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This study concerns the relationship between the power law recession coefficient k (in �dQ/dt = kQa, Q
being discharge at the basin outlet) and past average discharge QN (where N is the temporal distance from
the center of the selected time span in the past to the recession peak), which serves as a proxy for past
storage state of the basin. The strength of the k–QN relationship is characterized by the coefficient of
determination R2

N, which is expected to indicate the basin’s ability to hold water for N days. The main
objective of this study is to examine how R2

N value of a basin is related with its physical characteristics.
For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical
parameters for each basin. First, we transform the physical parameters into mutually independent prin-
cipal components. Then we employ multiple linear regression method to construct a model of R2

N in
terms of the principal components. Furthermore, we employ step-wise multiple linear regression method
to identify the dominant catchment characteristics that influence R2

N and their directions of influence.
Our results indicate that R2

N is appreciably related to catchment characteristics. Particularly, it is note-
worthy that the coefficient of determination of the relationship between R2

N and the catchment charac-
teristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant
factors in controlling the value of R2

N. Our results may be suggesting that it is possible to tell about the
water holding capacity of a basin by just knowing about a few of its physical characteristics.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

One of the key features of a drainage basin is its ability to store
rain water and discharge it later at a much slower late, thereby sus-
taining many of the biotic and abiotic activities (Botter et al., 2011;
Kirchner et al., 2001; McDonnell et al., 1991; Pearce et al., 1986;
Sivakumar et al., 2005; Wolock et al., 1989). Individual water parti-
cles follow various surface and subsurface flow paths to reach the
basin outlet. Interestingly, the travel time distribution of individual
water particles in a basin is very different from the streamflow
hydrograph or the hydrologic response, owing to the difference
between celerity and velocity (Botter et al., 2011, 2010; McDonnell
and Beven, 2014). Nevertheless, hydrologic response represents
the functional relationship between storage and discharge at basin
scale. In fact, all practical hydrological models are based on the mass
balance equation involving storage (S) and discharge (Q) (Anderson
et al., 1997; Biswal and Nagesh Kumar, 2015; Bonell, 1998; Brutsaert
and Nieber, 1977; Hooper, 2001; McGlynn et al., 2003, 2002; Rupp
and Selker, 2006; Sidle et al., 2000; Thomas et al., 2013). However,
the biggest challenge in implementing the mass balance equation
is that it is not practically possible to observe storage due to techno-
logical limitations. An alternative avenue is to obtain information
indirectly by analyzing streamflow time series. In particular, stream-
flow observations during recession periods or no-rain periods can
give valuable information, since during these periods streamflow
is sustained by drainage from subsurface storage systems only
(Arnold et al., 1995; Biswal and Marani, 2014, 2010; Biswal and
Nagesh Kumar, 2014a, 2014b; Brutsaert and Nieber, 1977; Marani
et al., 2001; Mutzner et al., 2013; Palmroth et al., 2010; Rupp and
Selker, 2006; Szilagyi et al., 1998; Tallaksen, 1995).

For recession flow analysis, Brutsaert and Nieber (1977) pro-
posed the classical method of expressing dQ/dt as a function of Q
itself, where Q is discharge at the basin outlet at time t. dQ/dt vs.
Q curves generally display a power law profile as:
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� dQ
dt
¼ kQa ð1Þ

Biswal and Marani (2010) found that although a for a particular
basin remains fairly constant, k displays considerable variation
across recession events, indicating that dQ/dt–Q relationship (or
storage–discharge relationship) is dynamic. Therefore, –dQ/dt vs.
Q curves need to be analyzed separately for the available recession
events (Biswal and Marani, 2014, 2010; Biswal and Nagesh Kumar,
2014a, 2013; Mutzner et al., 2013; Shaw and Riha, 2012). The log-
ical question, therefore, is: what controls the eventual variability of
k? It appears that the coefficient k depends on initial drainable
storage in the basin (Biswal and Nagesh Kumar, 2015, 2014a,
2014b). A basin accumulates water during a rainfall event and
releases it gradually during the following no-rain or recession peri-
ods. Because no-rain periods are usually shorter than the time per-
iod a basin requires to drain the stored water, the basin may not
drain water completely during a particular recession event. This
means that the basin will still have some water left to be drained
in the later recession events. Therefore, k of a recession event can
be expected to be influenced by the past storage in the basin, rep-
resented by the past average discharge (Biswal and Nagesh Kumar,
2014a, 2014b; Shaw et al., 2013). Also, the effect of storage is
expected to diminish with time. This means that k will be affected
less by storage in the basin, say, 20 days before the recession event
than by storage, say, 5 days before the event (Biswal and Nagesh
Kumar, 2014a, 2014b). Essentially, the relation between k and past
average discharge indicates the basin’s ability to store and release
water.

The basic objective of this study is to investigate the physical
controls over the relationship between the coefficient k and past
average discharge considering data from 358 basins situated in
the United States. More specifically, we attempt to identify the
dominant parameters (Sivakumar, 2004) that govern the power
law relationship between k and past average discharge. The main
intention is to provide a first order understanding of recession flow
processes from catchment characteristics.
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Fig. 1. An illustration of the analysis of streamflow time series data as done in this
study. QN is the average discharge from N00 to N0 days before the recession peak,
where N = (N00 + N0)/2. The relationship between the recession flow parameter k and
QN is investigated by considering four values of N (N = 6, 20, 45 and 90) as shown in
the figure.
2. Data and analysis

2.1. Streamflow data collection and preliminary analysis

Daily average streamflow data were collected for 358 basins
from the USGS database (http://waterwatch.usgs.gov/) (Table S1
of the supplementary material provides the basin ids). Satellite
images (courtesy of Google Earth) were used to select the basins
that are relatively less influenced by human activities. Since we
were particularly interested in analyzing streamflows contributed
by subsurface storage systems, we did not consider basins that
contain relatively large natural or artificial lakes. Any streamflow
time series in which discharge was observed to be declining con-
tinuously for at least 5 days was considered as a recession curve
(Biswal and Marani, 2010; Biswal and Nagesh Kumar, 2014b).
–dQ/dt and Q were computed as (Brutsaert and Nieber, 1977):

�dQ=dt ¼ ðQ t � Q tþDtÞ=Dt; and ð2aÞ

Q ¼ ðQ t þ Q tþDtÞ=2 ð2bÞ

The time step Dt is 1 day in this study. Note that for computa-
tion of a and k recession peaks were not considered as they are
supposed to be influenced by surface flows (Biswal and Nagesh
Kumar, 2014a). For each study basin, the available recession curves
were collected and the corresponding values of a were computed.
The median of the values of a was considered to be the represen-
tative a (ar) for the basin (Biswal and Marani, 2010). Then, for each
recession curve of the basin, k was computed by fixing a at its ar
(Biswal and Marani, 2014). Subsequently, we analyzed the power
law relationship between k of a recession event and QN, expressed
in a more general form:

k / Q�dN
N ð3Þ

where QN is the average discharge observed from N00 to N0 days
before the peak of the recession event, and N = (N00 + N0)/2 and dN

is the exponent. The main difference between our analysis and
the analysis of Biswal and Nagesh Kumar (2014b) is that while
Biswal and Nagesh Kumar (2014b) considered only the case of
N00 = 2, we considered different values of N00 (Fig. 1). We noted the
values of R2

N (coefficients of regression) for power law relationship
between k and QN for four combinations of (N00, N0): (2, 10), (10, 30),
(30, 60) and (60, 120), as shown in Fig. 2 for USGS gauging station
#01586610 (Morgan Run, MD).

2.2. R2
N and catchment characteristics

To investigate how different catchment characteristics affect
R2

N, we used the hydrologic database of Falcone et al. (2010),
which gives various physical properties for the selected basins.
The coefficient of determination of the relationship between each
of the selected catchment parameter and R2

N for each N was found
out by employing the least square linear regression method. We
denote R2

NPi as the coefficient of determination of the relationship
between R2

N and the ith parameter, Pi. In total, 18 catchment char-
acteristics were selected for the rest of the analysis (Table 1) that
were statistically significant (see the p-values in the table),
although a few parameters not satisfying the criterion were also
added since we thought that they are important catchment
characteristics.

The catchment parameters were normalized by subtracting the
respective mean and dividing it by the standard deviation. Then,
the dataset (catchment variables) was transformed into a set of
principal components, as we found that many of the selected
parameters are not mutually independent (Abdi and Williams,
2010; Brown, 1993). The procedure makes use of orthogonal trans-
formation method to convert a set of mutually-dependent vari-
ables into a set of principal components that are independent of
one another. PCi is referred here as the ith principal component.

Multiple linear regression analysis was performed between
(R2

N) (dependent variable) and the first Z principal components
(independent variables) for each N. The general relationship is rep-
resented as:

R2
N ¼ b0 þ

XZ

i¼1

biPCi ð4Þ

http://waterwatch.usgs.gov/
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Fig. 2. Scatter plot between the power law recession flow coefficient k and past average discharge QN for the basin with USGS id 01586610 for N equal to (a) 6, (b) 20, (c) 45
and (d) 90.
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where bi is a constant and PCi is the i-th principal component. We
measured the strength of Eq. (4) in terms of coefficient of determi-
nation (R2

NPCZ). Note that in case of mutually dependent parame-
ters, the first few principal components explain much of the
variability. Here we set 92% variability criterion to choose the initial
principal components. The other analysis we decided to pursue is to
divide the dataset (W358) into two halves according to the R2

N

values, the upper half (U179) having basins with higher R2
N values

and the lower half (L179) having basins with lower R2
N values.

This was done to investigate how R2
NPCZ is influenced by the magni-

tude of R2
N. Subsequently, multiple linear regression analysis was

repeated using the initial principal components. Then for each data-
set, a multiple linear regression model (see Eq. (4)) was formed ran-
domly selecting 70% of the catchments for calibration and the rest
30% was kept for validation. This was done to study the robustness
of the regression models.
2.3. Identification of dominant parameters

Our main aim here is to find out the direction of influence of the
dominant catchment characteristics, therefore relative values of bi

coefficient of principal components have not been analyzed in this
study. Therefore, analysis was carried out to identify the dominant
parameters that control the value of R2

N following stepwise multi-
ple linear regression method. Step-wise multiple linear regression
uses an exhaustive method to identify the best model. This
approach uses pvalue (which is read from t distribution table, based
on the tscore and the degrees of freedom) criterion to judge whether
a predictor variable should be entered or removed from the model.
A predictor is added to the model if its pvalue < 0.05 and the predic-
tor is removed if its pvalue > 0.1.

The significant principal components (i.e. the components
affecting R2

N appreciably) were selected using student’s t test,
satisfying the following relationship: jtscorej > tcr , where tcr is the
critical tscore value, which was found from the degree of freedom
and for the significance level of e = 0.05. Note that the constant
term of the stepwise multiple linear regression was not included
in the analysis, as we were mainly concerned about the directions
of influences of the catchment characteristics. The relationship
between the principal components and the dominant catchment
characteristics was explored by investigating the principal compo-
nent transformation matrix:

PCi ¼
Xj¼18

j¼1

hjPj ð5Þ

A threshold |hj| > 0.1 was chosen to filter out important catch-
ment variables affecting each principal component. The threshold
was established to keep a maximum of 3–4 important catchment
parameters influencing a principal component. By limiting to 3–4
parameters, we intended to identify the dominant catchment
parameters. Also it should be noted that more importance was
given to the initial principal components in finding out the direc-
tion. Then the directions of their influence were noted.

3. Results and discussion

Analysis of the relationship between past discharge and the
recession coefficient k seems to suggest that k is indeed influenced
by past storage. The R2

N values obtained in this study (Table S1)
suggest that the influence of past storage over k is significant. In
particular, R2

N was observed to be appreciably high for lower val-
ues of N (6, 20 and 45) (Fig. 2). It was also observed that R2

N

decreases consistently with N, with the general order being
R2

6 > R2
20 > R2

45 > R2
90 for all but a few basins (for e.g., see Fig. 3). This

systematic pattern further confirms the earlier notion that the effect
of storage diminishes with time (Biswal and Nagesh Kumar, 2014a,
2014b). Our hypothesis therefore is that if R2

N value is higher, there
is more chance the basin releases significant amount of water after
N days during a recession event. In other words, R2

N represents the
water holding capacity of the basin.

Our investigation on how the catchment characteristics are
related with R2

N values yielded some interesting results. Table 2



Table 1
Catchment characteristics that are considered in this study.

Sl. no. (i) Catchment characteristic Description

1 AREA_SQ_KM Area of the Catchment in sq. km
2 PPTMAX_SITE Site average of maximum monthly precipitation (cm) from 2 km PRISM, derived from 30 years of record (1961–1990)
3 PET Mean-annual Potential Evapotranspiration (PET)
4 STREAMS_KM_SQ_KM Stream density, km of streams per watershed sq km
5 TOPWET Topographic wetness index, ln(a/S);where ‘‘ln’’ is the natural log, ‘‘a’’ is the upslope area per unit contour length and

‘‘S’’ is the slope at that point
6 CONTACT Subsurface flow contact time index. The subsurface contact time index estimates the number of days that infiltrated

water resides in the saturated subsurface zone of the basin before discharging into the stream
7 RUNAVE7100 Estimated watershed annual runoff, mm/year, mean for the period 1971–2000. Estimation method integrated effects

of climate, land use, water use, regulation, etc.
8 BAS01_FOREST Watershed percent ‘‘forest’’, 2001 era
9 PCT_1ST_ORDER Percent of stream lengths in the watershed which are first-order streams (Strahler order)

10 PERMAVE Average permeability (in./h)
11 BDAVE Average value of bulk density (grams per cubic centimeter)
12 OMAVE Average value of organic matter content (% by weight)
13 WTDEPAVE Average value of depth to seasonally high water table (feet)
14 ROCKDEPAVE Average value of total soil thickness examined (in.)
15 CLAYAVE Average value of clay content (%)
16 SANDAVE Average value of sand content (%)
17 ELEV_STD_M_BASIN Standard deviation of elevation (m) across the watershed from 100 m, National Elevation Dataset
18 SLOPE_PCT Mean watershed slope, percent. Derived from 100 m resolution, National Elevation Dataset, so slope values may differ

from those calculated from data of other resolutions
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shows R2
NPi values for the individual catchment parameters for

each N. Individual R2
NPi values were found to be falling in between

0 and 0.233 (Table 2). In most cases, we observed R2
NPi for N = 45 to

be generally higher than R2
NPi for any other N (see Table 2). This is

indeed interesting given the fact that R2
N is consistently higher for

N = 6. It can therefore be assumed that the influence of catchment
variables on R2

N is strong for N = 45. Our speculation is that for
N = 45 subsurface flow processes are simpler, and hence catchment
characteristics have a better control over R2

N. In other words, for
N = 6 flow processes may be more complex, characterized by
thresholds (Zehe and Sivapalan, 2008). We also checked how R2

N

values for N = 45 are spatially distributed over the 358 river basins
(Fig. 4). The redder points in Fig. 4 indicate higher R2

45 values and
greener points represent lower R2

45 values. It can be observed that
the north-western regions are dominated by higher R2

45 values, sup-
porting the notion that spatial variation of R2

N affects the value of
R2

N. It can also be noted that for most of the catchment parameters
p-value for the relationship between R2

N and the catchment param-
eter is less than 0.05 (see Table 2), which strengthens the notion that
R2

45 has physical bases.
Fig. 3. R2
N (the correlation coefficient between recession flow parameter k and QN)

decreases in general with the number of days (N). The graphs show four basins
(with their USGS ids) and their R2

N vs. N plots.
We measured the strength of Eq. (4) in terms of coefficient of
determination (R2

NPCZ), which was found to be appreciable consid-
ering the W358 dataset (Table S1 supplementary material). For
example, considering all the principal components (i.e. Z = 18),
the R2

NPCZ values were found to be 0.243, 0.277, 0.375 and 0.124,
respectively, for N = 6, 20, 45 and 90. Fig. 5 shows the relationship
between R2

NPCZ and Z for N = 45 (note that R2
NPCZ for N = 45 is more

than that of any other N value). Note that the first 7 principal com-
ponents explain 93.4% of the total variability (see Fig. 5). Therefore,
we have considered those 7 principal components in rest of our
analysis. It can be observed that with the first 7 principal compo-
nents only R2

NPCZ value is close to the maximum value for R2
NPCZ

(i.e. R2
NPCZ for Z = 18), which justifies our assumption that the prin-

cipal components with Z greater than 7 are dominated by noise.
Therefore, for the subsequent analysis only first 7 principal compo-
nents were considered. An intriguing observation was made while
investigating how the value of R2

NPCZ for U179 is different from that
of L179. The multiple linear regression analysis reveals that R2

NPCZ

for the dataset U179 is consistently higher than that of the L179.
For example, R2

NPCZ = 0.570 for U179 and 0.252 for L179 when
N = 45, which implies that the catchment parameters are better
indicative of a basin’s behavior when the basin’s R2

45 is higher.
This may be because some other physical factors that have not been
considered in this study dominate in low R2

45 basins.
Table 3 shows the results from the multiple linear regression

models for all the three datasets (W358, U179 and L179) for N = 45
(note that for R2

NPCZ is generally highest for N = 45) for both cali-
bration and validation datasets. For the W358 dataset R2

NPC7 values
obtained during validation (considering 30% of the basins) are
quite close to those obtained during calibration (randomly consid-
ering 70% of the basins), except for N = 90 where both calibration
and validation results seem to suggest no significant relationship.
The low value of R2

NPC7 for N = 90 might be an indication that the
influence of basin storage on streamflows becomes negligible after
90 days. Similarly, the results obtained by separately analyzing
U179 and L179 datasets are given in Table 3 (also see Figs. 6 and
7). The general pattern observed for all datasets except L179 is:
R2

45PC7 > R2
20PC7 > R2

6PC7 > R2
90PC7. The lower R2

NPC7 values (Tables
3) for N = 6 indicate that recent storage being discharged into
streams from the subsurface systems is influenced less by catch-
ment characteristics. Note that particularly for N = 45, R2

NPC7 for
calibration and validation for U179 are 0.521 and 0.643,



Table 2
Individual correlation coefficient (R2

NPi) and p values between streamflow parameter R2
N and the catchment characteristics for N = 6, 20, 45, and 90.

Catchment characteristics R2
NPI p-value

N = 6 N = 20 N = 45 N = 90 N = 6 N = 20 N = 45 N = 90

AREA_SQ_KM 0.005 0.007 0.010 0.000 0.181 0.120 0.057 0.877
PPTMAX_SITE 0.071 0.127 0.233 0.025 0.000 0.000 0.000 0.003
PET 0.028 0.003 0.007 0.017 0.002 0.266 0.108 0.013
STREAMS_KM_SQ_KM 0.012 0.027 0.031 0.002 0.037 0.002 0.001 0.401
TOPWET 0.060 0.049 0.028 0.001 0.000 0.000 0.001 0.638
CONTACT 0.027 0.025 0.012 0.002 0.002 0.003 0.035 0.383
RUNAVE7100 0.068 0.098 0.146 0.016 0.000 0.000 0.000 0.015
PCT_1ST_ORDER 0.067 0.063 0.037 0.000 0.000 0.000 0.000 0.951
BAS01_FOREST 0.027 0.007 0.000 0.003 0.002 0.113 0.689 0.320
PERMAVE 0.001 0.004 0.035 0.008 0.555 0.243 0.000 0.089
BDAVE 0.035 0.049 0.058 0.014 0.000 0.000 0.000 0.026
OMAVE 0.031 0.046 0.064 0.006 0.001 0.000 0.000 0.155
WTDEPAVE 0.017 0.037 0.051 0.010 0.013 0.000 0.000 0.063
ROCKDEPAVE 0.001 0.008 0.012 0.002 0.485 0.098 0.040 0.395
CLAYAVE 0.017 0.001 0.013 0.000 0.015 0.557 0.030 0.885
SILTAVE 0.010 0.018 0.013 0.019 0.056 0.012 0.033 0.009
ELEV_STD_M_BASIN 0.085 0.081 0.055 0.000 0.000 0.000 0.000 0.814
SLOPE_PCT 0.063 0.066 0.052 0.000 0.000 0.000 0.000 0.848

0 250 500 750 1,000125
Miles

R245
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Fig. 4. Spatial distribution of R2
45 values of all the study basins. It can be observed that higher R2

45 values (redder dots) are concentrated in the north western coast of the US. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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respectively, which is quite significant. This may be indicating that
at N = 45 days the selected catchment characteristics have maxi-
mum control over a basin’s k-past storage relationship.

Now the question arises as to the direction of influence of catch-
ment characteristics on the value of R2

N. Stepwise multiple linear
regression method revealed that the following principal compo-
nents dominate the relationship between k and average discharge:
PC1, PC2, PC3, PC6 and PC7 for N = 6, 20, 45 and 90. Table 4 lists the
dominant physical parameters (obtained from the principal com-
ponents) and their direction of influences. The parameters are
sorted according to their degree of influence (the highest on the
top). It can be noticed that topographical parameters have the
strongest influence on R2

N. Particularly, mean watershed slope
(SLOPE_PCT) and standard deviation of elevation
(ELEV_STD_M_BASIN) were found to influence R2

N in positive
direction. Also, SLOPE_PCT was found to have better control over
R2

N than standard deviation of elevation (ELEV_STD_M_BASIN),
although individual coefficient of determination between R2

N and
ELEV_STD_M_BASIN is slightly higher than that of SLOPE_PCT.
ELEV_STD_M_BASIN and SLOPE_PCT affecting R2

N positively proba-
bly suggest that water holding capacity is more for a mountainous
basin. Among soil parameters, permeability (PERMAVE) which
reflects the ease at which movement of water takes place in the
soil mass was found to be the most significant parameter. The con-
sistently positive influence of percentage of organic matter
(OMAVE) suggests that the organic matter plays a far more domi-
nant role in controlling the value of R2

N than the other soil proper-
ties, such as average value of clay content in percentage (CLAYAVE)
and average value of sand content in percentage (SANDAVE).
Among streamflow parameters, estimated watershed annual



Fig. 5. The plot between cumulative variance explained by the principal compo-
nents and the number of initial principal components Z for the study basins. It
should be noted that the initial 7 principal components are able to explain 93.4% of
the total variability.
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runoff (RUNAVE7100) influences R2
N in positive direction. This indi-

cates that water holding capacity is higher for wet basins, which is
again supported by the observation that maximum precipitation
(PPTMAX_SITE) also influences R2

N positively. Interestingly, subsur-
face flow contact time index (CONTACT) and percentage of clay
content (CLAYAVE) are negatively affecting R2

N. The variable Area
(AREA_SQ_KM) influences R2

N in both the directions, which can
be an indication that it may not have significant effect on R2

N.
Interestingly, the directions of influences of some of the physical
parameters were found to be reversed for the case of R2

90. This find-
ing can be attributed to the fact that R2

90 has very little relationship
with the catchment variables (R2

90PC7 = 0.029 during validation in
case of U179). Also, unlike for other N values, the directions of influ-
ence of CONTACT and PERMAVE for N = 90 are positive and negative,
respectively. Detail explanations for the roles of different parameters
are hard to be made. For example, one would expect PERMAVE to
influence R2

N negatively as increase in permeability would help in
faster draining of water. This might be due to nonlinear interaction
among different catchment characteristics.

The analyses performed in this study might have been affected
by various errors and uncertainties. It should also be noted that
past storage will only have a limited effect on k as total drainable
storage at the beginning of the recession event, which supposedly
controls the value of k (Biswal and Nagesh Kumar, 2015), will be
composed of carried-over past storage as well as storage built up
during the associated rainfall event. The main source of errors
might be the assumption that the average discharge during a time
period represents storage state of the basin during that period,
because, as the study itself points out, the storage–discharge rela-
tionship can vary across events. Moreover, surface flow mechanism
might be different from subsurface flow mechanism (e.g. Biswal
and Marani, 2014; Biswal and Nagesh Kumar, 2014a). Therefore,
if a significant portion of streamflows during a time period is
Table 3
Linear regression R2

NPC7 summary of the multiple linear regression models of the
streamflow parameter (R2

N) with 7 initial principal components for the three datasets
(W358, L179 and U179) during calibration (Cal) and validation (Val).

Streamflow parameter Dataset W358 Dataset L179 Dataset U179

Cal Val Cal Val Cal Val

R2
6 0.221 0.137 0.289 0.143 0.441 0.395

R2
20 0.220 0.273 0.295 0.172 0.449 0.475

R2
45 0.302 0.440 0.339 0.067 0.521 0.643

R2
90 0.113 0.091 0.243 0.144 0.192 0.029
composed of surface flows, then the average discharge during the
period might not very well represent storage state for that time
period. Furthermore, although to a lesser extent, parameters a
and k might have been associated with errors as well, mainly
because discharge during recession periods is quite sensitive to
observational and numerical errors. Finally, these analyses are
based on the assumption that recession events occur randomly,
such that the relationship between k and past average discharge
for a recession event is not affected by the seasonal patterns in dis-
charge time series data. This assumption might not have been
strictly correct for all the cases. For example, the north-west coast
basins witness higher R2

N values, which might be due to the fact
that the region has a non-seasonal rainfall pattern.

Nevertheless, the results obtained in this study seem to hold
significant theoretical and practical relevance. First of all, our study
puts the finding by Biswal and Nagesh Kumar, 2014b in a more for-
mal context by explicitly analyzing the physical bases of the
0
0 0.2 0.4 0.6

R2 90
*

R2
90

Fig. 6. (a) R2
6* (predicted) vs. R2

6 (observed) for U179 dataset, (b) R2
20* (predicted) vs. R2

20

(observed) for U179 dataset, (c) R2
45* (predicted) vs. R2

45 (observed) for U179 dataset, and
(d) R2

6* (predicted) vs. R2
6 (observed) for U179 dataset.



Fig. 7. Plot between R2
NPC7 (multiple linear regression R2 using 7 initial principal

components) vs. N for the three datasets (W358, L179 and U179).

Table 4
Directions of influence of the dominant catchment characteristics on recession flow
parameter R2

N.

Positive Negative

R2
6 SLOPE_PCT CLAYAVE

ELEV_STD_M_BASIN AREA_SQ_KM
PERMAVE CONTACT
RUNAVE7100
PPTMAX_SITE
OMAVE
AREA_SQ_KM

R2
20 SLOPE_PCT CLAYAVE

ELEV_STD_M_BASIN AREA_SQ_KM
PERMAVE CONTACT
RUNAVE7100
PPTMAX_SITE
OMAVE
AREA_SQ_KM

R2
45 SLOPE_PCT CLAYAVE

ELEV_STD_M_BASIN AREA_SQ_KM
PERMAVE CONTACT
RUNAVE7100
OMAVE
PPTMAX_SITE
AREA_SQ_KM
CONTACT

R2
90 CLAYAVE SLOPE_PCT

AREA_SQ_KM ELEV_STD_M_BASIN
CONTACT PERMAVE

RUNAVE7100
PPTMAX_SITE
OMAVE
AREA_SQ_KM
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relationship between the dynamic parameter k and past average
discharge. Using measurable catchment characteristics and by
applying multiple regression models, our study indicates that read-
ily available physical parameters can be used to predict R2

N, the
strength of the relationship between past storage and the recession
coefficient k, especially when the R2

N is high. Although R2
N does not

provide any direct information on the storage–discharge relation-
ship, its value seems to indicate the basin’s ability to store water.
In future, the analytical approach proposed in this study might
help in constructing storage–discharge relationship for natural
basins utilizing past discharge data for various practical applica-
tions water resources planning and management, including predic-
tion of drought flows and baseflow separation. Moreover, the
analysis can be improved further by considering other relevant fac-
tors (for e.g. subsurface flow path structure) which we have not
considered. For example, the effect of seasonal patterns can be
eliminated to some extent by introducing numerical corrections
(see for e.g., Kobayashi and Yokoo, 2013; Teuling et al., 2010;
Yokoo et al., 2014).
4. Conclusions

Our results seem to suggest that, indeed, the relationship
between the recession coefficient k and past average discharge,
representative of past storage state, has physical origins. That
means it is possible to predict R2

N by just considering the catch-
ment parameters. Particularly, it was found that for the U179 data-
set the predicted R2

45PC7 is 0.643, which is quite appreciable. It was
also found out that some of the catchment parameters influence
R2

N in positive direction while others in negative direction. This
will help towards reduction in the complexity of models for study-
ing recession flows, and for studying the functioning of river
basins. This will also be consistent with the recent efforts in
addressing a number of concerns associated with the development
of highly complex hydrologic models (e.g. too many parameters,
too much data requirement, lack of generalization, etc., for details
see Beven, 2012; Jakeman and Hornberger, 1993; Sivakumar,
2008a,b; Hrachowitz et al., 2013), especially within the context
of the dominant processes concept (DPC) for simplification and
generalization in hydrologic modeling practice (e.g. Grayson and
Blöschl, 2001; Sivakumar, 2008b, 2004). The results from the pre-
sent study have important implications for an easier understand-
ing of a basin’s storage–discharge relationship and, therefore,
more efficient management of water resources (e.g. prediction of
drainage from aquifers just from catchment characteristics).
Efforts to further advance the present analysis towards an even
better quantification of the relationship between recession flow
properties and past storage are continuing by searching for new
analytical methods and identifying meaningful physical parame-
ters that were not considered in this study.
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Appendix A. Notations

Q: discharge at the outlet at time t.
a: the exponent of the power law relationship between –dQ/dt

and Q.
k: the coefficient of the power law relationship between –dQ/dt

and Q.
ar: is the representative a for a basin.
N: is equal to (N00 + N0)/2, where N00 and N0 are the number of

days before the recession event.
QN: is the average discharge from the period N00 and N0 before

the recession event.
R2

N: the coefficient of determination of the relationship between
k and QN.

Pi: the ith physical parameter.
R2

NPi: the coefficient of determination of the relationship R2
N and

the ith physical parameter.
PCi: the ith principal component.
R2

NPCZ: the coefficient of determination for multiple linear
regression relationship between equation R2

N and the first Z prin-
cipal components.
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jhydrol.2015.06.
032.
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