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Measurement-based quantum correlation mimics several characteristics of multipartite quantum
correlations and at the same time, it reduces the parent system to a smaller subsystem. On the other
hand, genuine multipartite entanglement measures can capture certain features of a multisite com-
posite system that are inaccessible via bipartite quantum correlation quantifiers. We merge these
two concepts by introducing localizable genuine multimode entanglement for continuous variable
systems, both for Gaussian and non-Gaussian multimode parent states. We report a compact form
of localizable generalized geometric measure for multimode Gaussian states when Gaussian mea-
surements are performed in some of the modes. We show that non-Gaussian measurements can con-
centrate more genuine multimode entanglement compared to the Gaussian ones. For non-Gaussian
states with non-Gaussian measurements, we find that although four-mode squeezed vacuum state
has permutation symmetry with respect to the exchange of first and third modes as well as the
second and the fourth modes, the symmetry can be broken by performing measurements in one of
the modes in case of addition while for subtraction, such symmetry is preserved, thereby providing

a method for distinguishing multimode photon-added and -subtracted states via localizations.

I. INTRODUCTION

The “weirdness” of quantum physics have puzzled sci-
entists over the years although these peculiarities, ab-
sent in classical resources, turn out to be boons for de-
signing quantum information processing tasks [1-6]. A
conceptual revolution has paved the way for the discov-
ery of remarkable protocols like quantum teleportation
[7-9], dense coding [10, 11], quantum key distribution
(QKD) [12, 13], quantum sensing [14], quantum com-
putation [15, 16] and other quantum technologies like
quantum memories [17, 18] and quantum batteries [19]
to name a few. Most of the protocols, showing better ef-
ficiencies than their classical counterparts, employ some
form of quantum resources [20] which include quantum
coherence [21], entanglement [22], quantum correlations,
independent of entanglement [23, 24]. Therefore, classi-
fication of nonclassical resources has utmost importance
both from the perspectives of better understanding of
quantum mechanics and utilizing the quantum fuel to
build the quantum technologies.

We will be concentrating here on entanglement for
which the resource theory is well-established in the liter-
ature, especially for two spatially separated systems. In
this bipartite regime, the categorization takes a simpler
form and hence the detection as well as quantification are
comparatively easier than the system comprising more
than two parties. However, multipartite entanglement is
shown to be useful for information processing tasks like
in quantum networks and in measurement-based quan-
tum computation [25-27]. A multiparty pure state is
said to be genuinely multipartite entangled if it is not
product across every bipartition. Based on the geome-
try of quantum states, the generalized geometric measure
(GGM) [28] (see also [29-32]) attempts to quantify the
genuine multiparty entanglement content of a state by
computing the minimum distance of a given state from
the set of non-genuinely multipartite entangled states (cf.

[33, 34]). On the other hand, multipartite entanglement
content can also be effectively characterized if local mea-
surements are performed on the subset of all the parties,
thereby localizing entanglement in the unmeasured par-
ties, referred to entanglement of assistance or localizable
entanglement [35-40].

Given the resources, the next thing is to consider the
platform on which the quantum communication and com-
puting tasks can be performed. Several effective sub-
strates have been identified that include cold atomic sys-
tems [41-47], superconducting qubits [16, 48], nuclear
magnetic resonance (NMR) molecules [49-54], photonic
systems [55, 56] and many others. In this work, we in-
vestigate the classification of measurement-based genuine
multimode entanglement, GME, in continuous variable
states of light which can be realized in optical bosonic
modes. In contrast to the issues faced when discrete
polarization states of light have been used for realizing
several recent groundbreaking communication protocols,
continuous variable (CV) systems [57, 58] can overcome
certain difficulties present in photonic qubits, like Bell-
basis distinguishability. In particular, CV states can be
prepared with almost unit probability by using the non-
linear interaction of a crystal with a laser [57]. All these
advantages make CV systems a prominent physical sys-
tem for building quantum gadgets.

Our aim is to calibrate entanglement present in the
multimode CV systems via measurement process. Specif-
ically, we perform both Gaussian as well as non-Gaussian
local measurements in one or many modes of a multi-
mode Gaussian and non-Gaussian parent state to localize
the GME of the whole state into the unmeasured modes
consisting of multiple modes. The entanglement gener-
ated in the unmeasured modes is quantified by general-
ized geometric measure [59], leading to a localizable gen-
uine multimode entanglement (LGME). In the CV sec-
tor, localization of bipartite entanglement for Gaussian
states is discussed [60, 61]. We systematize our investi-



gations by splitting our analysis into three parts. First,
we restrict ourselves to the Gaussian regime where we
examine LGME of a Gaussian state, namely a four-mode
squeezed vacuum (FMSV) state [62], by employing opti-
mal Gaussian measurements in one of the four modes of
the FMSV. Secondly, we replace the Gaussian measure-
ments with the non-Gaussian ones that involve photon
counting schemes. Note that the chosen non-Gaussian
measurement scheme which can be easily performed ex-
perimentally, although there can be other optimal ones.
However, our analysis reveals that LGME obtained from
non-Gaussian measurements is always higher than the
one obtained with the optimal Gaussian measurements.

Finally, we take up the most general case where both
the states and measurements are non-Gaussian. A promi-
nent and efficient method to create non-Gaussian states
is to add (subtract) photons in Gaussian states. More-
over, it was shown that non-Gaussianity, both in the form
of states and operations, can be useful for several quan-
tum information processing tasks like distillation, error
corrections, quantum sensing than Gaussian states and
operations [63-72]. By employing the same non-Gaussian
measurements, we report that photon subtracted FMSV
can localize more GME than that of the photon-added
state. In this respect, we first notice that four-mode
Gaussian states is symmetric with the permutation of
first and third as well as second and fourth modes. We
then show that if one performs measurement in the fourth
mode, the addition of photons in the second mode which
is unmeasured leads to a higher multimode entanglement
than that of the fourth mode, thereby showing symmetry-
breaking nature induced by measurements. Interestingly,
in case of subtraction, measurement is unable to break
the permutation symmetry present in the four-mode non-
Gaussian states. Therefore, LGME can act as a method
to discriminate multimode photon-subtracted states from
the photon-added ones. Moreover, such contrasting be-
havior can furnish a mechanism by which the modes used
for photon addition can be detected.

The paper is organized as follows. In Sec. II, we
introduce localizable genuine multimode entanglement
or measurement-based multimode entanglement. After
setting the stage, in Sec. III, we derive a compact
form of LGME for Gaussian states with optimal Gaus-
sian measurement and also show that non-Gaussian mea-
surements can perform better than the optimal Gaus-
sian measurement in the process of localization. In Sec.
1V, we investigate LGME in the photon-added and -
subtracted states. We finally conclude in Sec. V.

II. LOCALIZABLE GENUINE MULTIMODE
ENTANGLEMENT

Let us introduce the localizable genuine multimode en-
tanglement for an arbitrary N-mode state. To localize
entanglement, local Gaussian or non-Gaussian measure-
ments are performed on L modes of an N-mode state.

Since we are interested in the residual multimode en-
tanglement, we must have N — L = k > 3. For a
given multimode entanglement measure, £, the localiz-
able or measurement-based genuine multimode entangle-
ment can then be defined as

£ = / PE(0)K), (1)

where maximization is performed over the local mea-
surements on L modes, and the averaging is performed
over the measurement outcomes of the resulting state of
k > 3-modes.

In this paper, we take an arbitrary four-mode squeezed
vacuum state as the parent state, and by performing a
measurement on a single mode, we obtain the resulting
three-mode state. Depending on the types of measure-
ment and the initial state, the resulting state is either
Gaussian or non-Gaussian in nature. After localization,
multimode entanglement is quantified geometrically, i.e.
via generalized geometric measure [28-34, 59]. For a N-
mode state, |[¢y), it is defined via Fubini study metric
[73, 74] as

G(lYn)) =1 — max [(x|yn)>=1-
[x)eEnG

max {AaslAUB={1,2,...,N},AnB=0}. (2)

The maximization is taken over the set of N-mode pure
states, {|x)}, which are not genuinely multimode entan-
gled and the set is denoted by nG. Interestingly, the op-
timization can be conquered by using Schmidt decompo-
sition for continuous variable systems [75, 76] which can
be easily extended for any normalizable infinite dimen-
sional state. For four-mode Gaussian states, the details
will be presented in the succeeding section.

III. GAUSSIAN GENUINE LOCALIZABLE
ENTANGLEMENT: GAUSSIAN VS.
NON-GAUSSIAN MEASUREMENTS

Before computing LGME for four-mode squeezed vac-
uum state, let us first briefly describe the method to
compute GGM for multimode state. Upto local displace-
ment operations, a Gaussian state is specified uniquely
by its covariance matrix [55, 56]. For an arbitrary m-
mode Gaussian state, p, the covariance matrix, A, is a
2mx2m matrix, defined as A;; = 1({R;, R;})—(R;)(R;),
where B = (q1,p1,42, P2, ---Gm,Pm)". Here g;s and p;s
are the usual phase space quadrature operators which

can be given in terms of raising and lowering opera-

tors as q; = %(aj + a}), p; = ﬁ(aj — a}), where

i = +/—1. If p has to be a valid density matrix, the

covariance matrix in terms of the symplectic matrix, J,

has to satisfy A +14J > 0, where J = @]", [_01 (1)] By

using Williamson’s theorem [77, 78], the covariance ma-
trix A can be obtained from A? by appropriate symplectic



transformation (Sa), A = SAA?S} with A4 = @™, vila,
where {v;}s are the symplectic eigenvalues of A and I, is
the 2 x 2 identity matrix. The GGM (G) of a N-mode
pure Gaussian state |¢n) in terms of symplectic eigen-

values takes the compact form as [59]

m

G(ln)) =1 = max P, { T

i=1

2 }[EV]

1+ QVZ' (3)

m:l.

Here maximization is performed by considering symplec-
tic eigenvalues of all the reduced states of |¢) y with m-
modes which are obtained by applying the permutation
operator, Py, while [z] denotes the integral part of x.

A. Concentrating genuine entanglement of
Gaussian states with Gaussian measurement

To compute LGME with the Gaussian state, we con-
sider the four-mode squeezed vacuum state [62] as the
parent state on which Gaussian measurements are per-
formed. The FMSV state with squeezing strength r can
be prepared in the laboratories by using linear optical
elements like 50:50 beam splitters and two single-mode
squeezed vacuum states and can be written as

|[FMSV)
= s Xiiialaly —aiain 0000)

1 /1 "G n n
= —tanh
coshr Zo (2 o T) == (7‘1) (7‘2)

: n— )l — ralrdira), (4)

Here for i = 4, i + 1 is considered to be 1. The GGM in
this case reads as

2
FMSV))=1—-—maxq —5—,
G ) X{l + cosh?r
2 2 2
1+cosh2r’(1+coshr) } (%)

It is important to note here that the FMSV state has an
inherent permutation symmetry — it remains invariant
under the exchange of first and third mode as well as the
second and fourth mode.

Without loss of generality, let us perform a projec-
tive Gaussian measurement in the fourth mode of the
FMSV state. The most general covariance matrix of a
single-mode Gaussian state with which the measurement
is performed is the squeezed coherent state whose covari-
ance matrix can be represented as

Om =
cosh 21" + cos ¢ sinh 2r' —
sin ¢ sinh 27’

sin ¢ sinh 27’

cosh 21’ — cos ¢sinh 2r' | *

(6)

with 7’ being the squeezing parameter, and ¢ being the

‘
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FIG. 1: Gaussian vs. non-Gaussian measurements. Tak-
ing four-mode squeezed vacuum state, given in Eq. (4),
as the parent state, genuine multimode entanglement (or-
dinate) is computed with respect to the squeezing parame-
ter, A = tanhr (abscissa). The measurement is performed in
the fourth mode. The solid line represents the LGME of the
FMSYV state after optimal Gaussian measurements while the
dashed line is for the same with non-Gaussian measurements.
Clearly, photon counting non-Gaussian measurements are ad-
vantageous to localize multimode entanglement compared to
the optimal Gaussian ones. Both the axes are dimensionless.

angle of the quadrature. It turns out that the reduced
covariance matrices for the various measurement out-
comes are identical while only the displacement vectors
are outcome-dependent. Since the GGM content depends
only on the covariance matrix, we do not require to per-
form averaging over the different measurement outcomes
involved in the definition (Eq. (1)). The post-measured
three-mode covariance matrix, (A,,), can be computed
as

Am = 0123 — Uc~((07n + 04)71)'033 (7)

where o123 and o4 denote the first three modes and
the fourth mode respectively of the covariance matrix
of [FMSV), A¥MSV which is given by

cosh? r I % sinh 2r o, sinh? r I % sinh 2r o,
1 % sinh2r o, cosh?r I, % sinh2r o, sinh®r Iy
2 | sinh®r I, % sinh2r o, cosh?r I, % sinh 2r o,
% sinh 2r o, sinh? r I % sinh 27 o, cosh? r I

with I, and o, being the identity and Pauli matrix in the
z-direction respectively. Here, o, represents the correla-
tion matrix between the first three and the fourth mode
of FMSV. In particular, they are given by

cosh? r I % sinh 27 o, sinh? r I,
0193 = 3 %sinh or o, cosh?r I, %Sinh 2r o, |,
sinh? r I % sinh 2r o, cosh? r I



1 1 % sinh 2r o,
o4 = — cosh? r Iy, 0. = = sinh? r I

2 2|1 .
5sinh2r o,
Note that A, = Ay (r, 7, ¢), and the corresponding lo-
calizable GME in terms of GGM can be expressed as

LGATMSV (1)) = max G(A,, (r,77, 9)). (8)

v

Our analysis reveals that the optimal measurement con-
figuration turns out to be homodyne detection of either
x or p quadrature. Hence, for our analysis, without loss
of generality, we consider the x-quadrature. Therefore,
the maximal LGME is obtained for ' — oo and ¢ = 0.
In this optimal configuration, A%" takes a simple form
and its three single mode reduced covariance matrices,
Ry, Ry, and Rg3, are given by

o 1fcosh®r 0
R=ra= g [0 )
and
1 [cosh?r 0
Ry = 2 [ 0 1 + tanh? r} (10)

The symplectic eigenvalues of R (3) and Rz are computed
to be v; = %coshr and vy, = %\/ cosh 2r which leads to
the LGME of the FMSV state using Gaussian measure-

ments as

LGAMSY) = g(az)

l—max{

2 2 }
1+coshr’ 1+ +cosh2rJ’

However, we find that for all » > 0, coshr < +/cosh2r,
and, therefore, Thcosny 18 always larger, thereby provid-
ing a compact form of LGME for FMSV state with opti-
mal local Gaussian measurement as

LG(AFMSVY = tanh? g (11)

Clearly, it increases monotonically with the variation of
the squeezing parameter, r as shown in Fig. 1.

B. Non-Gaussian measurement enhances
localization

Let us now see whether more entanglement can be
localized from a Gaussian state, when instead of op-
timal Gaussian measurements, one employs some non-
Gaussian measurement schemes. As non-Gaussian mea-
surements, the photon counting operations are performed

in any one of the modes of the Gaussian state and
can be translated to a measurement in the Fock basis
{|k)}, where |k) denotes the k-photon state. When the
fourth mode of |FMSV) is measured in the Fock ba-
sis and |k) clicks, the resulting normalized three-mode
post-measured state is denoted by |1)), where we have
(k|FMSV) = \/pk|tr) with py being the clicking proba-
bility.

The LGME content of |F'MSV) under the photon
counting (non-Gaussian) measurement procedure reads
as

LG(IFMSV)) = prG([v)). (12)
k

In Fig. 1, we observe that by using the photon count-
ing non-Gaussian measurement, higher amount of GME
can be localized than the obtained via the optimal Gaus-
sian measurement. Notice for three-mode Gaussian state,
such an advantageous scenario with non-Gaussian mea-
surement was also reported [60].

IV. MORE LOCALIZATION OF GENUINE
MULTIMODE ENTANGLEMENT FOR
PHOTON-SUBTRACTED STATES

In this section, we investigate the role of non-
Gaussianity, both at the level of states and measurements
for concentrating entanglement into smaller subsystems.
Our analysis in the previous section already hinted at
the enhancement properties of LGME with non-Gaussian
measurements. Here we examine the most general case
of localization of GME for non-Gaussian states by em-
ploying non-Gaussian measurements. We have already
discussed the non-Gaussian measurement strategy in the
previous section. Now we discuss the procedure for de-
Gaussification of the FMSV state.

Among the various methods by which a state can
be deGaussified, we choose to employ photon addition
and subtraction operations. Such a choice is based on
two important features — these photonic operations can
be implemented experimentally, and secondly they have
been shown to have enhancing effects in varied scenar-
ios ranging from bipartite entanglement, violation of Bell
inequality, to genuine multimode entanglement in the
continuous variable sector, thereby showing its possi-
ble applications in quantum information processing tasks
[59, 62, 79-85]. LGME, in this case, will be denoted as
£G% and £G*P*"¢t o represent photon-addition and
-subtraction respectively.

The photon-added and -subtracted FMSV states with
m,; number of photons are added or subtracted in or from
the mode ¢ (i = 1,2,3,4) respectively read as
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FIG. 2: Localizable genuine multimode entanglement (vertical axis) against the number of photons added and subtracted
(horizontal axis), m, from a single mode of the FMSV state. The solid line is for adding photons from a single mode while the
dashed line represents subtraction of photons from the same. In legend, the subscript, i = 1,2,4s in m; indicate the mode in
which photons are added (subtracted). First of all, localizable entanglement gets enhanced due to the addition (subtraction) of
photons. We observe that the LGME for adding or subtracting photons in (from) mode 1 or 3 as well as subtracting photons in
mode 2 or 4 give rise to the same value while adding photons in the second and fourth mode leads to a different entanglement
content. Such an observation is interesting since the parent state remains same with the interchange of mode 1 and 3 as well
as mode 2 and 4. Both the axes are dimensionless.
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where M = max[m; +ms, mo +my] and, N and N5ub Let us first concentrate on localizing GME in
are the respective normalization constants and can be |¢;“A”4{§"L;}> via photon counting measurements in the
expressed as follows fourth mode. When the k-photon state clicks in the

- ) . fourth mode, the normalized post-measurement state is
1 " n\ (n computed as
Nadd — — tanhr
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FIG. 3: Localizable genuine multimode entanglement (or-
dinate) vs. the number of photons added to and subtracted
from two different modes of the FMSV state (abscissa), where
the total number of photons added or subtracted are fixed to
20. Here m; +m; = 20, where 4,5 = 1,2,3,4. . The label of
the horizontal axis is for m; where i < j. The dashed lines rep-
resent photon-addition while the solid line is for subtracting
photons from the same. The legend, add;; or sub;; represent
addition of photons in (7, j)-pair of modes or subtraction of
photons from the same. When photons are subtracted from
first and third modes or second and fourth modes, LGME
remains constant (see text for the proof). Both the axes are
dimensionless.

where 1,5, = max [0,k + mso + my — M], and

2 (n,ry, {mi})

1 (1 )" 1
=——— | -tanhr| (n+ M) X
\/W Vrlk!
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Vit M—ri—mi—mz)! /(n+ M —k—ma —my)
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mode, the Schmidt coefficients of each resulting three-
mode state are functions of my + mg and msy + my, as
seen in Eqgs. (17), (18), and (19). And the GME in Egs.
(2) and (12) is a function of Schmidt coefficients. Hence
the proof. O

The two immediate corollaries of the above proposition
are following:
Corollary 1. The localizable GME of the photon-
subtracted state is invariant under the interchange of
my <> m3 and my <> my.
Corollary 2. The localizable GME of the photon-
subtracted state remains constant when photons are sub-
tracted from the first and the third modes in a con-
straint manner, i.e., when my + msg = n. Similarly for
me +ma =n'.

The post-measurement state of 4™}y when kth
photon is detected in the fourth mode, is given by

1 add{m;
4<k|1/)F]M{SV }>7
add
Py

Z Z flgdd(nvrlv{mi})

n=k—my r1=0

[ (k)

In+mi —ri)i|ln —k + ma + mya)alr1 +ma)s, (20)

where

flgdd(n>r1a {ml}’>

) V0

k!

\/(k—;fu)!’

(n—k+mo+my)!
(n—k+m4)!

\/(’I"1 + mg)'
7’1!

(18) and the probability of getting kth photon in the fourth

and the subscript in the first line of Eq. (17) indicates
that the measurement is on the fourth mode. It occurs
with probability,

su sub{m;
PP = |a (ki) 2

1 e’} 1 2n n+M—mi—ms3 11

= 2 ( tanh ’“) > oam

N I 2 =0 T1: k!
(n+ M)! (n+ M)!

(n+M-—ri—my—m3)! (n+ M —k—mg—my)!

The LGME content of \1/1;132{3@5 can then be obtained
by using Eq. (12) and the form of the photon-subtracted
state leads to the following proposition.

Proposition 1. The localizable GME of the photon-
subtracted state is a function of mq + m3 and mo + my.

Proof. First we note that when the kth outcome appears
after the photon-counting measurement of the fourth

(19

mode is given by

add{m;
PRt = |y (k| 2

S, 3 () S ()0) e

n=k—my r1=0
(n —k+ma+my)! (r1 +ms3)! k!
(n—k+ my)! ry! (k —myg)!

The form of |w%\(2gr‘7}> leads to the computation of £G*%?
which also possess the following symmetry:
Proposition 2. The localizable GME of the photon-
added state is invariant under the interchange of the
number of photons added in mode one and three, i.e.,
mq <> ms.

Proof. When m; number of photons are added in mode
i, the corresponding state given in Eq. (20) can be ex-

(21)

|

(22)



pressed as

[t (k >>

o0

Z Z fl?dd(nvn_rlv{mi})

n=k—my r1=0

‘Tl =+ m1>1|n —k+mg+ m4)2\n —ry + m3>3, (23)

where we replace 1 — n — 71, and £ (n,n —r1, {m;})
is given in Eq. (21). Now if instead of adding m; number
of photons in the first mode, we add mg3 in mode one and
mq in mode three, i.e., interchanging my < mgs, while
me and my4 remain same, we have

w%@% k) s

(oo}
= > Z Fnyn = 11, M}, ooms
n=k—my r1=0

|’/‘1 + m3> |’I’L —k+mo+ m4>2|n —r1+ m1>3,

_ Z Z add n Tl»{mi})

n=k—my r1=0

|’l"1 —|—m3>1|n — k + mo + TTL4>2|71 -7 + m1>3(24)

Hence, one can easily see that Eq. (20) is same as Eq.
(24) with mode one and three being interchanged, which
shows that the LGME is invariant under the interchange
of my > mg in case of photon-addition. O

Single-mode operations.  The observations from the
single-mode photon addition or subtraction can be listed
as follows (see Fig. 2):

1. As obtained in case of other multimode entangle-
ment measures [79-83], we also observe here that
the amount of entanglement localized in modes gets
increased due to the addition (subtraction) of pho-
tons in the multimode squeezed vacuum states, ir-
respective of choice of the modes on which mea-
surements are performed.

2. Unlike two-mode entanglement [79], LGME is
higher in the photon-subtracted state than that of
the photon-added state (cf. [59, 62]). Note that
the enhancement features of LGME on addition
and subtraction of photons can be explained by
the non-Gaussianity [86-88] induced in the FMSV
state by the photonic operations. However, non-
Gaussianity cannot conclusively answer the ques-
tion that which type of deGaussification (photon
addition or subtraction) induces greater enhance-
ment of LGME.

3. As mentioned before, the four-mode squeezed vac-
uum state has a symmetry in the exchange of
modes, i.e. 14> 3 and 2 <> 4 and hence its entan-
glement properties remain same if one adds (sub-
tracts) photons in mode 1 or in mode 3. Similarly
for mode 2 or 4. We show here that the intro-
duction of measurement breaks the symmetry — we
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|
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FIG. 4: LGME (y-axis) with respect to the equal number

of photons added and subtracted in two different modes, i.e.,

m; = mj. And correspondingly the legends are represented
as add;; and sub; ;. All other specifications are same as in
Fig. 3.

get more entanglement when photon is added in
the unmeasured modes compared to the one when
photons are added to the measured one. Specifi-
cally, when the measurement is performed in mode
4, we obtain £G*(my) > £G(m,). Interest-
ingly, such a symmetry-breaking does not occur in
the photon-subtracted state. Therefore, we show
that the photon-addition procedure can be used as
a detection method to identify the mode in which
photons are added.

4. With the increase of squeezing parameter, LGME
increases as one expects. Interestingly, the gap
between the LGME obtained in different modes
decreases with the moderate number of photons
added in a single mode and with a moderate squeez-
ing strength.

Two-mode operations. Let us now move to the scenario
when a fixed number of photons are added (subtracted)
o (from) two modes, i.e. in (m;,m;)-pair. Suppose
m; +m; = n is added (subtracted) with i # j. Here we
can divide the situation into two categories as depicted in
Figs. 3 and 4 - (1) measurement is performed neither on
ith nor on the jth mode; (2) measurement is performed
on, say jth mode. In our case ;7 = 4. Like single-mode
operations, we again confirm that twin operations, mea-
suring and adding photons, in the same mode has adverse
effects in localization of multimode entanglement.

Case 1. Let us first consider the pair (mq,m3). LGME
monotonically increases till the point with m; = m; =
n/2, then decreases and reaches to the same value since
LGME coincides when addition happens either in mode
1 or 3. For mode (1,2)-pair, LGME clearly decreases
with m1, as can be seen from Fig. 2. From Theorem 1,
it is clear that LGME remains constant with (m;, m;42)-
pair for photon-subtracted state. On the other hand, in



case of mode (1, 2)-pair, we observe that for n = 20, the
maximum amount of GME can be localized when eight
photons are subtracted from the first mode which reflects
the fact that there is no symmetry in the exchange of my
and mo.

Case 2. In this picture, one of the parties, in our case,
the fourth party performs the photon counting measure-
ment. Hence we are interested in the pair, (m;, m4). In
case of addition, we observe that in case of (ma, my)-duo,
since the symmetry is broken due to the measurement on
the fourth mode, localized entanglement of photon-added
state at (mg = 0, m4 = 20) is different than that of (mg =
20, m4 = 0). Moreover, from Fig. 2, we find that entan-
glement is less when photons are added in the measured
mode compared to that of the unmeasured mode. Hence
we have LG(mg = 20,my = 0) > LG(mg = 0, m4 = 20)
and it is an increasing curve with msy although not mono-
tonic. On the other hand, photon-subtraction does not
break the symmetry of the initial state and so localized
entanglement remains constant with msy or my4 as shown
in Fig. 3.

Special Case. We now consider the situation where
equal number of photons are added or subtracted from
modes. Note that it is a special configuration of the above
mentioned case since the photonic operations are equally
distributed in the two modes. We highlight this because
it neatly captures the LGME enhancement properties of
bimodal photonic operations, see Fig. 4 and again es-
tablishes that photon-subtraction is better than that of
photon-addition, i.e. £G*** > £G%

V. CONCLUSION

Characterization and manipulation of quantum re-
sources form integral parts of research in quantum infor-
mation science facilitating optimal usage of the same. In
this work, we focus on concentrating genuine multimode
entanglement (GME) in a multimode state from a state
with higher number of modes using local projective mea-
surements. We were interested to quantify the amount
of localizable GME (LGME) both in the Gaussian and
non-Gaussian paradigms.

We started off our analysis with a four-mode Gaus-
sian squeezed vacuum (FMSV) state and found the GME
content that can be localized in the remaining three

modes by employing optimal Gaussian measurements in
the fourth mode. We showed that the maximum localiza-
tion is possible when Gaussian measurement reduces to
homodyne detection in either x or p quadrature and can
be easily implemented experimentally. We also reported
that if one adopts a non-Gaussian measurement strategy
like photon counting measurement scheme, it can lead to
a higher LGME in comparison to the optimal Gaussian
measurement setting.

With a clear indication that non-Gaussianity aids in
more effective localization of GME, we considered the
scenario where we computed LGME of non-Gaussian
states by applying non-Gaussian measurements. The
measurement strategy is kept fixed to be the photon
counting operations as before, and the states under inves-
tigation are obtained by deGaussifying the FMSV state
by performing photon addition and subtraction in its
various modes. These dual dose of non-Gaussianity en-
ables localization of substantial GME from the optimal
Gaussian case. In addition to the overall enhancement of
LGME, we also observed that for obtaining LGME, local
measurements can break the inherent symmetry, present
in the original state in case of addition while such a sym-
metry remains unaffected in the photon-subtracted state
even after the measurement. It also revealed that LGME
of the photon-added states can be applied to identify the
modes in which photons are added and works for a mod-
erate amount of squeezing in the original state, achiev-
able in current experiments. On the other hand, due to
this property in the photon-subtracted state, there exist
a situation when LGME remains constant with a fixed
number of subtraction of photons from two modes. Our
analysis indicates that the local measurements can un-
cover certain characteristics of states which are otherwise
impossible to highlight.
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