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Entangled states are undoubtedly an integral part of various quantum information processing
tasks. On the other hand, absolutely separable states which cannot be made entangled under any
global unitary operations are useless from the resource theoretic perspective, and hence identify-
ing non-absolutely separable states can be an important issue for designing quantum technologies.
Here we report that nonlinear witness operators provide significant improvements in detecting non-
absolutely separable states over their linear analogs, by invoking examples of states in various di-
mensions. We also address the problem of closing detection loophole and find critical efficiency of
detectors above which no fake detection of non-absolutely separable (non-absolutely positive partial
transposed) states is possible.

I. INTRODUCTION

With the advent of quantum information science,
shared entanglement [1] turns out to be one of the
main resource for quantum technologies [2] which in-
clude quantum key distribution [3], dense coding [4],
teleportation [5], clock synchronisation [6], remote state
preparation [7], measurement-based computation [8] to
name a few. In the theory of entanglement, develop-
ing efficient methods for the generation, detection and
preservation of entangled states is an important en-
terprise [1, 9, 10] while finding unprofitable resources
like unentangled or separable states which can be de-
composed in terms of a convex combination of pure
product states [13] also plays a crucial role. Over the
years, several criteria have been proposed for identify-
ing entangled states although according to the compu-
tational complexity class, the so-called entanglement-
separability problem is NP-hard [11, 12]. A prominent
mathematical detection method is the partial transposi-
tion map, a necessary and sufficient criterion for a bi-
partite system having dimensions up to six, which is
through the existence of all positive but not completely
positive maps [14, 15].

Apart from these theoretical endeavors, entangle-
ment witness (EW) provides a powerful tool in the do-
main of identification of entangled states. Since the set
of the separable state is convex and compact, the Hahn
Banach theorem ensures that there exists a witness op-
erator for each entangled states [15, 16]. EWs are Her-
mitian operators, whose expectation value with respect
to all separable states is non-negative while it gives neg-
ative value for at least one entangled state. Importantly,
they provide an efficient method of detecting entangle-
ment in laboratories via local measurements, thereby
establishing themselves as useful [17].

As far as production of entanglement is concerned,
separable states can be made entangled by suitable joint
unitary operations [1]. On the contrary, there exists
a class of separable states which cannot be made en-
tangled by the application of any joint unitary gate,

known as absolutely separable (AS) states or separa-
ble states from spectrum [18–26]. In a similar fashion,
absolutely positive partial transposed (PPT) states are
introduced. Although beyond qubit-qutrit states, PPT
and separability are not equivalent due to the existence
of PPT bound entangled states [42, 43], interestingly, it
was found that absolute-PPT and AS are same in these
dimensions [21, 23]. From the perspective of resource
theory, AS states or absolute-PPT state are a kind of free
or useless states and hence detecting them are signifi-
cant to identify resources. In the recent past, witnesses
for non-AS states have been proposed in a similar spirit
of linear EWs [24].

In the domain of detecting entanglement, another in-
teresting twist comes from the possibility of improving
linear witness operators by finding the way of obtaining
nonlinear EWs [27–36]. It was shown that every EW can
be upgraded by adding nonlinear term(s) and the novel
technique enables us to show that the set of separable
states cannot have facets [28], thereby shed light in the
geometry of quantum states [37] (see recent results on
the boundary of the set of AS states [38, 39]).

In the present work, we explore nonlinear improve-
ment of linear witnesses for determining non-AS states.
To this end, some expectation values in quadratic form
have to be subtracted from the linear witness operators
by maintaining their essential properties. We consider
two ways of modifying linear witnesses [27] – one is
by subtracting a single while in the other case, terms
corresponding to a full basis set are subtracted. The
method is demonstrated by considering a class of two-
qubit, qubit-qudit, and two-qutrit states. In all these
cases, we show that nonlinear witnesses perform bet-
ter for detecting non-AS or non-absolutely PPT states
in comparison with the linear ones. Specifically, in
higher dimensions, we propose a class of absolutely
separable as well as absolutely PPT states by mixing
bound entangled states with white noise and construct
nonlinear entanglement witnesses explicitly to detect
non-absolutely PPT states. Towards obtaining the re-
sults, we also provide classes of global unitary opera-
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tors which can transform PPT states to the one having
non-positive partial transposition (NPPT).

Finally, we discuss the change in behavior of these
nonlinear witnesses for non-AS states in a more realistic
condition i.e., under inefficient detectors. Specifically,
we consider the scenario when the detectors may not
click indicating lost events. Addressing detection loop-
hole in Bell test is an old problem [45]. In the context of
EW, critical detector efficiency above which no fake de-
tection of entanglement is possible was derived in Ref.
[44]. Recently similar conditions for closing detection
loophole in the context of nonlinear and measurement
device-independent EWs are reported [35, 46]. In the
context of identification of non-AS states, we also show
that nonlinear witnesses provide substantial improve-
ments in critical detector efficiencies than that obtained
via linear witness operators.

We organize the paper in the following way. In Sec.
II, the mathematical condition for absolutely separable
as well as absolutely PPT states and nonlinear entangle-
ment witness operators are presented. To demonstrate
the power of nonlinear witnesses, a class of two-qubit
non-AS states is considered in Sec. III while the classes
of non-absolutely PPT states are constructed and their
identification methods via nonlinear witnesses are ex-
hibited in Sec. IV. In the next section (Sec. V), we pro-
vide a method to overcome inefficiencies in detection
procedure and finally we conclude in Sec. VI.

II. PRELIMINARY CONCEPTS, DEFINITIONS AND
NOTATIONS

Before going into the main results, we first present
the known criteria for detecting absolutely separable
and PPT states. Let us also briefly introduce the non-
linear witness operators for the set of non-absolutely
separable as well as non-absolutely PPT states.

A. Criteria for absolutely separable and positive partial
transpose states and their witness operators

A subset of separable states, which can not be made
entangled using any global unitary operation are called
absolutely separable states and similarly absolutely
PPT state are those which remains PPT even after ap-
plying any global unitary operation.

If a bipartite state ρAB in 2 ⊗ n dimension [47] has
eigenvalues λ1,λ2, · · · , λ2n in descending order, the
condition for the absolute separability reads as [21]

λ1 − λ2n−1 − 2
√

λ2n−2λ2n ≤ 0. (1)

Interestingly, note that in 2⊗ n, the set containing ab-
solutely PPT states coincides with the set of absolutely
separable states [23] which is not true for the partial
transposition criteria in the entanglement-separability
paradigm for n > 3.

On the other hand, in higher dimensions, i.e., in 3⊗n,
let the eigenvalues of ρAB be λ1,λ2, · · · , λ3n organized
in the descending order. The states are absolutely PPT
[21], when they satisfy the following conditions:∣∣∣∣∣∣

2λ3n λ3n−1 − λ1 λ3n−3 − λ2
λ3n−1 − λ1 2λ3n−2 λ3n−4 − λ3
λ3n−3 − λ2 λ3n−4 − λ3 2λ3n−5

∣∣∣∣∣∣ ≥ 0, (2)

and ∣∣∣∣∣∣
2λ3n λ3n−1 − λ1 λ3n−2 − λ2

λ3n−1 − λ1 2λ3n−3 λ3n−4 − λ3
λ3n−2 − λ2 λ3n−4 − λ3 2λ3n−5

∣∣∣∣∣∣ ≥ 0. (3)

Notice that there exists no simple criteria for absolutely
separable states in higher dimensions. Moreover, with
the increase of dimensions, finding all the eigenvalues
for checking the above criteria requires full tomogra-
phy [48] which becomes cumbersome. Hence the wit-
ness operators can play a crucial role to detect non-
absolutely PPT states, both theoretically and experi-
mentally.

B. Nonlinear witnesses for non-absolutely PPT states

In functional analysis, a celebrated theorem, known
as Hahn Banach separation theorem, states that if S1
and S2 be two nonempty, convex disjoint subsets of a
normed linear space V, there is a hyperplane that sep-
arates S1 and S2 [40]. Moreover, if A and B are two
nonempty disjoint subsets of a normed linear vector
space V, where one of them, say, A is convex, there ex-
ists a hyperplane, serving as an witness operator which
can separate the entire subset A from any point of B.
Since separable states as well as absolutely separable
states both form compact and convex sets, a Hermitian
operator, W for which Tr(σW) ≥ 0 for all separable
states (absolutely separable states), σ, and Tr(ρW) < 0
for at least one entangled state (non-AS state), ρ, is
called the linear witness operator. They are linear wit-
nesses since linear expression of mean values of W is
involved in the definition. Note also that the set of
absolutely PPT states is also compact, and hence one
can construct witness operators which can detect non-
absolutely PPT states. Given two EWs, W1 and W2, W2
is said to be finer than W1 if it can detect all states which
are also identified by W1 while an EW is called optimal
if there is no other witness finer than it [41].

On the other hand, it was shown that the linear wit-
ness operators can always be upgraded according to its
capability of identifying non-separable states by intro-
ducing nonlinearity [27, 28]. For example, let us con-
sider states whose entanglement can be detected by
NPPT. In this case, non-separability can be witnessed
by |φ〉〈φ|TB where |φ〉 is the eigenvector corresponding
to the negative eigenvalue of ρTB . As prescribed in [27],
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one can introduce nonlinearity in the following ways.

F1(ρ) = 〈|φ〉〈φ|TB〉 − 1
S(ψ)

〈XTB〉〈(XTB)†〉 (4)

and

F2(ρ) = 〈|φ〉〈φ|TB〉 −
k

∑
i=1
〈XTB

i 〉〈(XTB
i )†〉 (5)

where all the expectation values are taken with respect
to the given state ρ. Here in Eq. (4), X is given by
|φ〉〈ψ|, where |ψ〉 is any arbitrary state and S(ψ) is the
square of the largest Schmidt coefficient of the state |ψ〉
while in Eq. (5), Xi is defined by |φ〉〈ψi| (i = 1, 2, · · · , d)
with an orthonormal basis being {|ψi〉}.

Let us now adopt the similar procedure to detect non-
absolutely separable (non-absolutely PPT) states, say, ρ′

which can be made entangled from a separable (PPT)
one by global unitary operator U [24]. In this situation,
to detect ρ′, the witness operator, |φ〉〈φ|TB should be
modified as U†|φ〉〈φ|TB U, where |φ〉 is the eigenvector
corresponding to the negative eigenvalue of (Uρ′U†)TB .

Let us now incorporate the nonlinear terms into
witness operators for determining non-AS (non-PPT)
states. Like Eqs. (4) and (5), the detection method for
non-AS (non-absolutely PPT) states take the form as

F1(ρ′) = 〈U†|φ〉〈φ|TB U〉 − 1
S(ψ)

〈U†XTB U〉〈(U†XTB U)†〉,

F2(ρ′) = 〈U†|φ〉〈φ|TB U〉

−
k

∑
i=1
〈U†Xi

TB U〉〈(U†Xi
TB U)†〉, (6)

where XTB is replaced by U†XTB U and all the expecta-
tion values have to be taken with respect to the given
state ρ′. As we will show that in the detection process
of non-absolutely separable (PPT) states, finding a non-
trivial global U is, in general, difficult.

III. NONLINEAR IMPROVEMENT IN WITNESSING
TWO-QUBIT NON-ABSOLUTELY SEPARABLE STATES

We will now explicitly show advantages of nonlinear
witness over their linear counterparts by constructing
them and by invoking a class of two-qubit states.

We now use the criteria, given in (1) to find the range
of the state parameter for which the state is absolutely
separable. To illustrate the method, let us consider a
generalized Werner state [13],

ρgW = p|ξ〉〈ξ|+ 1− p
4

I4×4. (7)

where |ξ〉 = cos α|00〉 + eiφ sin α|11〉, p is the mixing
parameter and I4×4 is the identity operator with the
subscript representing the size of the matrix, thereby
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FIG. 1. (Color online.) Witness operators, 〈W〉, vs. p of the
generalized Werner state, ρgW in Eq. (7). Solid (blue), dashed
(red) and dotted (green) lines correspond to nonlinear witness
operators, F2, F1 and linear witnesses respectively. Here α =
π/12 in |ξ〉 and θ = 0.352 involved in the witness operator,
|φ〉, in radians. Both the axes are dimensionless.

indicating the dimension of the system. Following the
condition written in (1) with 2n = 4, we find that ρgW is
absolutely separable in the range 0 ≤ p ≤ 1

3 which
is independent of α and φ, while the state is entan-

gled when
1

1 + 2 sin 2α
< p ≤ 1. Except α = π/4,

there exists a range of p in which the state is sepa-
rable but not absolutely separable. For example, for
α = π

12 , i.e., sin 2α = 1
2 , the state ρgW is entangled with

1
2
< p ≤ 1 and separable but not absolutely separable

in 1/3 < p ≤ 1/2. It implies that there exists a global
unitary operator which can convert the state ρgW to an
entangled state (or, NPPT in 2⊗ 2 ), say ρe in the range
1
3 < p ≤ 1

1+2 sin 2α .
Let us consider a global unitary operator, given by

U =
1√
2


1 0 0 1
0
√

2 0 0
0 0

√
2 0

−1 0 0 1

 . (8)

After applying this unitary operator, ρgW becomes ρe
for p > 0.366, i.e. when 0.366 < p < 0.5, the state is
entangled although it was initially separable, i.e., PPT.

By choosing |φ〉 = 1√
2
(|01〉 + |10〉), we can show

that U†|φ〉〈φ|TB U can detect the ρgW as non-absolutely
separable in the range 0.366 < p < 0.5. Let us take
|φ〉 = cos θ|01〉+ sin θ|10〉, (0 ≤ θ ≤ π) and in that case,
U†|φ〉〈φ|TB U can detect the state ρgW as non-absolutely

separable in the range
1

1 +
√

3 sin 2θ
< p < 0.5, with

the condition being

〈W(ρ1)〉 =
−
√

3p sin 2θ − p + 1
4

< 0. (9)

To make a relatively weaker witness than optimal
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with θ = π/4, consider any value of θ between π/10.21
and π/2.4872, to detect the range for which the state
ρgW is non-absolutely separable. Let us now introduce
nonlinearity to improve the range of detection. By con-
sidering |ψ〉 = |01〉, and by using Eq. (6), we can reach
to the condition for the state ρgW to be non-absolutely
separable if

F1
|01〉(ρ1) =

−
√

3p sin 2θ − p + 1
4

− (cos θ(1− p)−
√

3p sin θ)2

16
< 0,

(10)

while using |ψ〉=|10〉, the condition gets modified as

F1
|10〉(ρ1) =

−
√

3p sin 2θ − p + 1
4

− (sin θ(1− p)−
√

3p cos θ)2

16
< 0.

(11)

Instead of product states, if we use entangled state
as |ψ〉 = 1√

2
(|01〉 ± |10〉), we cannot provide any ad-

vantage except for some range of θ. On the other
hand, for obtaining F2, we choose an orthonormal ba-
sis, {|ψ〉i = |00〉, |01〉, |10〉, |11〉}, and obtain the criteria
for witnessing non-absolutely separable state as

F2(ρ1) =
−
√

3p sin 2θ − p + 1
4

− (cos θ(1− p)−
√

3p sin θ)2

16

− (sin θ(1− p)−
√

3p cos θ)2

16
< 0.

(12)

Notice that instead of the computational basis, {|ψi〉},
if we take the Bell basis (i.e., entangled states as basis
elements), we reach to the same condition as above. Fig.
1 depicts the comparison between linear and two kinds
of nonlinear witness operators in case of detecting non-
absolutely separable state, ρgW for fixed values of α and
θ.

IV. CONSTRUCTION OF NON-ABSOLUTELY PPT
STATES WITH THE CONJUNCTION OF PPT BOUND

ENTANGLED STATES AND THEIR WITNESSES

In this section, we show the usefulness of nonlinear-
ity in witness operators for recognizing non-absolutely
separable as well as PPT states in higher dimensions. To
illustrate this, we construct absolutely separable (PPT)
states by mixing white noise with PPT bound entangled
states in 2⊗ 4 and 3⊗ 3. Such examples also shed light
on the boundaries of the set of PPT bound entangled
states and absolutely PPT states.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

p

b

Absolute separable boundary

PPT boundary for U

PPT boundary for U1

FIG. 2. (Color online.) Mixing parameter, p against b in

ρ2 = pρb +
1− p

8
I8×8 in Eq. (13). Circles (red), squares

(blue) and triangles (green) represent the boundaries of ab-
solutely separable states and non-AS states, PPT states and
NPPT states after applying unitary operators U(π/3, π) and
U1 in Eqs. (15) and (23 respectively. Both the axes are dimen-
sionless.

1. Witnessing non-absolutely separable states via PPT bound
entangled states

In 2⊗ 4 system, let us concentrate on the mixture of
the PPT bound entangled state with white noise, given
by

ρ2 = pρb +
1− p

8
I8×8, (13)

where ρb is the bound entangled state [42] represented
as

ρb =
1

7b + 1



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0
1 + b

2
0 0

√
1− b2

2
b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0

√
1− b2

2
0 0

1 + b
2


,

(14)
with b ∈ [0, 1]. Except for b = 0, 1 where ρb is separa-
ble, it is PPT bound entangled. The condition for this
state to be absolutely separable, thereby absolutely PPT
in this case is given by (following inequality (1) with
2n = 8), λ1 − λ7 − 2

√
λ6λ8 ≤ 0, where λis are eigen-

values of ρ2 in descending order. In Fig. 2, circles indi-
cates the boundary of absolutely separable and non-AS
states in the (b, p)-plane and hence the region below the
boundary represents the absolute separability or abso-
lute PPT of ρ2. Moreover, we find that ρ2 is always PPT
for any values of b and p and therefore, it is important
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to identify the states lying above the boundary are non-
AS states which can be converted to NPPT states with
the help of global unitary operators. For example, we
consider a global unitary operator, U, given by

U(φ1, φ2) = a1 [σx ⊗ σy ⊗ σz] + a2 [σy ⊗ σz ⊗ σx]

+ a3 [σz ⊗ σx ⊗ σy] (15)

where σ’s are Pauli spin matrices with some parameters
a1, a2 and a3, such that a2

1 + a2
2 + a2

3 = 1. We parametrize
them as a1 = cos φ1, a2 = sin φ1 sin φ2 and a3 =
sin φ1 cos φ2, 0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ 2π. Taking φ1
and φ2 as π/3 and π respectively, we observe that some
non-AS states become NPPT which are marked in Fig.
2 by squares. We observe that there still exists some
non-absolute PPT states (lying between the envelopes
of circles and squares) which we cannot make NPPT by
this unitary operator.

0.2 0.4 0.6 0.8 1.0
p

0.05

0.10

<W >

FIG. 3. Witness operators with p for ρ2 in Eq. (13). Choices
of {θi}s in |φ′〉 are mentioned in the text. Here b = 0.7. All
other specifications are same as in Fig. 1. Both the axes are
dimensionless.

At this point, it should be noted that different values
of b require different witnesses to detect the state
properly. Let us illustrate the entire process for b = 0.7.
We find that W = U(π/3, π)†|φ〉〈φ|TB U(π/3, π)
can detect ρ2 as non-AS state, when 0.62 < p ≤ 1
as shown in Fig. 3. Here |φ〉 is the column vector
(−0.13348, 0.67743, −0.09738, 0.02271, 0.00333, 0.04054,
− 0.71427, 0.03788)T . It is the best linear witness op-
erator for b = 0.7 and for a given U(π/3, π), since
W constructed by using |φ〉 can detect all the non-AS
states when p ∈ (0.62, 1].

Let us now take a general |φ′〉 =
(sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6 sin θ7,
sin θ1 sin θ2 sin θ3 sin θ4 sin θ5 sin θ6 cos θ7, sin θ1 sin θ2
sin θ3 sin θ4 sin θ5 cos θ6, sin θ1 sin θ2 sin θ3 sin θ4 cos θ5,
sin θ1 sin θ2 sin θ3 cos θ4, sin θ1 sin θ2 cos θ3, sin θ1 cos θ2,
cos θ1)

T with 0 ≤ θi ≤ π, i = 1, . . . 6 and
0 ≤ θ7 ≤ 2π. In case of linear witness operator,
U(π/3, π)†|φ′〉〈φ′|TB U(π/3, π) can also detect ρ2 as
non-AS state in some range of p depending on the
parameter values involved in |φ〉. However, we can in-
troduce nonlinearity to improve the range of detection.

For this purpose, we consider |ψ〉= 1√
2
(|00〉 + |10〉) for

F1-type of nonlinear witness operator and an orthonor-
mal basis {|00〉, |01〉, |02〉, |03〉, |10〉, |11〉, |12〉, |13〉}
for F2. Now, using Eq. (6), and choosing
θ1 = 2.07345, θ2 = 2.36710, θ3 = 1.5128, θ4 =
1.508, θ5 = 1.5382, θ6 = 1.7109, θ7 = 0.19455 in |φ〉
(where all values are in radians), we observe a clear
improvement over linear witness operators (see Fig. 3).

Remark 1. The similar method can also be applied for
other values of b.

Remark 2. For the clear demonstration of the utility
of nonlinear witness operator, we choose a set of {θi}.
Different values of {θi} lead to a qualitatively similar
result.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4

p

b

Absolute PPT boundary

PPT boundary for U

PPT boundary for U1

FIG. 4. The mixing parameter, p, with respect to b in the state,
ρ3 in Eq. (16). Here we choose U(π/18, 5π/6) and U1 as
given in Eqs. (18) and (24). All other specifications are same
as in Fig. 2.

2. Detecting non-absolute PPT states in 3⊗ 3

Let us move to an example of a class of two-qutrit
state. This example is different than the examples con-
sidered before since in 3⊗ 3, the set of absolutely sepa-
rable states and absolutely PPT states are different and
we concentrate on the detection of non-absolutely PPT
states. In this purpose, let us consider a state

ρ3 = pρ′b +
1− p

9
I9×9, (16)

where ρb [43] is given by

ρ′b =
2
7
|ψ̃〉〈ψ̃|+ b

7
σ+ +

5− b
7

σ−. (17)

Here |ψ̃〉 = 1√
3
(|00〉+ |11〉+ |22〉), σ+ =

1
3
(|01〉〈01|+

|12〉〈12|+ |20〉〈20|), and σ− =
1
3
(|10〉〈10|+ |21〉〈21|+

|02〉〈02|). The state ρ′b is PPT for 1 ≤ b ≤ 4, and so
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we confine in this range of b. By using inequalities, (2)
and (3), we provide the range of b and p for which the
state ρ3 is absolutely PPT (see the red circles in Fig. 4

for the boundary of absolutely PPT and non-absolutely
PPT states). Like Eq. (15), the unitary operator in this
case reads as

U(φ1, φ2) = cos φ1[σx ⊗ σy ⊗ σz]

+ sin φ1 sin φ2[σy ⊗ σz ⊗ σx]

+ sin φ1 cos φ2[σz ⊗ σx ⊗ σy]⊕ [1], (18)

where [1] is a 1× 1 matrix with entry 1. A unitary oper-
ator of this class, specifically, U(π/18, 5π/6), is capable
to make non-absolutely PPT states to NPPT for some re-
gion in the (b, p)-plane as depicted by squares in Fig. 4.
Notice that we require different unitary operator if the
non-absolutely PPT states belonging to the region be-
tween circles and squares have to make NPPT (as also
seen in Fig. 2).

Like in the previous example, we fix b = 1.5.
Let us first construct a linear witness opera-
tor, W = U(π/18, 5π/6)†|φ〉〈φ|TB U(π/18, 5π/6),
which detects the state ρ3 as non-absolutely PPT
for 0.6 < p ≤ 1. In this case, |φ〉 = (−0.4476 −
0.004054i, −0.0103 − 0.009966i, −0.001158 +
0.3953i, 0.02944 − 0.04832i, 0.0003527 −
0.001285i, −0.05052 + 0.01027i, 0.000449 −
0.3918i, −0.0478− 0.03061i, 0.6933)T .

To portray the power of nonlinear witness op-
erator, let us choose |φ′〉 = (p1 + ip2, −0.0103 −
0.009966i, −0.001158 + 0.3953i, 0.02944 −
0.04832i, 0.0003527 − 0.001285i, −0.05052 +
0.01027i, 0.000449− 0.3918i, −0.0478− 0.03061i, p3 +
ip4)

T , with p1 = −0.564882, p2 = 0.471498, p3 =
0.373546, p4 = 0.0, and for F1 and F2,
|ψ〉 = 1+i√

2
|22〉 and the orthonormal basis as

1+i√
2
{|00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉, |21〉, |22〉} re-

spectively. Notice that |φ′〉 is almost same as |φ〉 in
the linear witness operator except the first and the
last entries. With these parameter values, we again
identify a range of the noise value, p, for which the
performance of F2 is better than F1 and the linear
witness operator (see Fig. 5).

V. DETECTION LOOPHOLE IN NONLINEAR
WITNESS OPERATOR FOR NON-ABSOLUTELY

SEPARABLE (PPT) STATES

Upto now, all the results derived in Secs. III and IV
are under the assumption that the apparatuses used
in the identification process are perfect. We will now
investigate the response of imperfect detectors like no
clicking of detectors (lost events) or additional events
on nonlinear witnesses [35, 44]. We find critical effi-
ciency of detectors so as to avoid the fake detection of
resources.

0.2 0.4 0.6 0.8 1.0
p

- 0.02

0.02

0.04

0.06

0.08

0.10

<W >

FIG. 5. Plots of nonlinear and linear witness operators, 〈W〉,
against the noise parameter p for ρ3 in Eq. (16). Here b = 1.5.
The choices of {pi}s and basis required for witness operators
are mentioned in the text. All other specifications are same as
in Fig. 1.

Towards fulfilling the aim, we decompose a witness
operator in local operator basis such that W = C0 I +
∑α CαSα, where I stands for the identity operator, Sα

represents a term from expansion of W in local operator
basis and Cα is the corresponding expansion coefficient
[44]. Using this decomposition, it can be shown that the
condition for detecting a NPPT state using linear wit-
ness operator experimentally when detector does not
work ideally is given by

〈Wφ〉m < C0(1−
1

η−
) (19)

where 〈Wφ〉m is experimentally measured value of the
witness operator and η− is the lost event efficiency of
detector (which is supplied). We here assume that the
additional event efficiency vanishes. On the other hand,
in case of non-linear witness operator, F1, the relation
between the measured and the true values modifies as
[35]

〈Wφ〉m < C0(1−
1

η−
) +

η−
S(ψ)

(〈H〉2m + K2
H − 2〈H〉mKH)

+
η−

S(ψ)
(〈A〉2m + K2

A − 2〈A〉mKA),

(20)

where 〈H〉m and 〈A〉m are experimentally measured
value of Hermitian and anti-Hermitian part of XTB re-
spectively. Moreover KH and KA are given by

KH = C0H(1−
1

η−
) and KA = C0A(1−

1
η−

), (21)

with C0H and C0A being the coefficients of the decom-
position of H and A in local operator basis respectively,
corresponding to the Identity matrix.

It is possible to obtain 〈Wφ〉m for all the examples
that we considered so far. For example, when η− is
supplied, for the generalized two-qubits Werner state,
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〈Wφ〉m < 1
4 (1−

1
η−

) with linear witness operator while

for nonlinear case, 〈Wφ〉m < 1
4 (1−

1
η−

) + η−{(〈H〉m −
KH)

2 + 〈A〉2m} with KH = 1
4 cos θ(1− 1

η−
) and KA = 0.

So, for two-qubits, the loophole cannot be closed for our
chosen linear witness (with θ = 0.352 ) if η− < 0.43582
while in case of nonlinear witness operator, for a given
Xnl = 0.4, the upper bound of η− can further be low-
ered as 0.3881 where we assume that |ψ〉 is orthogonal
to |φ〉 in F1.

Considering a qubit-qudit state ρ2 given in Eq. (13),
let us demonstrate the advantageous role of nonlinear
witness operators towards defeating the inefficiency in
detectors. In this case, the loophole of a linear wit-
ness can be closed when 〈Wφ〉m < 1

8 (1 −
1

η−
), while

the similar condition in presence of nonlinearity reads
as 〈Wφ〉m < 1

8 (1 −
1

η−
) + η−{(〈H〉m − KH)

2 + 〈A〉2m},
where KH = 1

8
√

2
(1 − 1

η−
) sin θ1 sin θ2 sin θ3(cos θ4 +

sin θ4 sin θ5 sin θ6 sin θ7) and KA = 0.
Let us consider a special case when |ψ〉 is orthogonal

to |φ〉, thereby leading to the vanishing KH and KA. For
a fixed η−, the lost events inefficnecy can be overcome
when

〈Wφ〉m <
1
8
(1− 1

η−
) +

η−
S(ψ)

{〈H〉2m + 〈A〉2m} ≡Wup.

(22)
The above equation can be rewritten if we consider
(〈H〉2m + 〈A〉2m) = X2

nl . In Fig. 6, the upper bound of
〈Wφ〉m is shown with respect to Xnl for different val-
ues of η− which indicates that the chances of detecting
non-absolutely separable states (with respect to the de-
tector efficiency) increase with the increasing value of
nonlinearity, X2

nl . To visualize it, let us consider the sit-
uation when 〈Wφ〉m vanishes and the nonlinear term is
taken to be Xnl = 0.2. The detection of non-AS state is
then possible when η− ≥ 0.424, while for Xnl = 0.6,
η− ≥ 0.275. Therefore, the increase of nonlinearity,
i.e., Xnl enhances the possibility of identifying non-AS
states even in presence of a relatively inferior detector.
If we compare the values with the linear witness oper-
ators, we can also show that nonlinearity in the witness
operator helps to overcome the detection loopholes.

The similar detection inefficiency can also be over-
come when the task is to identify the range of p in ρ3
representing the non-absolute PPT states. In this case,
KH and KA can be evaluated to be 1

9
√

2
(p3 + p4)(1− 1

η−
)

and 1
9
√

2
(p3 − p4)(1 − 1

η−
) respectively and hence the

condition in (20) can also be obtained for a fixed η−.

VI. CONCLUSION

Quantum information processing tasks can only suc-
cessfully be realized if the resource states required for
that particular job are prepared and identified in an

-0.3

-0.2

-0.1

 0

-1 -0.5  0  0.5  1

W
u

p

Xnl

η
−
=0.3

η
−
=0.5

η
−
=0.7

η
−
=0.9

FIG. 6. Inefficiency in detectors. The upper bound of 〈Wφ〉m
in the inequality (22), Wup, against Xnl = (〈H〉2m + 〈A〉2m) for
ρ2. We plot for different values of η−. |φ〉 chosen for com-
puting F1 and U are same as in Fig. 3. The behavior of Wup

indicates that and with the increase of lost events inefficiency,
η−, nonlinearity helps to obtain the high measured witness
value. Both the axes are dimensionless.

efficient manner. Among several available resources,
entanglement shared between multiple parties has be-
come one of the important ingredients in most of the
quantum protocols discovered to date. Interestingly,
however, it was found that there exists a set of unen-
tangled states which can be made entangled by global
unitary transformation while the rest of the states re-
mains useless, known as absolutely separable states.

Therefore, in the development of quantum technolo-
gies, determining non-absolutely separable states in
laboratories can be a significant issue. Among several
identification methods developed in the theory of en-
tanglement, the most experimental-friendly one is the
linear witness operators although, for a given state, the
general method of obtaining an optimal witness opera-
tor is still not known. On the other hand, nonlinear wit-
ness operators are shown to be good alternatives with
respect to the detection of useful resources.

The present work develops nonlinear witness oper-
ators for detecting non-absolutely separable as well as
non-absolutely positive partial transposed (PPT) states
in presence of an ideal and inefficient detector. We ex-
plicitly constructed nonlinear witness operators for the
class of two-qubit states and admixtures of bound en-
tangled states with white noise in different dimensions.
Specifically, we showed that in presence of noise, non-
linear witness operators can be more efficient to recog-
nize non-absolutely PPT states compared to their linear
counterparts. Moreover, we found that such advantages
are more pronounced when the detectors are inefficient.
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APPENDIX: DIFFERENT UNITARY LEAD TO
DIFFERENT WITNESS OPERATOR

It is to be noted that different unitary transforma-
tions make a PPT state to a NPPT one in a different
parameter-range. For example, motivated by the uni-
tary transformation in two-qubits, we write a global

unitary operator in 2⊗ 4 as

U1 =
1√
2



1 0 0 0 0 0 0 1
0
√

2 0 0 0 0 0 0
0 0

√
2 0 0 0 0 0

0 0 0
√

2 0 0 0 0
0 0 0 0

√
2 0 0 0

0 0 0 0 0
√

2 0 0
0 0 0 0 0 0

√
2 0

−1 0 0 0 0 0 0 1


(23)

while for 3⊗ 3, a similar unitary transformation takes
the form as

U1 =
1√
2



1 0 0 0 0 0 0 0 1
0
√

2 0 0 0 0 0 0 0
0 0

√
2 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0
0 0 0 0

√
2 0 0 0 0

0 0 0 0 0
√

2 0 0 0
0 0 0 0 0 0

√
2 0 0

0 0 0 0 0 0 0
√

2 0
−1 0 0 0 0 0 0 0 1


.

(24)
Figs. 2 and 4, triangles symbolize the boundary be-
tween PPT states which can be made NPPT via these
unitary operators and the PPT states which remain PPT
even after their applications. Clearly, the above unitary
operators are weaker than U in Eqs. (15) and (18).
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