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PT -symmetric quantum theory does not require the Hermiticity property of observables and
hence allows a rich class of dynamics. Based on PT -symmetric quantum theory, various counter-
intuitive phenomena like faster evolution than that allowed in standard quantum mechanics, single-
shot discrimination of nonorthogonal states has been reported invoking Gedanken experiments. By
exploiting open-system experimental set-up as well as by computing the probability of distinguish-
ing two states, we prove here that if a source produces an entangled state shared between two parties,
Alice and Bob, situated in a far-apart location, the information about the operations performed by
Alice whose subsystem evolves according to PT -symmetric Hamiltonian can be gathered by Bob, if
the density matrix is in complex Hilbert space. Employing quantum simulation of PT -symmetric
evolution, feasible with currently available technologies, we also propose a scheme of sharing quan-
tum random bit-string between two parties when one of them has access to a source generating
pseudo-random numbers. We find evidences that the task becomes more efficient with the increase
of dimension.

I. INTRODUCTION

Among the postulates of quantum mechanics, the re-
quirement of the Hermiticity property for the observ-
ables has the least support from the perspective of phys-
ical considerations. It was pointed out that a condition
dictated by the fundamental discrete symmetry of the
world, i.e., space-time reflection symmetry may lead to
a new kind of quantum theory [1, 2] which is com-
monly known as parity-time-symmetric or PT - sym-
metric quantum theory. A Hamiltonian in this theory
has real eigenvalues in the symmetry unbroken phase
and pairwise complex eigenvalues in the symmetry
broken phase while in between at the exceptional point,
a new type of critical behavior emerges [3–10]. This
complex extension of quantum theory not only solves a
long-standing problem of negative norm ’ghost’ state
of renormalized Lee model in quantum field theory
[11] but also enlarges the scope of allowed dynamics,
thereby culminating in the exploration of varieties of
rich phenomena. Throughout the past decade, PT -
symmetric Hamiltonian has been realized in classical
system like electronic circuit [12], waveguide [13, 14],
microcavity [15, 16] and in photonics, capitalzsing on
the fundamental structure of balanced loss and gain, it
creates almost a new paradigm of devices, eg., synthetic
photonic lattices [17], single-mode laser [18, 19], high-
sensitivity sensors [20], wireless power transfer [21] to
name a few.

In a quantum domain, qualitatively distinct from
classical behaviors has been discovered, such as worm-
hole like behavior in quantum brachistochrone prob-
lem [22], single-shot discrimination of non-orthogonal
states [23]. Several no-go theorems, valid in standard
quantum mechanics, shown to be disturbed in PT -
symmetric quantum theory [24–26]. More prominently,
the most weaker condition, no-signaling, which is de-
sired to be satisfied in any physical theory, has been

shown to be violated in the Gedanken experimental
set-up [27]. Violation of these fundamentally signif-
icant no-go theorems have deep consequences in the
verification of the viability of quantum theory. The
contradictions of PT -symmetric quantum theory has
been shown to be apparent in two different ways –
firstly, by taking care of the proper inner product of
the theory, these conflicts evaporates [28–30], while in
the second approach, PT -symmetric Hamiltonian was
shown to be Hermitian in higher-dimensional space
by employing Naimark dilation [31], which opens up
the possibility of experimental simulation of the dy-
namics. In a recent novel experiment, a pair of spa-
tially separated entangled photons is employed to ad-
dress the problem of apparent signaling [32] in which
one of the two photons is evolved according to PT -
symmetric evolution which is effectively simulated by
a joint unitary operation on the system and an auxil-
iary system and by performing a measurement on aux-
iliary subsystem whereas the other spatially seperated
photon is governed by the standard quantum theory. In
this process, depending upon a particular post-selection
on the auxiliary system, PT -symmetric evolution hap-
pens on Alice’s part of the entangled photons half of
the time. In another work reported very recently, state
distinguishability has been experimentally verified by
structuring PT -symmetric quantum simulator [33] – in
the symmetry unbroken phase, the distinguishability
quantifier, the trace distance between states oscillates
while in the broken phase, it monotonically decreases
and hence PT -symmetric dynamics which is different
from non-Markovian evolution, allows to completely
retrieve information in the unbroken phase [34]. It was
also argued in the past that exact PT -symmetric quan-
tum theory is equivalent to standard quantum theory
[35, 36] and thus no new physics would be possible [37].
Therefore, to resolve the controversial issues completely
in the quantum regime, and to probe the advantage of
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PT -symmetric quantum theory over the standard one,
applications in the field of information processing tasks
are most desirable, which is missing in the literature.

Towards filling the gap, in the present work, we con-
sider PT -symmetric quantum simulation in the open
quantum system framework [32] and show that Bob
cannot have any input information from Alice’s side,
if the underlying Hilbert space is real. This discovery
has two immediate consequences. Firstly, it was known
from the beginning era of quantum theory that system
is associated with Hilbert space over complex field, al-
though it was argued whether real Hilbert space is suf-
ficient [38–42]. This line of study has a long history and
it is recently proved that complex Hilbert space is in-
evitable. Therefore, our results along with the recent
results on complex Hilbert space [42] indicate that an
isolated subsystem may not evolve according to PT -
symmetric dynamics, in general. The second one is
a direct application in devising cryptographic primi-
tives, randomness amplification [43–45], where genuine
randomness can be generated from an weak source of
randomness generator (RNG). Pseudo RNG have many
applications in biology, economics, statistics but for
gambling and cryptographic purposes, genuine RNG
is most wanted apart from the foundational application
in Bell test [46]. We show a pseudo-random bit string
generated from a source provided by a supplier who
may be eavesdropper, can be transformed into a gen-
uinely random bit string of a half-length of the initial
in an ideal scenario only when PT -symmetric evolu-
tion occurs on the underlying complex Hilbert space.
The novel application may lead to a better understand-
ing of PT -symmetric quantum system in the context
of very fruitful test bed of information processing tasks
and devising new quantum technologies. We further
show that increasing dimension can lead to some ad-
vantages in the distinguishability process of quantum
states [47–49].

The paper is organized as follows. In Sec. II, we
describe the prerequisites that are required to present
the results. The effects of PT -symmetric is more pro-
nounced in the case of complex Hilbert space, shown in
Sec. III while the consequence on Bob’s reduced state
due to local PT -symmetric operation on Alice’s end
is illustrated in Appendix. Before concluding in Sec.
VI, the application of the PT -symmetric dynamics to-
wards quantum randomness generation is presented in
Sec. IV and the effects of PT -symmetric dynamics of
higher dimensional states are studied in Sec. V.

II. PT -SYMMETRIC DYNAMICS AND ITS
QUANTUM SIMULATION

Let us begin with a short discussion on a few prelim-
inary notions relevant for the subsequent sections.
PT -symmetric dynamics. In the PT -symmetric evo-
lution, the Hamiltonian satisfies H = HPT , i.e., the

Hamiltonian commutes with parity and time reversal
operators (i.e., for a parity operator, PHP = H and
for complex conjugation, T HT = H). An example
of a two-dimensional non-Hermitian PT -symmetric
Hamiltonian is given by [27]

H = s
(

i sin α 1
1 −i sin α

)
, (1)

where s is the scale factor and α is the non-Hermiticity
parameter, such that when α = nπ, H is σx Pauli matrix
and hence Hermitian. Depending upon the value of α,
the distinct three regions exists – (i) 0 < α < π/2 is
symmetry unbroken phase, (ii) α = π/2 is exceptional
point where it crosses from unbroken phase to a broken
one and (iii) α > π/2 is symmetry broken phase. The
initial state of the system, ρ(0), is evolved to a final
state, ρ(t) = exp(−iHt)ρ(0) exp(iHt)

Tr[exp(−iHt)ρ(0) exp(iHt)] .
Let us now describe the experimental set-up pro-

posed in Ref. [32] for simulating the effective PT -
symmetric Hamiltonian in the open-system framework.
A pair of space-like separated photons are generated
by the parametric down conversion which are then sent
to two different protagonist say, Alice and Bob via two
different channels. After Alice encodes a single bit of
information on her photon by randomly choosing be-
tween two operations (A±), it is evolved according to
the PT -symmetric Hamiltonian. It is implemented by
evolving the photon together with an auxiliary system
via conventional quantum gate operation and subse-
quently, performing a measurement on the auxiliary
system. Depending upon a particular post selection of
the auxiliary system, Alice’s photon evolved according
to PT -symmetric Hamiltonian. It is to be noted here
that the entire protocol follows the standard quantum
theory and no genuine PT -symmetric Hamiltonian is
realised although it can be simulated. On the other
hand, Bob’s photon is evolved according to the identity
channel. Finally, Alice and Bob measure locally on their
subsystems simultaneously and record some outcomes.

No-signaling condition. As a consequence of relativis-
tic causality, each spatially separated parties cannot
predict the measurement choice of others looking at
its own measurement statistics. Mathematically, it is
defined as ∑a P (a, b | A, B) = ∑a P (a, b | A′, B) ∀b, B,
where A, A′ and B are measurements performed by Al-
ice and Bob respectively. Similar condition also holds
for interchanging Alice and Bob. In an equivalent for-
mulation, satisfaction of no-signaling principle implies
that Bob’s reduced system cannot be affected by space-
like separated Alice’s operation and vice-versa [50]. For
two-qubit maximally entangled shared state, by taking
A± as I and σx and by permorning measurement by
Alice and Bob in σy on their respective subsystems [27],
a figure of merit for the violation of no-signaling condi-
tion can be represented as

P+ − P− = ∑
a

P (a, b | A+, B)−∑
a

P (a, b | A−, B) ,(2)
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where P (a, b | A±, B) is the joint probability of getting
outcome a by Alice and b by Bob measuring σy accord-
ing to whether Alice applies A+ or A−. In all the previ-
ous work [27, 32], violation of no-signaling was shown
for the maximally entangled shared two-qubit state in
Gedanken experimental set-up. We go beyond such re-
strictions on shared states and local measurements per-
formed by both the parties and show that it may help to
address an important question of differentiating quan-
tum mechanics in real Hilbert space from that in com-
plex ones.

III. PT -SYMMETRIC HAMILTONIAN SINGLES OUT
THE REAL HILBERT SPACE

Going beyond maximally entangled shared states, let
us consider (i) non-maximally entangled pure state, (ii)
the Werner state [51], given by ρ = p|ψ+〉〈ψ+|+ 1−p

4 I4,
with |ψ+〉 and I being the maximally entangled state
and white noise respectively and (iii) arbitrary two-
qubit density matrix. Such a consideration is also im-
portant due to the fact that if it turns out that violation
of no-signaling condition at the subsystem level only
happens for maximally entangled state, it will never be
observed since in a practical scenario, one can have only
state close to a maximally entangled state and viola-
tion of no-signaling under PT -symmetric evolution be-
comes pathological. Interestingly, such a general frame-
work provides us a necessary condition for the peace-
ful coexistence of the genuine PT -symmetric dynam-
ics and no-signaling principle, i.e., we find that the al-
lowed states and observables have to be defined over
real Hilbert space to avoid the information gain of Bob
about Alice’s random operation.

Before presenting the main results for arbitrary two-
qubit states with arbitrary measurement, let us illus-
trate our findings with shared non-maximally entan-
gled, Werner, and two-qubit states by performing the
local projective measurement in the y-direction, i.e. in
the basis |±y〉 = |0〉±i|1〉√

2
as described in Ref. [27].

Non-maximally entangled and Werner states under PT -
symmetric local evolution. Suppose Alice and Bob ini-
tially share the state, |ψ+〉 = β|++〉+γ|−−〉√

β2+γ2
, where |±〉

are eigenstates of σx. Depending upon her random in-
formation, Alice applies either A+ = I or A− = σx
which is followed by the non-unitary evolution U(t),
generated by the non-Hermitian Hamiltonian in Eq.

(1), U(t) ≡ e−itH = 1
cos α

(
cos (t′ − α) −i sin t′
−i sin t′ cos (t′ + α) .

)
.

Putting t′ = ∆E
2 t, t = π

δ E where δE = E+ − E−, we

consequently get U(t′) =

(
sin α −i
−i − sin α

)
. After the

PT -symmetric evolution, the normalised joint state be-

comes
∣∣∣ψ±f 〉 =

[
U(τ)A± ⊗ e−iIt I

]
|ψ〉. It is to be noted

again that here we follow the conventional inner prod-
uct as in open system quantum simulation, everything
follows according to standard quantum theory. After
Alice and Bob measure in the |±y〉 basis, we obtain
P+ − P− = 8βγ sin α

(β2+γ2)(−3+cos 2α)
. Here we observe that

the difference vanishes when either α = nπ, or when
β = 0 or γ = 0. It implies that when the state is a
product state, even with α 6= nπ, the non-Hermitian
Hamiltonian does not lead to signaling or as we know,
when the evolution is unitary, Bob cannot get the infor-
mation about Alice’s operation even if the shared state
is entangled. In case of Werner state [51], following
the same prescription as before, the information about
Alice’s subsystem f can be protected from Bob when
P+ − P− = 4p sin α

−3+cos 2α vanishes, i.e. even when α 6= nπ
but p = 0, implying the shared state is a maximally
mixed state.

Condition for arbitrary two-qubit states. The canonical
form of an arbitrary two-qubit state can be written as

ρ(mi, m
′
i, Cii) =

1
4
(I4 + ∑

i=x,y,z
[mi(σi ⊗ I2) + m′i(I2 ⊗ σi)

+Cii(σi ⊗ σi)]), (3)

where mi(m′i) = tr(σi ⊗ Iρ) (tr(I ⊗ σiρ)) and Cii =
tr(σi ⊗ σiρ) denote the magnetizations and classi-
cal correlators respectively. Following the similar
procedure, we obtain that when Cyy = mym′y or
when Cyy = my = 0, the difference P+ − P− =

2(Cyy−mym′y)(−3+cos 2α) sin α

(−3+cos 2α+4my sin α)(1+2my sin α+sin2 α)
vanishes even when

the PT -symmetric evolution occurs at Alice’s port. It
indicates that the probabilities exclusively depend on
state variables in the y direction such as my, m′y and Cyy.
This is due to the fact that the measurement is per-
formed in the direction of |±y〉〈±y|. Only the σy com-
ponent is contracting with the measurement setting,
hence the corresponding variables are visible in the
probabilities.

Removing such biases, i.e., by performing arbitrary
rank-1 projective measurements, we can arrive to the
result that if the shared state has elements from com-
plex Hilbert space, Bob can distinguish the information
of Alice’s random operation.

Theorem 1. Random input information about Alice’s oper-
ation can be predicted by Bob with a finite probability when
Alice’s subsystem is governed by PT -symmetric Hamilto-
nian successfully and when the underlying Hilbert space cor-
responds to the state is in complex Hilbert space.

Proof. By considering an arbitrary two-qubit state,
ρ(mi, m

′
i, Cii), Alice applies I and σx (without loss of

generality, we can choose such a fixed operation, since
at the end, Alice performs arbitrary measurements), fol-
lowed by an application of local PT -symmetry oper-
ation at Alice’s node. Finally, Alice locally performs
measurements in the basis {|φ〉〈φ|, |φ⊥〉〈φ⊥|} with
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|φ〉 = cos y
2 |0〉 + eiv sin( y

2 )|1〉 and |φ⊥〉 = sin y
2 |0〉 −

e−iv cos y
2 |1〉 while Bob measures {|ϕ〉〈ϕ|, |ϕ⊥〉〈ϕ⊥|}

with |ϕ〉 = cos z
2 |0〉 + eiu sin z

2 |1〉. The difference be-
tween the probability of obtaining |ϕ〉 at Bob’s end,
reads

Pa
+ − Pa

− =−2(7 sin α− sin 3α)[mym′x cos u sin z

+ sin u sin z(−Cyy + mym′y) + mym′z cos z]

/((−3 + cos 2α)2 − 16m2
y sin2 α),

(4)

where superscript, ”a”, is used to indicate arbitrary
measurements. We observe that the numerator vanishes
when 7 sin α− sin 3α = 0, which is when α = nπ and
also when α = 2πn ± 2i tanh−1(

√
3± 2

√
2), n ∈ Z

or when all the y components of Alice, i.e., my and Cyy
vanish which gives the proof.

Remark. Since the time evolution operator at the given
specific time can be written as U = sin(α)σz − iσx, we
find that in Pa

+− Pa
−, mx, mz, Cxx and Czz are not present.

Corollary 1. For maximally entangled state and for the
Werner state, arbitrary measurements at Bob’s end is re-
quired to be complex for gathering information about Alice’s
operation by Bob.

Proof. When |ϕ〉 at Bob’s side clicks, the condition
for the non-maximally entangled state is Pa

+ − Pa
− =

8βγ sin u sin z sin α

(β2+γ2)(−3+cos 2α)
while for the Werner state, it can be

given by Pa
+ − Pa

− = 4p sin u sin z sin α
−3+cos 2α (in Eq. (4), putting

my =0, and Cyy = −p). Clearly, Alice’s information
cannot be obtained by Bob if the measurement at Bob’s
side is real, i.e., u = 0 or measurement is along the
z-direction or α = nπ.

For pure states, we also get the condition that when
the state is product, signaling cannot occur while for
Werner states, the condition gives the state to be maxi-
mally mixed states. Interestingly, note that the informa-
tion gain at Bob’s end is not related to entanglement for
mixed shared states since the Werner state is entangled
with p > 1/3 (see Appendix and Fig. 3).

Distinguishing Bob’s states via Trace distance after PT-
symmetric evolution at Alice’s node. To exhibit the results
further, let us find the distance between the Bob’s state
corresponding to Alice’s action of I or σx on the shared
state. It was shown that for maximally entangled state
|ψ+〉, at α = π

2 , Bob’s state is |±y〉〈±y| corresponding
to either I or σx operation on Alice’s side [27], which
indicates that Bob can distinguish his own subsystem
perfectly, thereby distinguishing Alice’s operation with
unit probability. Here notice that the probability of suc-
cess in distinguishing Alice’s operation also depends on
the probability involved in post-selection. In general,
Bob’s state may not always be perfectly distinguishable,

it can only be discriminated probabilistically and hence
with a nonvanishing probability, Bob can gain informa-
tion about Alice’s randomly chosen operation.

The trace distance between two density matrices, ρ
and σ can quantify the maximum probability of mini-
mum error discrimination between the states by the best
quantum measurement strategy [52] and is defined as

T(ρ, σ) = 1
2 Tr

[√
(ρ− σ)2

]
= 1

2 ∑i |λi|, where λis are

the eigenvalues of the operator
√
(ρ− σ)2. In this sit-

uation, ρ and σ represent the state of Bob when I is
applied by Alice, and when σx is applied respectively.
For arbitrary two-qubit density matrix, it reduces to

T =

∣∣∣∣∣∣
√

C2
yy + m′2x m2

y − 2Cyymym′y + m2
ym′2y + m2

ym′2z(
−1 + 2my sin α− sin2 α

) (
1 + 2my sin α + sin2 α

)
∣∣∣∣∣∣

×|(sin α + sin3 α)|, (5)

which again shows that if both Cyy and my vanish, the
distance vanishes. It also implies that if the shared state
has no imaginary component, the information about
Alice’s operations cannot be gathered by Bob, even
probabilistically, thereby confirming Theorem 1.

IV. RANDOMNESS AMPLIFICATION VIA
PT -SYMMETRIC EVOLUTION

SOURCE

WEAK

RNG

𝕀/σx

[0,1]L

[0,1]L/2

σy

λ

FIG. 1. Schematic diagram of randomness amplification with
PT -symmetric evolution. The source produces a two-party
state shared between Alice (A) and Bob (B). Alice possess a
weak random number generator, and accordingly, operates σx
or nothing randomly. After that, by using the auxiliary sys-
tem followed by the measurement and classical information
transmission from A to B, Alice’s subsystem evolves accord-
ing to PT -symmetric Hamiltonian. If the initial shared den-
sity matrix is in complex Hilbert space, Bob can always create
a smaller string of genuine randomness with a finite proba-
bility which is dictated by the minimum error discrimination
bound.
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Let us now describe how the above result enables us
to devise novel applications of PT -symmetric dynam-
ics in quantum information processing task, specifically,
in the quantum cryptographic domain. It is known that
in the classical regime, only pseudo-random number
can be obtained while in the quantum domain, gen-
uine randomness can be certified by using quantum
no-go theorems [53, 54]. In randomness amplification,
a shorter genuine random bit-string is generated from
a pseudo-long random string [43]. Towards executing
the protocol in our set-up, we replace the short-delay
quantum random pulse generator employed in the orig-
inal protocol [32] by an weak random number genera-
tor (WRNG) like Santha-Vazirani source [43, 55]. The
choice is due to the fact that we want to show ampli-
fication of random number generation (RNG), thereby
showing perfect quantum random number source and
hence initially if parties have quantum random num-
ber generator in their possession, the protocol does not
make sense. Here we also assume that this source pro-
vided by a supplier may be an eavesdropper.

Let us first give the protocol (in Fig. 1) for maxi-
mally entangled shared state and then we go for an
arbitrary shared two-qubit states. Before starting the
protocol, we assume that Alice and Bob’s actions are
predecided. Alice encodes one bit of information ob-
tained from WRNG on her subsystem of the shared
of maximally entangled photon via applying σx when
she gets 0 and do nothing when she has 1. Using the
open system approach, she jointly evolves her photon
together with the auxiliary system by appropriate uni-
tary followed by postselection on auxiliary subsystem
(for detailed see [32]). After a short delay, Bob mea-
sures σy on his part and record his outcome. After that
he receives a phone call from Alice and learns the inci-
dence when she succeeds in post selection to obtain a
particular outcome. Bob can keep only those outcomes
and discard all others. As on average half of the times
Alice succeeds about the simulation of PT -symmetric
evolution, at the end of the protocol, Bob has a genuine
random bit string which has length half of the initial
string which Alice obtained from some WRNG. Thus
generated randomness is genuine as we do not allow
any interference in the lab of two trusted parties, Alice
and Bob, including source of entanglement.

The above scheme can lead to several directions de-
pending upon how we run the protocol. For example,
one can also think that at the end of protocol, Alice and
Bob share a random string of bits which can not be pre-
dicted by the outsider, thereby manifesting a QKD pro-
tocol. On the other hand, we can employ this model to
certify entanglement of the source instead of key gen-
eration protocol. If Alice and Bob verifies their random
bit string to be equal, they can confirm about the source
producing maximally entangled state and otherwise,
the source is unable to create. In the ideal scenario,
this protocol succeeds in the asymptotic limit of non-
Hermiticity parameter to the exceptional point. It is an

interesting further study how to make this protocol se-
cure even when entangled photon source is provided
by an eavesdropper.

Instead of maximally entangled state, if Alice and
Bob share an arbitrary two-qubit density matrix, ρ, such
random number amplification is successful probabilis-
tically, and Bob can have a smaller length of bit string
than half, provided the classical correlator and magneti-
zation in the y-direction, i.e., Cyy, my are nonvanishing.
The length of the genuine random bit string is related
to the distinguishability of states as measured in the
previous section.

V. PT SYMMETRY IN HIGHER DIMENSION
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FIG. 2. Trace distance between the initial states and the state
after PT -symmetric evolution (vertical axis)) against p (hori-
zontal axis) of the Werner state, given by ρW = p|ψ+〉〈ψ+ +
(1 − p)I where |ψ+〉 is the maximally entangled state for a
given dimension while I denotes the identity operator of that
dimension. We choose different α values for demonstration.
Both the axis is dimensionless.

Upto now, we consider the shared states to be
two-qubits. Let us now move to a higher di-
mensional situation. The PT -symmetric Hamilto-
nian, with spin-1 matrices, takes the form as [56]

H = 1√
2

 i sin α 1 0
1 0 1
0 1 −i sin α

. Suppose Alice and

Bob share a two-qutrit density matrix, ρ3 = 1
9 (I9 +

∑i=x,y,z miSi ⊗ I + m′i I ⊗ Si + CiiSi ⊗ Si), where Si de-
notes the spin-1 matrices, and mi, m′i, Cii are corre-
spondingly local and global correlators defined in terms
of spin operator, Si. If we now compare the Bob’s state
before and after applying PT -symmetric evolution on
Alice’s side, we find that they coincide when my and
Cyy are vanishing even with α 6= nπ which is similar to
the qubit case as shown in Appendix. However, unlike
the qubit case, we also require mz and Czz to be zero in
order to avoid signaling.
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Let us now analyze the effects of dimensionality on
distinguishability i.e., with the increase of dimension,
we compute the trace distance between states before
and after PT -symmetric evolution, for different α val-
ues when the shared state is the Werner-like state in the
respective dimension. We observe that the difference in-
creases with the increase of the dimension as depicted
in Fig. 2, when α is chosen to be close to π/2.

VI. CONCLUSION

In a quantum world, evolution of the system accord-
ing to parity-time aka PT symmetry theory reveals sev-
eral intriguing features ranging from minimum evolu-
tion time in quantum brachistochrone problem, sponta-
neous oscillations in the distinguishability of quantum
states to the no-signaling condition. It was also shown
that if two observers share a quantum state, an ob-
server can predict the operations occurred at the other
end evolved by the PT -symmetric Hamiltonian – such
a consequence can never occur when one adopts the
proper inner product or simulates such systems in open
quantum system framework.

We proved that for arbitrary two-qubit shared states,
information about randomly chosen operations per-
formed by a subsystem on which PT -symmetric evo-
lution takes place can be gathered by another subsys-
tem provided the density matrix is defined in complex
Hilbert space. For example, considering the maximally
entangled state and Werner state, we demonstrated that
information about operations can be obtained when ei-
ther the state is a product or the measurement has a
complex component. We then showed that such a con-
sideration has a direct connection in designing quan-
tum random number generator from a pseudo random
bit-string. In particular, we showed that systems un-
der PT -symmetric evolution can indeed amplify the
shared randomness which has direct implications in
quantum state certification as well as quantum cryp-
tographic protocols. Finally, we indicated that such a
condition for obtaining information about the operation
performed by a spatially separated party holds even in
higher-dimensional systems.
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APPENDIX: EFFECTS OF ALICE’S OPERATIONS ON
BOB’S REDUCED STATE
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FIG. 3. Trace distance between Bob’s state before and af-
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tion are chosen. Both the axes are dimensionless.

There is a straight forward way to check whether the
Bob can draw information about Alice’s operation, i.e.,
signaling happens or not by comparing Bob’s state be-
fore and after local PT -symmetric Hamiltonian as also
shown in Sec. V.

Case 1. Non-maximally entangled states. When the
shared state is non-maximally entangled, Bob’s state
(ρB) is initially

ρB =

 1
2 1− 2β2

β2+γ2

1− 2β2

β2+γ2
1
2

 (6)

while after the application of local PT -symmetric
Hamiltonian on Alice’s subsystem, Bob’s state becomes

ρ′B =

( 1
2 Unm

¯Unm 1
2

)
, (7)

where Unm = (β2−γ2)(−3+cos(2α))+8iβγ sin(α)
4(β2+γ2)(1+sin(α)2)

The condi-

tion that ρ′B = ρB leads to the condition γ = 0 even
when α 6= nπ, which is similar to the condition reached
in Sec. III.

Case 2. Mixed states. For Werner state, Bob’s state
after PT -symmetry dynamics reads 1

2
ì p Sin (α)
1+sin(α)2

2 i p sin(α)
−3+cos(2α)

1
2

 . (8)

from its initially maximally mixed subsystem. We plot
the trace distance between these two states and find that
it vanishes only when p = 0 and the maximum distance
is achieved when α = nπ/2 (see Fig. 3).
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Interestingly, we find the similar condition obtained
in Eq. (4) if we compare Bob’s state before the dynam-
ics,

ρB =

(
1
2 + m′z

2
m′x
2 −

im′y
2

m′x
2 +

im′y
2

1
2 −

m′z
2

)
(9)

and after Alice applies local PT -symmetric operation,

ρ′B =

(
R+ U
Ū R−

)
(10)

with R± = 1
2

(
1 + (1±sin(α)2)mz

′

1+2my sin(α)+sin(α)2

)
and U =

(1+sin(α)2)mx
′−i(2Cyy sin α+(1+sin(α)2)my

′)
2(1+2my sin α+sin2 α)

. Comparing

each element of the matrix, we find that R± reduces
to 1

2 ±
m′z
2 when my vanishes while if both Cyy and my

are vanishing, U reduces to the off-diagonal term of ρB,
thereby arriving to the same condition as obtained in
Theorem 1.
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