum of all possible bipartite
correlations with respect to a particular party of a multi-
partite state. The monogamous feature is reflected as an
upper bound to this sum which turns out to be much
smaller than the algebraic maximum of the sum. We
provide an estimate of the sum for different bipartite
quantum correlation measures of random multipartite
states as well as Dicke states, thereby revealing the gap
between the algebraic maximum and the actual value
which leads to the violation of monogamy inequality.

In the case of measurement-based QC measures, we
show that even if the original state has low GME as
well as low (both positive and negative) monogamy
score, substantial quantum correlation can be localized
using projective measurements, which becomes more
pronounced in the case of states having more num-

ber of qubits. We support such observation both qual-
itatively and quantitatively by considering the mini-
mum localizable QC produced from states with a fixed
amount of GME or monogamy score. A slight contrast-
ing behavior is observed for randomly generated Dicke
states with a single excitation for which states possess-
ing high GME (monogamy score) can always produce
moderate amount of localizable entanglement although
low GME can also achieve high localizable entangle-
ment. This is due to the fact that the sample space
of Dicke states having high GGM is low in number
with the increase of number of parties. Both the re-
sults illustrate that the monogamy score can capture the
features of multipartite QCs more prominently com-
pared to the measurement-based QCs, thereby showing
the interplay between measurement - and monogamy-
based measures with GME. We also report that unlike
monogamy scores, the sum of the localizable QCs of
multipartite random states can reach close to their alge-
braic maximum, especially for states with a low number
of qubits.

The paper is organized in the following way. Sec. II
establishes a relation between monogamy of QCs and
genuine multipartite entanglement for random multi-
partite states by varying parties from three to six, Dicke
states with different excitations [72] and three-qubit W-
class states [73]. We characterize the set of states which
are non-monogamous with respect to certain bipartite
QC measures, in terms of genuine multipartite entan-
glement content in SubSec. II B. In Sec. III, we finally
relate the three quantities, monogamy score, localizable
entanglement, and GGM as well as report an upper
bound on the distribution of localizable entanglement.
The summary of results and their implications are pre-
sented in Sec. IV.

II. MONOGAMY VS. GENUINE MULTIPARTITE
ENTANGLEMENT

Before providing the relation, let us first present the
prerequisites to carry out the investigation. We first
give definitions of monogamy score of an arbitrary QC
measure, classes of multiqubit states under study and
genuine multipartite entanglement measure.

Monogamy of QC. The restrictions on the distribu-
tion of bipartite quantum correlations, Q, in a multi-
party state, ρ1...N , is referred to as the monogamy of
QCs. Quantitatively, it constrains the sum of all bipar-
tite QCs of a quantum state with a given nodal party,
say, 1, i.e., it provides an upper bound, Q(ρ1:rest), on
∑N

i=2Q(ρ1:i) where without loss of generality, we as-
sume the nodal party to be the first party. Hence, a
state is said to be monogamous with respect to Q if it
satisfies Q(ρ1:rest) ≥ ∑N

i=2Q(ρ1:i). This is evaluated via
the monogamy score, which for any power, α, of a given
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Q, is defined as [74]

δQα = Qα
1:rest −

N

∑
i=2
Qα

1:i, (1)

where Qα
1:rest ≡ Q

α(ρ1:rest) and Qα
1:i ≡ Qα(ρ1:i). In this

work, the QC measures are considered to be negativity
(N ), concurrence (C) and quantum discord (D).

Simulation of quantum states. An N-qubit random pure
state chosen Haar uniformly reads as [75]

|ψR〉 =
2N

∑
i=1

αi|i1i2...iN〉 (2)

where αj = aj + i bj with aj and bj ∈ R being sam-
pled from a Gaussian distribution of mean 0 and unit
standard deviation (G(0, 1)) and {|ik〉}s constituting the
computational basis. For N = 3, the state space splits
into two inequivalent classes of states under stochastic
local operations and classical communication, the GHZ-
and the W-class states [73]. The GHZ class states take
the same form as in Eq. (2), while the W-class states,
constituting a set of measure zero are given by

|ψW〉 = a|000〉+ b|001〉+ c|010〉+ d|100〉, (3)

where a, b, c, d are complex numbers whose real parts
are taken from G(0, 1). For states with higher number
of qubits, i.e., for (N ≥ 3), we consider another class
of states, the Dicke states [72], which reduces to the
generalized W state (obtained from Eq. (3) by putting
a = 0) for three-qubit case. A Dicke state of N qubits
having r excitations is defined as

|ψr
D〉 = ∑ cPP(|0〉⊗(n−r) ⊗ |1〉⊗r), (4)

where P denotes the permutation of all states with n− r
excitations, |1〉 and r ground states, |0〉. The coefficients
cP = c1P + ic2P are again chosen from G(0, 1) during
their simulation, so that random Haar uniformly cho-
sen Dicke states are numerically generated. For four-
and five-party states, the excitations are taken to be a
single or two while we have upto three excitations for
six-qubit Dicke states.

Genuine multipartite entanglement: generalized geometric
measure. The genuine multiparty entanglement (GME)
content of these random pure states can be computed
using the generalized geometric measure (GGM). It is
a distance-based measure of GME and is defined as
the minimum distance of a given state from the set
of all non-genuinely entangled states in the state space
[56, 57]. For general mixed states, carrying out the mini-
mization is very hard [58]. However, for pure states, the
Schmidt decomposition makes the optimization proce-
dure tractable and the GGM can be expressed in terms
of Schmidt coefficients in different bipartitions of the
multipartite pure state, |ψN〉, as

G(|ψN〉) =
1−max

{
λA:B |A ∪ B = {1, 2, . . . , N},A∩ B = ∅

}
,
(5)

where λA:B is the maximum Schmidt coefficient in the
A : B bipartition of |ψN〉, and maximization is per-
formed over all such possible bipartitions. Before ex-
ploring the monogamy features, let us discuss some of
the GGM characteristics of random states which will
make it a convenient reference point when comparisons
with the monogamy scores will be made.
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FIG. 2. (Normalized) Frequency distribution of GGM (ordi-
nate) vs. GGM (abscissa). Haar uniformly random (red), ran-
dom Dicke class with single (blue), two (green) and three ex-
citations (black) for three- (bottom left), four- (bottom right),
five- (top left) and six- qubit states (top right) are generated.
Number of states (all kinds) simulated is 5× 105. Although
the ordinate is dimensionless, the abscissa is in ebits.

Frequency distribution of GGM. To calculate the fre-
quency distribution, f (G), we count the number of
states having GGM between, say, a and b which is then
divided by the total number of states simulated. In rest
of the paper, wherever we calculate frequency distribu-
tion, we use this normalized version.

For random pure states of three- to six-qubits, the dis-
tribution takes a bell shape whose mean increases with
N while the standard deviation (SD) decreases with the
increase of number of parties as shown in Table II and
Fig. 2. The maximum value of GGM for random states
that can be simulated also increases when N increases
from three to six and it is close to its algebraic maxi-
mum, i.e., 0.5 for random six-qubits which can also be
obtained for the N-party GHZ state [56].

On the other hand, as one expects, the trends in fre-
quency distribution for GGM are drastically different
for the Dicke states with low excitations. In particular, if
we consider Haar uniformly generated three-qubit W-
states, f (G) is steadily decreasing with a peak around
0− 0.05 which hosts half of the states. The correspond-
ing average GGM is 0.063 with the standard deviation
being 0.056. Hence, most of the states in this class pos-
sess a low genuine multipartite entanglement, which
reaches its maximum at 0.326. The maxima as well as
the average value of GGM for the Dicke states with a
single excitation sharply decreases with the increase of
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TABLE I. Mean and SD of GGM, G for random states with
different number of parties.

Mean SD
3 0.162 0.069

4 0.231 0.055

5 0.295 0.042

6 0.347 0.031

TABLE II. Mean and SD of G for random Dicke states having
different number of excitations.

|ψ1
D〉 |ψ2

D〉 |ψ3
D〉

Mean SD Mean SD Mean SD

3 0.11 0.079

4 0.062 0.048 0.21 0.082

5 0.039 0.033 0.22 0.066

6 0.028 0.023 0.183 0.049 0.313 0.056

the number of parties ( see Tables II and III). For ex-
ample, the fraction of states residing in the GGM bin of
0− 0.05 increases with N– 50% for three-qubits, 70% for
five-qubits and almost all the simulated states for six-
qubits. Interestingly, with the increase of excitations in
Dicke states, the distribution follows the same pattern
as in the random states as we will show in the following
proposition.

Proposition 1. The average GGM of an N-qubit Dicke state
with N/2 excitations for even N and N/2 + 1 excitations
for odd N is almost the same as that of the random states of
N-qubits.

Proof. Let us first consider the situation when N is even.
The logic behind the statement remains similar for odd
N. For an N-qubit Dicke state comprising N/2 exci-
tations having equal coefficients, the maximum eigen-
value comes from the 2:N-2 bipartition and is given by
N/2(N − 1) as shown in Ref. [76]. Thus the GGM of
such a state is Geq = (N − 2)/2(N − 1), where super-
script "eq" indicates that the coefficients are all equal.
To obtain the GGM of an N-qubit random state, we ob-
serve from our numerical calculations that the largest
eigenvalue actually comes from a single party reduced
density matrix. To that end, we try to estimate it by ap-
proximating the average value of the von-Neuman en-

TABLE III. Actual maximum of G by varying number of
qubits for randomly generated and Dicke states.

N Random |ψ1
D〉 |ψ2

D〉 |ψ3
D〉

3 0.429 0.33

4 0.435 0.246 0.45

5 0.449 0.194 0.397

6 0.453 0.154 0.325 0.485

tropy (given by −trρ log2 ρ) of the reduced state, using
the formula [77]

〈S〉 = log2(M)− M
2K

, (6)

where M is the dimension of the density matrix of the
reduced state and MK represents the total dimension
of the pure state from which the reduced system is ob-
tained upon tracing out. Since 〈S〉 is the entropy of a
single qubit state, we can find the largest eigenvalue,
say, x by solving

− x log2(x)− (1− x) log2(1− x) = 〈S〉. (7)

Then, the average GGM of the random state is, 〈G〉 =
1 − x. For example, by solving Eq. (7), for N = 4,
〈S〉 = 0.875 with M = 2 and K = 8, giving x = 0.7
and 〈G〉 = 0.3, while for 6 qubits, M = 2, K = 32 gives
〈S〉 = 0.9687 which leads to x = 0.605 and 〈G〉 = 0.395.
Clearly, average GGM of Dicke states with unequal
Haar uniformly chosen states, 〈Guneq

D 〉 is less than the
Dicke states with equal coefficients i.e., 〈Guneq

D 〉 ≤ Geq.
Interestingly, we note from Table II, the gap between the
average GGM value for Dicke states with unequal coef-
ficients and the upper bound for the Dicke state with
equal coefficients becomes small with the increase of N
and at the same time, 〈G〉 for random states also ap-
proaches to Geq ≈ Guneq for large N. Hence the proof.

We will discuss the distribution of localizable QCs in
subsequent sections, but before that, we shall be inves-
tigating the connection between monogamy score and
GGM of a multiparty entangled state.

A. Relationship between monogamy score and GGM

To establish a connection between monogamy scores
in Eq. (1) with respect to negativity, concurrence and
quantum discord for various values of the exponent, α
and GGM, we address the following questions:

• Is there a pattern in the distribution of non-
monogamous states in terms of their GGM con-
tent? How does that depend on the exponent, α?

• Is it possible to find a critical value of GGM
beyond which no non-monogamous states are
present (Eq. (9)) and is it independent of the
choice of QC measure for a fixed exponent? An
answer to this question can shed light on the
properties of the non-monogamous nature of QC
measures, thereby giving a sufficient condition on
states satisfying monogamy relation in terms of
GME. As we know, qualitatively and in an ex-
treme situation, bipartite quantum states having
maximal QCs follow the monogamy relation. A
possible reason can be that the violation obtained
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is due to the stringent bound that we put on
∑N

i=2Q1i. Hence, it will also be interesting to find
the actual upper bound on the sum for random
states.

• If the distribution of GGM with respect to monog-
amous and non-monogamous states is consid-
ered, depending on the set of states, how does
such distribution change?

To examine the relational properties of randomly
generated states, we define the following quantities.
Firstly, we segregate the random states into bins pos-
sessing definite ranges of GGM values and compute the
fraction of non-monogamous states in each bin, which,
in turn, is computed as

f NM
Qα =

Number of non-monogamous states
Total number of states within GGM range

,

(8)
for a fixed QC measure. Such a quantity is useful to ad-
dress the first and the last questions while we compute
the content of GGM above which all randomly gener-
ated states turn out to be monogamous which we refer
to as critical value of GGM, given by

Gc = maximum GGM beyond which δα
Q ≥ 0, (9)

to obtain the answer to the second one. Our aim is to
find the change occurred in the critical GGM depending
on the choice of the QC measure, Q and power α in
monogamy score.
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FIG. 3. Frequency distribution of both non-monogamous and
monogamous states with GGM. Both discord and negativity
monogamy scores are studied with α = 1. All other specifica-
tions are same as in Fig. 2.

1. Random states

Let us first resolve the questions for random Haar
uniformly generated states. As we will show, com-
pletely different picture emerges for a specific class of
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FIG. 4. δN (red) (vertical axis) against GGM (horizontal axis).
Again negativity monogamy scores for random three- (bot-
tom left), four- (bottom right), five- (top left) and six-qubit
(top right) states for a given GGM are plotted. Blue solid line
represents the generalized GHZ state. Both the axes are in
ebits.
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states. If we first focus on the non-monogamous states
as they vary with their respective GGM content, we
observe that with increase in the number of parties,
non-monogamous states cease to exist, especially for
entanglement. Also, at higher values of GGM, such
states decrease in number, especially in case of entan-
glement but for discord, δD1 stays negative for a larger
GGM range (see Fig 3). With an increase in the num-
ber of parties, the minimum monogamy score goes
from being negative to positive and the corresponding
non-monogamous states possess low amount of gen-
uine multipartite entanglement. This is possibly ex-
pected, since with more number of parties, the inher-
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to N ( x-axis). As a QC measure, we consider negativity (left), concurrence (middle) and discord (right). Different exponents, α,
involved in monogamy are considered. The horizontal axis is dimensionless while the vertical one is in ebits.

ent quantum correlations present in the system increase
and non-monogamous states exist only at small val-
ues of multipartite entanglement as depicted in Fig. 4.
Moreover, we find that the gGHZ state provides an up-
per bound for three-qubit pure states which we will
prove analytically both for negativity- and concurrence-
monogamy score. Interestingly, as shown in Fig. 4,
the upper bound does not hold with an increase in the
number of parties.

Theorem 1. For random three-qubit pure states, |ψ〉, which
have the same GGM as the generalized GHZ state |ψGG

3 〉,
the entanglement monogamy score is bounded above by that
of the gGHZ state.

Proof. The reduced density matrices of the gGHZ state,
|ψGG

3 〉 = α|000〉 + β|111〉, are separable and hence the
monogamy score for negativity reduces to

δGG
N = N GG

1:23 =
√

α2(1− α2), (10)

assuming α2 ≥ 1/2 ≥ β2, while its GGM is always
given by G(|ψ3

GG〉) = 1− α2, since it is symmetric with
respect to the permutation of parties. On the other
hand, suppose the tripartite state has Schmidt coeffi-
cient, λ2

1 ≥ 1/2 in 1 : rest-bipartition and GGM comes
from that bipartition. If the GGM of gGHZ and arbi-
trary tripartite state coincide, we have λ2

1 = α2. More-
over,

δN ≤ N1:23 =
√

λ2
1(1− λ2

1) = δGG
N (11)

and hence the proof. In a similar fashion, one can get
the proof for concurrence as for pure states, negativity
and concurrence are different by a factor of 2.

Let us assume that the largest eigenvalue contribut-
ing to the GGM of the random state comes from a party,
other than the nodal party, i.e., G(|ψ3

R〉) = 1− λ2
2 with

λ1 < λ2 and λ2
2 ≥ 1/2. Again, we find λ2

2 = α2

by equating GGM for the gGHZ and arbitrary state.

Thus, from Eq. (11), we have δN ≤
√

λ2
1(1− λ2

1) ≤√
λ2

2(1− λ2
2) =

√
α2(1− α2) = δGG

N and the second in-

equality is due to the fact that λ2
2 ≥ 1/2.

The relation between monogamy score and GGM
changes drastically when the power involved in
monogamy is taken less than unity [50]. Specifically,
when α ≤ 0.5, all states violate monogamy relation, i.e.
δQα≤0.5 < 0 and states having high genuine multipartite
entanglement can also violate the monogamy relation
as depicted in Fig. 5. For 0.5 < α < 1.0, fraction of such
states decreases and again similar pattern as described
before for α = 1 emerges. For α > 1.0, almost all states
are monogamous, especially for states with five or more
qubits, irrespective of QC measures (see Fig. 5) [27].

2. W class

Among the states from the three-qubit W-class, the
range of multipartite entanglement for which non-
monogamous states exist is larger for a given QC mea-
sure, than the random states. The fraction of such states
is also larger for a particular GGM interval. Thus, the
critical GGM is also higher in this case compared to
random states.

Considering negativity and concurrence, we see that
when α < 1, a significant percentage of states re-
mains non-monogamous while with α ≥ 1, the number
of such states decreases with G but non-monogamous
states exist for substantially high values of the expo-
nent, upto 1.9. In case of discord, however, states vio-
lating the monogamy inequality exist for all values of
exponent upto α = 3, although the number is decreas-
ing with GGM for α > 1.0, provided the measurements
are done on the nodal party, i.e., the first party in our
case.
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3. Dicke states

As the number of excitations and parties increase, the
situation is similar to the random states as already ar-
gued for GGM. The non-monogamous states fall in frac-
tion more and more sharply and with an increase in the
number of parties, the GGM range for the existence of
such states also decreases. For five- and six-qubits, all
states become monogamous for two or more excitations
when α ≥ 1. It indicates that multipartite quantum cor-
relations get enhanced with an increase in excitations
and they behave in a similar fashion to random states.
Similarly, Dicke states having high excitations and mul-
tipartite entanglement content can violate monogamy
score with low α which does not remain true when α is
increased. On the other hand, Dicke states with a single
or low excitations show a large fraction of states to be
non-monogamous even for a moderate α values. (see
Fig. 5)

B. Criticalities in GGM and Monogamy power

An interesting feature in the relationship between
GGM and monogamy score is the existence of a criti-
cal value of GGM, Gc as defined in Eq. (9). It means
that if a random state possess a GGM value above Gc, it
is guaranteed to be monogamous. We track the changes
in the values of Gc with the number of parties, N and
the monogamy power α.

When the monogamy power is set to unity, i.e., α =
1, we find that all QC measures show similar features,
where the Gc decreases with N, hitting zero for N = 5,
see Fig. 6. For α values different from unity, we get
varying responses of Gc, as seen in Fig. 6.

To associate Gc with α in monogamy score, for a fixed
multipartite entanglement content of a state, we find a
critical exponent beyond which, the monogamy score is
always non-negative. We denote it by αC. To enunci-
ate its variation with GGM and its dependence on the
number of parties, we consider negativity and discord
as the correlation measures. Based on the observations
from Fig. 7, we note the following points:

1. States which require a high value of α to sat-
isfy the monogamy inequality are present for low
number of parties and the number of such states
decreases significantly for N ≥ 5.

2. αC ≥ 1 exist only for very low G. This is because,
states possessing significant genuine multipartite
correlations are monogamous over a large range
of the exponent.

3. Near the tail of the GGM spectrum, where states
are strongly quantum correlated, αC is low, even
for low number of qubits which is nicely depicted
in Fig. 7 for three-qubits.

4. Non-monogamous states are mostly observed for
α ≤ 1 for all multi-qubit regimes, independent of
the choice of QC measures.
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FIG. 7. Critical exponent, αC (see text for definition) against
GGM both for discord (solid circles) and negativity (pluses)
monogamy scores. All other specifications are same as in Fig.
2.

C. Maximum of the sum of bipartite QC measures

To understand the criticalities deeply, let us consider
the actual maximum of ∑N

i=2Q1i and its difference with
the algebraic maximum. It is clear from previous inves-
tigation that the monogamy-based bound is too strin-
gent when α is small. However, the sum of bipartite
QCs is still lower than the sum of the individual max-
ima, i.e. ∑N

i=2Q1i < (N − 1) for any QC measure in a
qubit-scenario. Since the monogamy score is negative
for low values of α, the above quantity has a substan-
tial strength at those values and decreases sharply with
a rise in the exponent. With higher number of parties
in the parent multipartite state, it decreases for moder-
ate to high α and also drops down to zero much more
rapidly. For negativity, it is lower than that of concur-
rence. Our observations are illustrated in Fig. 8 for
random states, and Dicke states.

III. INTERPLAY BETWEEN MEASUREMENT-,
GEOMETRY- AND MONOGAMY-BASED QUANTUM

CORRELATIONS

Let us now move to relate measure-based QCs with
both the monogamy-based QC measures and geomet-
ric measure of entanglement. The measurement-based
measures as well as geometric measures quantify QCs
in an active way while monogamy-based measures do
the job in a passive way as explained in the introduc-
tion. This is due to the fact that instead of tracing out
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FIG. 8. (Left) Plot of ∑iQ1:i (ordinate) for three- (solid points) and four-qubit (hollow points) Haar uniformly generated
states against α (abscissa) in case of negativity (red), discord (blue) and concurrence (black). Similar study has been carried
out for random Dicke states with a single excitation (middle) and two excitations (right). The vertical axis is in ebits in case of
entanglement, in bits in case of discord while the horizontal axis is dimensionless.

N − 2 parties and looking at algebraic combinations of
bipartite QCs, we now shift our attention to quantum
correlations which are obtained by employing optimal
local projective measurements on the N − 2 qubits of
the N-qubit state. These local measurements concen-
trate the global correlations of the state into a particular
bipartite pair and are known as localizable correlations
[10–12]. Therefore, the localized bipartite correlations
have potential to capture quantumness distributed in
multipartite states [51, 78].

Since we want to relate measurement-based QC mea-
sures with the monogamy-based one, we introduce a
localized version of QC measure, Q, with a power α,
denoted by LQα, when the local measurements are per-
formed in the all the parties except first two parties 1
and 2, and for a multipartite pure state, |ψN〉 and given
QC measure, Q, it can mathematically be represented
as

LQα(|ψN〉) = max
{Π}

2N−2

∑
k=1

pkQα(|φk〉), (12)

where {Π} denotes the set of local rank-1 projective
measurements on the N − 2 qubits, the binary equiv-
alent of k is a particular outcome combination of the
N − 2 qubit projectors, and |φk〉 is the normalized post
measurement state for the kth outcome with pk being
the corresponding probability. We report the connec-
tion of LQα with G and δQα , as well as the variation
of LQα with the power, α. For concurrence, negativity
and discord as QC measures, the respective localized
versions are denoted by LCα(|ψN〉), LN α(|ψN〉), and
LDα(|ψN〉).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LQ

neg

conc

disc

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LQ

neg

conc

disc

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LQ

neg

conc

disc

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LQ

neg

conc

disc

FIG. 9. f (LQα=1)(ordinate) vs. localizable QC mea-
sures. The QCs localized here are negativity (red), concur-
rence (blue) and discord (black) for three- (bottom left), four-
(bottom right), five- (top left) and six-qubit (top right) random
states. All other specifications are same as in Fig. 2.

A. Relation of LQα with δQα and GGM

Frequency distribution of localizable QCs. Before per-
forming this relational analysis in a systematic way,
let us study the frequency distribution of LQα=1 (see
[51] for entanglement of formation). We find that like
monogamy score and GGM, the shape of the distribu-
tion for random states is bell-like and it shifts towards
its algebraic maximum with the increase of N and be-
comes sharper with N since the average value of LQα=1

increases and SD decreases with the increase of num-
ber of parties as shown in Fig. 9. The observation is
independent of the choice of QC measures and for dif-
ferent values of α for Haar uniformly generated ran-
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dom states. The opposite picture emerges for the Dicke
states with low excitations — 〈LQα=1〉 decreases with
N, i.e., the distribution shifts towards the low value of
the respective measure for high N although the width
of the distribution decreases with the increase of num-
ber of parties. However, the increase of mean with N is
much slower than the one observed for GGM. For ex-
ample, the average obtained for negativity and discord
for Haar uniformly generated states are respectively
0.337, 0.378, 0.397 and 0.58, 0.714, 0.727 with N = 3, 4, 5
(compare them with Table I). With the increase of α,
mean decreases and SD increases both for random and
Dicke states.

Relation of measurement-based QCs with generalized ge-
ometric measure as well as monogamy score. In stark con-
trast to the relation of monogamy score and GGM,
measurement-based QCs behave differently with GGM
and monogamy score. Specifically, in (G(δN 1),LQα=1)-
plane, random states are scattered, thereby showing
that states with low GGM (monogamy score) can re-
sult with high amount of localizable entanglement and
at the same time, states with high multipartite entangle-
ment are able to localize small amount of entanglement
as depicted in Figs. 10 and 11, irrespective of number of
parties. Such a picture only changes when we consider
the Dicke state with a single excitation which only dis-
plays a triangular structure, thereby showing a forbid-
den region in that plane. It implies that although states
having low GGM can concentrate high localizable en-
tanglement, a state with high GGM can always produce
moderate amount of entanglement for Haar uniformly
generated Dicke states.

Next we will argue that the localizable entanglement
(measured either by concurrence or negativity) can
have substantial value for sufficiently small GGM in
case of random three-qubit states as well as three-qubit
|ψ1

D〉.

Proposition 2. For arbitrary three-qubit pure states, local-
izable entanglement can have a moderately high value even
when the genuine multipartite entanglement content of the
state is small.

Proof. The Schmidt decomposition for a tripartite pure
state is given by [79]

|ψ3〉 = a1|000〉+ a2 expiφ |100〉+ a3|101〉+
a4|110〉+ a5|111〉 (13)

where all parameters are real and positive semidefinite
with 0 ≤ φ ≤ 2π and ∑i a2

i = 1. By performing projec-
tive measurement on the third qubit of |ψ3〉, the local-
izable concurrence of the remaining two qubits is given
by 2

√
det(ρ1) where ρ1 = Tr2,3|ψ〉M〈ψ|, with |ψ〉M de-

noting the post-measurement state. Suppose that LC
achieves its optimum value due to measurements along
the X, Y or Z direction, i.e. in the eigenvectors of

σi, i = x, y, z. Incidentally, for all three cases, the lo-
calizable concurrence is given by

LCσ = 2a1a4. (14)

The actual LC can be higher than LCσ, i.e., LCσ ≤ LC.
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FIG. 10. Scattered plot of localizable negativity, LN , (y-axis)
against GGM (x-axis) for random states (bottom left), random
Dicke states with a single excitation (bottom right), two ex-
citations (top left) and three excitations (top right) for three-
(red), four- (blue), five- (green) and six-qubits (black). Both
the axes are in ebits.

To obtain G(|ψ〉), we note the eigenvalues of the sin-
gle qubit reduced density matrices corresponding to the
state in Eq. (13) to be

λ±1 =
1
2
(1±

√
1− 4LCσ − f1(ai)), (15)

λ±2 =
1
2
(1±

√
1−LC2

σ − f2(ai)), (16)

λ±3 =
1
2
(1±

√
1−LC2

σ − f3(ai)), (17)

where we have clubbed all the terms which cannot be
written in terms of LC into fi(ai). Hence, the GGM is
G(|ψ〉) = 1− λ+

i = λ−i . Depending on the values of
the coefficients, any one λ+

i can give be maximum and
that contributes to the GGM. By ignoring fi(ai) which
are typically a very small numbers, the relationship be-
tween the modified GGM and localizable concurrence
is found to be

LCσ =
√

1− (1− 2G1(|ψ3〉))2 if λ+
2,3 is maximum,

LCσ =
(1− (1− 2G1(|ψ3〉))2)

2
if λ+

1 is maximum,

where G1(|ψ3〉) ≥ G(|ψ3〉). Analysing the above rela-
tions geometrically, we observe, that even for values
of G1(|ψ3〉) ≤ 0.1, the LC with restricted set of mea-
surement can be 0.6 or even higher. Since the original
LC can be higher while the GGM can also take a lower
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value than the actual one, the above argument shows
that sizeable correlations can be localized even if the
original state possesses insignificant multipartite entan-
glement.
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FIG. 11. LN , (vertical) vs. δN 1 (horizontal). All other specifi-
cations are similar to Fig. 10.

Remark. The similar argument can be given to have
the relation between localizable negativity and GGM.
Since we have already established a relation between
GGM and monogamy score, the above results also
imply that it is possible to find states having low
monogamy score which can produce corresponding
high localizable quantum correlations (see Fig. 11).

Like arbitrary three-qubit states, the three-qubit
Dicke state with a single excitation having low gen-
uine multipartite entanglement can produce high lo-
calizable entanglement as shown in Fig. 10. To show
that, let us consider the three-qubit Dicke state, |ψ1

D〉 =
a1|100〉+ a2|010〉+ a3|001〉 with ∑i ai = 1. In this case,
by assuming a1, a2 ≥ a3, we have

G(|ψ1
D〉) = a2

3 = 1− a2
1 − a2

2 (18)

LCσ(|ψ1
D〉) = 2a1a2 (19)

Some algebra then allows us to end up with the relation
between G and the localizable concurrence as LCσ =
G(|ψ1

D〉) + (2a1a2) − a2
3. The above relation shows the

linear dependence of LCσ on G as depicted in Fig. 10.
Since a1, a2 ≥ a3, we have (2a1a2) − a2

3 ≥ 0 and thus,
the dependence of LCσ ≤ LC on G also shows that the
localizable concurrence easily exceeds the GGM.

As discussed qualitatively and also in Proposition 2,
the connection between GGM (monogamy score) and
LQ does not have any definite structure. To make their
comparison more quantitative, we consider two situa-
tions — 1. For a fixed N, we find minimum and maxi-
mum localizable QC that can be achieved and the corre-
sponding genuine multipartite entanglement content of
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a state; 2. for a given range of GGM values, minimum
and maximum QC that can be localized are focussed
on. In particular, we report that the GGM at which the
minimum of the correlation occurs increases with num-
ber of parties for random states, as shown in Fig. 13.
It is due to the fact that among random states, average
GGM also increases with N. As seen from Table IV, to
localize nonvanishing QC, a very small amount of GGM
is required. Moreover, we observe that to localize min-
imum amount of QC in the first and the second qubits,
the GGM required is always higher than the amount of
LQC, i.e., LQmin < G. Secondly, if we fix GGM in a cer-
tain range, the minimum localizable QC can also follow
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the similar trend, i.e. to localize QC minimally, the cor-
responding GGM required for that is substantial. On
the other hand, for a fixed GGM value, the localizable
QCs can always reach their corresponding maximum
value.

Effects of exponents on QCs in localizable quantity. We
now investigate the effect of varying α introduced in
the localizable QCs and we consider the same α in
monogamy score. The trend that we observed in Propo-
sition for arbitrary states or Dicke state remains same
by varying α. In particular, when we have low α < 1,
highly localizable entangled states are generated for
varying GGM and monogamy score while for high α,
low amount of entanglement can be localized. Such ob-
servation is possibly artifact of the functional form of
the QC measures as also the case of monogamy scores
(see Fig. 12).

Similar to Fig. 7, we now ask a question: for a given
localizable QC, what is critical exponent above which,
the monogamy score is always nonnegative? We find
that unlike GGM, no such universal picture emerges
as we hinted by the relation between localizable QC
and GGM. In this case, states with high localizable QC
can require high α to make the states monogamous (see
Fig. 14). Only low α is required for high N in case of
δQ, which one expects from the behavior of monogamy
score itself. This observation possibly indicates that lo-
calizable QC measure has some component which are
due to multipartite state but is qualitatively different
than multipartite entanglement monotones (cf. [78]).
Notice also that such conclusion may be changed if we
alter the definition of localizable QC (cf. [80] and refer-
ences thereto).
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TABLE IV. G for the corresponding minimum localizable QCs.
N LC LN LD

3 0.083 0.198441 0.149041

4 0.237 0.256076 0.292371

5 0.33 0.259891 0.330505

6 0.36 0.27 0.328931

B. Deviation from algebraic maximum

Let us now investigate the behavior of ∑N
i=2 LQ1i

for an N-partite state. The algebraic maximum of this
quantity is (N − 1) which can be achieved by the GHZ
state. However, the actual bound turns out to be quite
different for Haar uniformly generated states. We ob-
serve that the sum falls short of its algebraic value for
all classes of states, especially for high N (see Table V) .

For random three-qubit states, the actual upper
bound is close to its algebraic maximum, i.e., 2 although
the difference between algebraic maxima and the max-
imum obtained numerically increases with the number
of parties. E.g., if we consider concurrence as a quan-
tum correlation measure, the gap is 0.007 for three-qubit
random states while it rises to 0.48 in case of six-qubits
(see Fig. 15). In case of Dicke state, the gap turns out to
be significant, i.e., it fails to attain the algebraic thresh-
old by a big margin. In this instance too, the difference
increases with the number of constituent qubits. E.g.,
the sum reaches only about half of the algebraic max-
imum for |ψ1

D〉. However, with more number of exci-
tations in Dicke states, picture similar to random states
develops.
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TABLE V. Maximum of ∑N
i=2 LQ1i.

∑N
i=2 LN 1i ∑N

i=2 LC1i ∑N
i=2 LD1i

Random ψ1
D ψ2

D ψ3
D Random ψ1

D ψ2
D ψ3

D Random ψ1
D ψ2

D ψ3
D

3 0.997 0.707 1.993 1.414 1.995 1.563

4 1.481 0.866 1.47 2.973 1.732 2.94 2.946 1.654 2.22

5 1.944 1.1 1.917 3.94 2 3.83 3.845 1.939 2.465

6 2.34 1.398 2.104 2.22 4.52 2.58 4.17 4.3 4.14 2.435 2.94 4.247

IV. CONCLUSION

In a multipartite domain, quantum correlations (QC)
even for pure states cannot be characterized in a unique
way. Over the years, several quantifications from differ-
ent origins have been proposed which elucidate spe-
cific features of quantum states, important for build-
ing quantum technologies. In this work, we provide a
connection between three such independent quantum
correlation measures, defined from different perspec-
tives, thereby bringing them under a single umbrella.
In particular, we choose a geometry-based entangle-
ment measure quantifying genuine multipartite entan-
glement, monogamy-based quantum correlation mea-
sures with different exponents and measurement-based
measures. Both monogamy- and measurement-based
measures are constructed by considering both entan-
glement and other quantum correlation measures.

We reported that there exists a critical content of gen-
uine multipartite entanglement above which no multi-
partite states violate monogamy inequality. Typically,
monogamy relations for a quantum correlation are con-
sidered with an exponent that can be thought of as "ad-
hoc" [35]. We find that for a fixed genuine multipar-
tite entanglement, there always exists a critical expo-
nent above which all measures satisfy monogamy re-
lation. For Haar uniformly generated states, such a
critical exponent decreases with the increase of num-
ber of parties. We also proved that if an arbitrary
three-qubit state and generalized Greenberger-Horne-
Zeilinger states (gGHZ) possess the same amount of
genuine multipartite entanglement, then the entangle-
ment monogamy score of the former is bounded above
by that of the latter. Such a hierarchy between random
states and gGHZ states does not hold for states with a
higher number of parties. The back of the envelope cal-
culations also reveals that average genuine multipartite
entanglement content of random states with arbitrary
number of parties coincides with the Dicke states hav-
ing half of the sites excited.

On the other hand, we showed that a state having

low multipartite entanglement content can localize a
high amount of quantum correlations in two parties
and vice-versa. This result indicates that localizable
quantum correlations can have some components carry-
ing multipartite characteristics of states although it also
highlights the difference between genuine multipar-
tite entanglement and localizable entanglement. No-
tice that a different process of sweeping entanglement
towards two parties than the one considered in this
work may show different characteristics. Interestingly,
we observe that the monogamy score of QCs behaves
more like multipartite measures than localizable QCs.
Specifically, we observed that states having high local-
izable entanglement may require a high critical expo-
nent to satisfy the corresponding monogamy inequal-
ity, thereby showing its different nature from genuine
multipartite entanglement. Moreover, we found that
the sum of bipartite localizable entanglement of mul-
tipartite random states are bounded above by a quan-
tity which is close to its algebraic maximum and the
gap between algebraic and the actual bounds increases
with the number of parties for random states while the
difference is substantial for Dicke states.

Since all the quantum correlation quantifiers have dif-
ferent kinds of importance in quantum information sci-
ence, the connection established in this paper possibly
gives a hint towards choosing the QC measure, depend-
ing on their tasks, instead of their amount.
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